МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ:

ОБРАЗОВАТОВНО ОБР

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

собеседование по профилю магистерской программы

Направление подготовки 08.04.01 Строительство

Современные системы теплоснабжения и обеспечения микроклимата зданий

1. Правила проведения вступительного испытания

Вступительное испытание в магистратуру проводится в виде междисциплинарного компьютерного тестирования (МКТ) и устного собеседования по портфолио.

Процедура тестирования исключает возможность использования абитуриентом различного рода справочными, методическими и учебными материалами, а также сетью Интернет. Во время проведения МКТ запрещается иметь при себе и использовать мобильные средства связи.

Вступительное испытание в формате устного собеседования по портфолио проводится в очной и дистанционной форме (по заявлению поступающего) с прохождением процедуры прокторинга. Собеседование проводится членами экзаменационной комиссии, утвержденной приказом ректора университета, индивидуально с каждым абитуриентом. Присутствие иных лиц при проведении собеседовании запрещено. Продолжительность собеседования с каждым абитуриентом составляет не более 30 минут. Во время проведения очного собеседования запрещается иметь при себе и использовать средства связи.

2. Дисциплины, включенные в программу вступительного испытания

- 1.1. Отопление:
- 1.2. Вентиляция;
- 1.3. Проектирование систем промышленной вентиляции и очистка вентиляционных выбросов;
- 1.4. Кондиционирование воздуха и холодоснабжение зданий;
- 1.5. Генераторы тепла;
- 1.6. Централизованное теплоснабжение;

3. Содержание учебных дисциплин

3.1. Отопление

- 1. Параметры, характеризующие микроклимат помещений. Требуемые параметры внутреннего воздуха. Расчетные параметры наружного воздуха.
- 2. Нормативное и фактическое сопротивление теплопередаче ограждающих конструкций. Теплотехнический расчет наружных ограждений здания с учетом требований СП.
- 3. Тепловой баланс помещений. Расчет отопительной нагрузки помещений.
- 4. Классификация систем. Системы отопления гражданских, промышленных и сельскохозяйственных зданий.
- 5. Конструктивные элементы систем отопления. Трубопроводы, арматура, фасонные части. Удаление воздуха и спуск воды в системах водяного отопления.
- 6. Виды отопительных приборов. Классификация, характеристика, размещение в помещениях. Тепловой расчет приборов.
- 7. Централизованное и местное воздушное отопление.
- 8. Эксплуатация отопительных систем. Неисправности, их устранение.
- 9. Гидравлический расчет системы водяного отопления.
- 10. Испытание и наладка систем отопления.

3.2. Вентиляция; Проектирование систем промышленной вентиляции и очистка вентиляционных выбросов;

- 1. Классификация систем вентиляции.
- 2. Основные элементы систем механической и естественной вентиляции.

- 3. Методы определения воздухообмена в помещениях.
- 4. Расчет и компоновка оборудования вентиляционных камер. Расположение устройств для забора и выброса воздуха.
- 5. Аэродинамический расчет систем вентиляции. Цель, методика, использование результатов.
- 6. Местные вытяжные системы вентиляции. Классификация и типы. Виды местных отсосов.
- 7. Местные приточные системы вентиляции. Классификация и типы. Принцип работы и расчета воздушных завес.
- 8. Особенности проектирования вентиляции в гальванических цехах. Основные вредности и составляющие теплового и воздушного балансов, рекомендации по устройству систем вентиляции.
- 9. Особенности проектирования вентиляции в кузнечных и термических цехах. Основные вредности и составляющие теплового и воздушного балансов, рекомендации по устройству систем вентиляции.
- 10. Борьба с выделениями пыли. Системы аспирации.
- 11. Аэрация зданий. Принцип действия и основные устройства. Аэродинамика зданий. Понятие аэродинамического коэффициента.
- 12. Виды струй и основы их расчета. Подбор воздухораспределителей.
- 13. Испытание и наладка вентиляционных систем.

3.3. Кондиционирование воздуха и холодоснабжение зданий.

- 1. Обработка воздуха водой и паром в контактных аппаратах. Модель процесса. Изображение основных процессов на I-D диаграмме влажного воздуха.
- 2. Обработка воздуха в поверхностных теплообменниках. Модель процесса. Изображение основных процессов на I-D диаграмме влажного воздуха.
- 3. Прямоточная схема обработки воздуха: построение ее на I-D диаграмме, основные энергетические характеристики, область применения. Схемы с байпасированием и регулируемыми процессами обработки воздуха.
- 4. Схемы обработки воздуха рециркуляцией (первой и второй): построение ее на I-D диаграмме, основные энергетические характеристики, область применения.
- 5. Классификация и конструкции центральных кондиционеров. Область их применения и условия эксплуатации. Основные секции центральных кондиционеров и их компоновка.
- 6. Основные процессы компрессионного холодильного цикла и их изображение на P-I диаграмме жидкости. Схема работы парокомпрессионной холодильной машины: основные элементы и рабочие параметры цикла. Энергетическая оценка эффективности цикла холодильной машины.
- 7. Понятие и основные виды хладагентов. Основные требования, предъявляемые к ним. Поиск новых хладагентов: основные проблемы и направления.

3.4. Генераторы тепла

- 1. Общая принципиальная схема ТГУ.
- 2. Классификация котельных установок.
- 3. Тепловой баланс котельного агрегата.

- 4. Горение твердого топлива в слое.
- 5. Горение жидкого и газообразного топлива. Виды горелочных устройств.
- 6. Способы сжигания топлива.
- 7. Конструкции экранов, пароперегревателей, водяных экономайзеров.

3.5. Централизованное теплоснабжение

- 1. Понятие и преимущества теплофикации. Принципиальная схема ТЭЦ. Выбор вида и места расположения источника теплоснабжения.
- 2. Классификация систем теплоснабжения. Основные рекомендации по выбору. Схемы систем теплоснабжения.
- 3. Способы прокладки тепловых сетей. Трасса и профиль тепловой сети.
- 4. Построение и использование годовых графиков расхода теплоты в системах теплоснабжения.
- 5. Пьезометрические графики водяных тепловых сетей. Основные правила разработки гидравлических режимов.
- 6. Оборудование тепловых вводов. Схемы тепловых пунктов при подключении абонентов к двухтрубным водяным сетям.
- 7. Компенсация температурных деформаций на тепловых сетях. Виды компенсаторов. Расчет компенсатора.
- 8. Регулирование тепловой нагрузки в системах теплоснабжения.
- 9. Методы расчета тепловой нагрузки системы теплоснабжения по укрупненным по-казателям.
- 10. Гидравлический расчет водяной системы теплоснабжения.
- 11. Конструкции тепловой изоляции. Расчет экономически целесообразной толщины тепловой изоляции теплопровода. Испытание и наладка тепловых сетей.

4. Литература для подготовки

Основная литература

- 1. Каменев, П.Н. Вентиляция [Текст]: учебник/ П.Н. Каменев, Е.И. Тертичник. М.: Издательство АСВ, 2008.- 624 с.
- 2. Системы отопления, вентиляции и кондиционирования воздуха [Электронный ресурс]: устройство, монтаж и эксплуатация: Учебное пособие / С.В. Фокин, О.Н. Шпортько. М.: Альфа-М, НИЦ ИНФРА-М, 2013. 368 с. Режим доступа: http://znanium.com/book read.php.book=400628.
- 3. Соколов, Е.Я. Теплофикация и тепловые сети [Текст]: учебник/ Е.Я. Соколов. М.: изд-во МЭИ, 2001. 472с.
- 4. Делягин, Г.Н. Теплогенерирующие установки [Текст]: учебник для вузов/ Г.Н. Делягин, Б.А. Пермяков, П.А. Хаванов. М.: Стройиздат, 2010. 624 с.
- 5. Кокорин, О. Я. Современные системы кондиционирования воздуха [Текст]/О.Я. Ко-корин. М.: Издательство физико-математической литературы. 2003. 272 с.- Режим доступа: http://softtutograf.com/node/3480
- 6. Аверкин, А. Г. Примеры и задачи по курсу "Кондиционирование воздуха и холодоснабжение" [Текст]: учеб. пособие для вузов по спец. "Теплогазоснабжение и вентиляция" / А. Г. Аверкин. 2-е изд., испр. и доп. М.: Ассоц. строит. вузов, 2007. 126 с.
- 7. Кокорин, О.Я., Системы и оборудование для создания микроклимата помещений

- [Текст]: учебник /О.Я. Кокорин, $\,$ Ю.М. Варфоломеев, под общ. ред. проф. Варфоломеева Ю.М. М.: ИНФРА-М, 2008. 273 с.
- 8. Сканави, А.Н., Отопление [Текст]: учебник для вузов/ А.Н. Сканави, Л.М. Махов. М.: Издательство АСВ, 2008 Режим доступа: http://www.arhibook.ru/555-otoplenye.html,
- 9. Краснов, Ю.С. Системы вентиляции и кондиционирования [Текст]: рекомендации по проектированию для производственных и общественных зданий/Ю.С. Краснов. М.: Термокул, 2006г. -288с.
- 10. Краснов, Ю.С. Системы вентиляциии и кондиционирования [Текст]: рекомендации по проектированию, испытаниям, наладке/Ю.С. Краснов, А.П. Борисоглебская, А.В., Антипов М.- Термокул, 2004г. 373с.

Дополнительная литература

- 1. Старкова, Л.Г. Централизованное теплоснабжение. Курсовое проектирование [Текст]: уч. пособие/ Л.Г. Старкова, Ю.А. Морева, Л.И. Короткова. Магнитогорск: издво МГТУ им. Г.И. Носова, 2017. -50 с.
- 2. Морозов, А.П. Генераторы тепла. Котельные установки и парогенераторы. [Электронный ресурс]: учебное пособие/ А.П. Морозов, Г.Н. Трубицына. Электрон. текстовые дан.— Магнитогорск: ФГБОУ ВПО «МГТУ», 2012. Режим доступа: http://lms.magtu.ru.

5. Шкала оценивания вступительного испытания

5.1. Междисциплинарное компьютерное тестирование

Максимальное значение баллов, которое может набрать абитуриент по результатам междисциплинарного компьютерного тестирования - 100 баллов. Каждый правильный ответ на вопрос оценивается в 1 балл.

5.2 Собеседование по портфолио

Дополнительные баллы могут быть начислены абитуриенту в соответствии с утвержденным Перечнем индивидуальных достижений, учитываемых при приеме на обучение по программам магистратуры (размещен на официальном сайте университета).

5.3 Итоговый балл

Общая оценка прохождения абитуриентом вступительных испытаний складывается из результатов междисциплинарного компьютерного тестирования (МКТ) и устного собеседования по портфолио.

При равенстве итогового балла у нескольких абитуриентов преимущество имеет абитуриент, получивший более высокую оценку на устном собеседовании.

Программу разработали:

Старкова Л.Г., руководитель ООП, доцент кафедры урбанистики и инженерных систем, к.т.н., доцент

Суровцов М.М., заведующий кафедрой урбанистики и инженерных систем, к.т.н.

17.06.2022 г.

Примерный вариант вступительного испытания (тестового задания)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1.

- 1. Укажите, к какому типу нагревательных приборов относятся конвекторы
 - А. радиационно-конвективные
 - Б. радиационные
 - В. конвективные

Правильный ответ: В. Количество баллов: 5

- 2. Выберите значение оптимальной нормы движения воздуха в помещении
 - A. 0.15 m/c
 - Б. $0,5 \, \text{м/c}$
 - $B. \ 0.3 \ \text{м/c}$

Правильный ответ: В. Количество баллов: 5

- 3. Выберите значение минимального уклона трубопроводов систем теплоснабжения
 - A. 0,001
 - Б. 0,005
 - B. 0.002

Правильный ответ: В. Количество баллов: 5

- 4. Укажите необходимый напор, требуемый для работы элеватора при коэффициенте смешения 2,2 и сопротивлении системы отопления 1 м вод.ст.
 - *А.14.3 м вод.ст.*
 - Б. 4,0 м вод.ст.
 - В. 7,3 м вод.ст.

Правильный ответ: В. Количество баллов: 5

- 5. Укажите, какое минимальное давление должно быть обеспечено в обратном трубопроводе системы отопления, если верхний прибор находится на высоте 20 м
 - А. 20 м вод.ст.
 - Б. 25 м вод.ст.
 - В. 60 м вод.ст.

Правильный ответ: Б. Количество баллов: 5

- 6. Укажите, какая система горячего водоснабжения применяется при соотношении тепловых нагрузок горячего водоснабжения и отопления равном $Q_{2.6}/Q_{om}$
 - =1,2
 - А. смешанная
 - Б. последовательная
 - В. параллельная

Правильный ответ: В. Количество баллов: 5

7. Выберите значение температуры горячей воды в водоразборных точках при закрытой схеме теплоснабжения

A. не менее 50 ^{o}C

- Б. не менее $55^{\circ}C$
- B. не менее $60^{\circ}C$

Правильный ответ: Б. Количество баллов: 5

- 8. Укажите, что произошло с коэффициентом теплопередачи, если скорость движения теплоносителя в водоподогревателе снизилась
 - А. снизился
 - Б. не зависит от скорости
 - В. увеличился

Правильный ответ: А. Количество баллов: 5

- 9. Укажите, какой процент составляет нормативная часовая утечка сетевой воды от объёма тепловой сети
 - A. 0.25%
 - Б. 1%
 - B. 0.1%

Правильный ответ: А. Количество баллов: 5

- 10. Укажите, с помощью какого вида испытаний проверяется компенсирующая способность тепловой сети
 - А. на расчётную температуру
 - Б. на тепловые потери
 - В. на плотность и прочность

Правильный ответ: А. Количество баллов: 5

- 11. Укажите, в каких системах теплоснабжения должна проводиться дезинфекция трубопроводов
 - А. закрытых
 - Б. открытых
 - В. в обоих случаях

Правильный ответ: Б. Количество баллов: 5

- 12. Укажите, какой тип насосной станции применяется, когда давление в обратном трубопроводе превышает допустимое
 - А. повысительная
 - Б. смесительная
 - В. понизительная

Правильный ответ: В. Количество баллов: 5

- 13. Укажите, какие опоры тепловых сетей служат для фиксации трубопроводов в определённом положении
 - А. щитовые
 - Б. роликовые
 - В. катковые

Правильный ответ: А. Количество баллов: 5

- 14. Укажите, на какой высоте от уровня земли необходимо делать воздухозабор для приточной вентиляции
 - A. 1 M
 - Б. 1,5 м

В. 2 м

Правильный ответ: В. Количество баллов: 5

- 15. Укажите, какой вид топлива нельзя применять для крышных котельных жилых домов
 - А. дизельное
 - Б. газ
 - В. мазут

Правильный ответ: А. Количество баллов: 5

- 16. Укажите, какой теплоутилизатор имеет наибольший КПД
 - А. гликолевый
 - Б. пластинчатый
 - В. роторный

Правильный ответ: В. Количество баллов: 5

- 17. Укажите, какую минимальную температуру воздуха допускается принимать в холодное время года для не используемых жилых помещений отапливаемых зданий
 - А. не менее 12°С
 - Б. не менее 18°C
 - В. не менее 15°C

Правильный ответ: В. Количество баллов: 5

- 18. Укажите, какой элемент позволяет проводить реверсирование цикла в холодильных машинах
 - А. регулятор потока
 - Б. терморегулирующий вентиль
 - В. четырехходовой клапан

Правильный ответ: В. Количество баллов: 5

- 19. Выберите значения температур при расчете естественной вентиляции для жилых, общественных и административно-бытовых зданий (за основу берется разность удельных весов воздуха)
 - А. 0°С наружной и согласно нормативу для холодного периода года внутренней;
 - Б. 5°С наружной и согласно нормативу для холодного периода внутренней;
 - В. холодной пятидневки наружной и согласно нормативу для холодного периода года внутренней;

Правильный ответ: Б. Количество баллов: 5

- 20. Укажите, на ассимиляцию какого вещества при расчете воздухообмена в помещениях автостоянок и гаражей в большинстве случаев расход воздуха получается максимальным
 - A. CO
 - Б. СН
 - $B. NO_x$

Правильный ответ: А. Количество баллов: 5