министерство образования и науки российской федерации

Ф Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ:

директор института естествознания

и стандартизации

И.Ю.Мезин

«26»/сентября 2016 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МОДЕЛИРОВАНИЕ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Направление подготовки 18.03.01 Химическая технология

Направленность (профиль) программы

Химическая технология природных энергоносителей и углеродных материалов

Уровень высшего образования – бакалавриат

Программа подготовки – академический бакалавриат

Форма обучения Заочная

Институт

Естествознания и стандартизации

Кафедра

Физической химии и химической технологии

Курс

4

Магнитогорск 2016 г.

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 18.03.01 *Химическая технология*, утвержденного приказом МОиН РФ от 11.08.2016 № 1005.

Рабочая программа рассмотрена и одобрена на заседании кафедры *Физической химии и химической технологии* «23» сентября 2016 г., протокол № 2/

Зав. кафедрой

/ А.Н.Смирнов/

Рабочая программа одобрена методической комиссией института Естествознания и стандартизации «26» сентября 2016 г., протокол № 2.

Председатель

/ И.Ю. Мезин/

Рабочая программа составлена:

доцент, д. ф.-м. н

/ А. Н. Смирнов/

Рецензент: начальник коксохимического производства ОАО «ММК»

/С Н Паутин/

Лист регистрации изменений и дополнений

№ 11/11	Раздел программы	Краткое содержание изменения/дополнения	Дата. № протокола заседания кафедры	Подпись зав. кафедрой
1,	8	Актуализация учебно-методического и информационного обеспечения дисциплины	1.09,2017 №1	Suf
2	9	Актуализация материально- технического обеспечения дисциплины	1.09.2017 Ne1	Leef
3	8	Актуализация учебно-методического и информационного обеспечения дисциплины	15.10.2018 No4	Ley
4	9	Актуализация материально- технического обеспечения дисциплины	15.10.2018 Nu4	Leer
5	8	Актуализация учебно-методического и информационного обеспечения дисциплины	04.09.19 №1	Shruf
S	9	Актуализация материально- технического обеспечения дисциплины	04.09.19 No1	And
J	P	бадану Учевно методип и шидориацион оветечен динуштинт	31.08.2020 NL	Duy
	1 200 t 100 t		W Congress	
	4			

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Моделирование химико-технологических процессов» являются:

свободное владение основными методами построения, численного решения, реализации (представления) и исследования с помощью ЭВМ математических моделей;

освоение существующих основных математических моделей, используемых при описании химико-технологических процессов;

Следствием из поставленных целей должна стать главная цель:

свободное чтение и понимание отечественных и зарубежных работ, посвященных математическому моделированию в области профессиональной деятельности (коксохимия).

2 Место дисциплины (модуля) в структуре образовательной программы подготовки бакалавра (магистра, специалиста)

Дисциплина «Моделирование химико-технологических процессов» входит в базовую часть образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения Б1.Б.09 Математика, Б1.Б.11 Информатика, Б1.Б.15 Физическая химия.

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы Б1.В.ДВ.03.01 УИРС, Б1.В.ДВ.03.02 Планирование и организация эксперимента, Б3.Б.01 Государственная итоговая аттестация.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Моделирование химикотехнологических процессов» обучающийся должен обладать следующими компетенциями:

Структурный	
элемент	Планируемые результаты обучения
компетенции	
ОПК-5 владени	ием основными методами, способами и средствами получения, хранения,
переработки ин информацией	нформации, навыками работы с компьютером как средством управления
Знать	 интерфейс и основные возможности программ общего назначения
	(электронные таблицы) и специализированных программ для решения за-
	дач, связанных с математическим моделированием;
	 возможности ТП при решении типовых задач;
Уметь	 создать собственную функцию в табличном процессоре;
	 использовать возможности ТП для реализации алгоритма по блок-
	схеме;
	 выполнить в ТП вычисления по итерационным формулам;
Владеть	 практическими навыками работы в табличном процессоре (ТП);
	 практическими навыками работы в специализированных програм-
	мах;
TIIC 16	1

ПК-16 способностью планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешности, выдвигать гипотезы и устанавливать границы их применения, применять методы математического анализа и моде-

Структурный элемент компетенции	Планируемые результаты обучения
лирования, теој	ретического и экспериментального исследования.
Знать	 понятия «модель», «математическая модель», необходимость наличия математической модели для описания химико-технологического процесса для сферы производства; физико-химический метод моделирования равновесного состава смеси; понятие о линейной зависимости/независимости химических реакций; основные блок-схемы для описания вычислительного алгоритма; основные численные методы решения уравнения, получаемого в ходе физико-химического моделирования равновесного состава смеси; основные дифференциальные уравнения формальной кинетики; основные методы численного решения дифференциальных уравнений; общую методику построения (выведения) дифференциальных уравнений на основе материального и теплового баланса; дифференциальные уравнения непрерывности потока для неустановившегося движения несжимаемой жидкости, теплопроводности, конвективной теплопроводности, диффузии, конвективной диффузии; уравнение материального баланса для элементарного объёма реактора любого типа. элементы теории подобия (происхождение критериев подобия, критериальных уравнений, из основных дифференциальных уравнений, описывающих процесс);
Уметь	 уравнение стандартного нормального распределения, его свойства;
	 вывести основные уравнения формальной кинетики; уметь аналитически решить основные уравнения формальной кинетики; вывести на основе материального или теплового баланса основные дифференциальные уравнения: непрерывности потока для неустановившегося движения несжимаемой жидкости, теплопроводности, конвективной теплопроводности, диффузии, конвективной диффузии; уравнение материального баланса для элементарного объёма реактора любого типа;
Владеть	 методом статистического анализа однородности дисперсий; методом статистического анализа выборки на наличие грубых ошибок; методом статистического анализа однородности средних; методом наименьших квадратов (МНК); методом обработки результатов пассивных экспериментов на основе МНК; методом ПФЭ; анализ полученной модели на адекватность и работоспособность; методом ДФЭ; методом построения многоуровневого многофакторного плана, использующего свойства латинских квадратов.

4 Структура и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 19,2 акад. часов:
 - аудиторная 16 акад. часов;
 - внеаудиторная 3,2 акад. часов
- самостоятельная работа 116,1 акад. часов;
- в форме практической подготовки 2 акад. часов
- подготовка к экзамену 8,7 акад. часа

Раздел/ тема дисциплины		Аудиторная контактная работа (в акад. часах)			ьная работа часах)	Вид самостоятельной	Форма текущего контроля успе-	структурный элемент лпетенции
		лекции	лаборат. занятия	практич. занятия	Самостоятельная работа (в акад. часах)	работы	ваемости и промежуточной аттестации	Код и структурн элемент компетенции
1. Раздел Общие вопросы моделирования								
1.1. Тема Общее понятие модели. Понятие о математическом моделировании. Классификация математических моделей. Аналитический подход к моделированию. Экспериментальный подход к моделированию. Комбинированный подход к моделированию. Триединство процесса моделирования: модель, алгоритм, программа. Основные этапы моделирования.	4	3	-		16	AP №1	Текущий контроль успеваемости	ПК 16 –зув; ОПК-5 – 3
1.2. Тема Примеры математического моделирования из различных областей знания (физика, военное дело, биология).	4	3	_	_	16	АР №2 (Задачи №1, №2)	Текущий контроль успеваемости	ПК 16 –зув; ОПК-5 – з;
Итого по разделу		6		_	32	-	Текущий контроль успеваемости	
2. Раздел Аналитический подход к моделированию XTП		_						

Раздел/ тема дисциплины		Аудиторная контактная работа (в акад. часах)			Самостоятельная работа (в акад. часах)	Вид самостоятельной	Форма текущего контроля успе-	Код и структурный элемент компетенции
дисциплины	Kypc	лекции	лаборат. занятия	практич. занятия	Самостоятельная ра (в акад. часах)	работы	промежуточной аттестации	Код и стр элем компет
2.1. Тема Понятие о физико-химическом моделировании. Термодинамика химических превращений. Направление химических реакций. Уравнение изотермы химической реакции. Понятие о фугитивности и активности. Способы описания концентрации реагирующих веществ. Изменение энергии Гиббса в ходе реакции. Уравнение изотермы химической реакции в стандартных условиях. Связь между константами равновесия в зависимости от способа описания состава реакционной смеси. Гетерогенное химическое равновесие: запись констант равновесия. Определение констант равновесия при различных температурах. Понятие о линейной зависимости химических реакций.	4	1		2/2И	16	АР №2 (Задачи №№ 3–12)	Текущий контроль успеваемости	ПК 16 –зув; ОПК-5 – зув
2.2. Тема Кинетические особенности протекания химических реакций в различных средах. Границы применимости термодинамического подхода к моделированию ХТП. Рассмотрение задач различной сложности. Методика составления систем уравнений, описывающих равновесные концентрации веществ, принимающих участие в химических реакциях. Сведение системы нелинейных уравнений к одному нелинейному уравнению в задачах моделирования протекающих химических реакций.	4	-		2/2И	20	АР №2 (Задача № 13)	Текущий контроль успеваемости	ПК 16 –зув; ОПК-5 – зув
2.3. Тема Дифференциальные уравнения непрерывности потока для неустано-вившегося движения несжимаемой жидкости, теплопроводности, конвективной теплопроводности, диффузии, кон-	4	_		-	2	АР №2 (Задача №14)	Текущий контроль успеваемости	ПК 16 –зув; ОПК-5 – зув.

Раздел/ тема	Курс	Аудиторная контактная работа (в акад. часах)		ьная работа часах)	Вид самостоятельной	Форма текущего контроля успеваемости и	уктурный лент генции	
дисциплины	Ky	лекции	лекции лаборат. занятия практич.		Самостоятельная работа (в акад. часах)	работы	промежуточной аттестации	Код и структурный элемент компетенции
вективной диффузии; уравнение материального баланса для элементарного объёма реактора любого типа. Общие сведения о теории подобия. Основные критерии подобия.								
Итого по разделу		_		4/4И	38		Текущий контроль успеваемости	
3. Раздел Экспериментальный подход								
3.1. Тема Статистические методы анализа экспериментальных данных. Экспериментальные оценки истинного значения измеряемой случайной величины и её дисперсии. Определение грубых ошибок среди результатов повторностей опыта. Средневзвешенные оценки дисперсии. Анализ однородности исходных оценок дисперсии. Определение доверительной ошибки экспериментальной оценки измеряемого параметра. Определение числа повторностей опыта, обеспечивающего получение заданной доверительной ошибки оценки определяемого параметра. Проверка нормальности закона распределения.	4	-		2	16	АР №3 (Задачи №№ 15–18)	Текущий контроль успеваемости	ПК 16 –зув; ОПК-5 – зув
3.2. Тема Планирование и обработка результатов однофакторного экспериментов. Формализация экспериментальных данных методом наименьших квадратов. Симметричный и равномерный план однофакторного эксперимента. Проверка адекватности полученного уравнения и его использование для оптимизации процесса. Получение экспонен-	4	_		2	20	АР №3 (Задачи №№ 19–20)	Текущий контроль успеваемости	ПК 16 –зув; ОПК-5 – зув

Раздел/ тема	Курс	Аудиторная контактная работа (в акад. часах)			ьная работа часах)	Вид самостоятельной	Форма текущего контроля успе-	/ктурный (ент енции
дисциплины	Ą.	лекции	лаборат. занятия	практич. занятия	Самостоятельная работа (в акад. часах)	работы	промежуточной аттестации	Код и структурный элемент компетенции
циальной зависимости по результатам однофакторных экспериментов. Двухуровневые планы многофакторных экспериментов. Метод наименьших квадратов при обработке результатов многофакторного эксперимента. Двухуровневый план полного факторного эксперимента ПФЭ2 ⁿ . Уравнения, получаемые по результатам реализации планов ПФЭ2 ⁿ . Статистический анализ значимости оценок коэффициентов уравнения, его адекватности и работоспособности. Дробный факторный эксперимент ДФЭ2 ^{n-n'} . Планирование эксперимента при изменяющемся во времени влиянии на процесс неучтённых факторов. Использование планов ПФЭ2 ⁿ ДФЭ2 ^{n-n'} для получения уравнения процесса в виде экспоненциальной зависимости. Рассмотрение примеров. Многоуровневые многофакторные планы, использующие свойства латинских квадратов. Построение планов. Получение и использование для оптимизации уравнений различной структуры. Итого по разделу				4	36		Текущий контроль успеваемости	
4. Раздел Комбинированный подход 4.1. Тема Особенности комбинированных математических моделей. Рассмотрение математических моделей из области профессиональной компетенции (прогнозирование показателей качества кокса M_{25} и M_{10}). Задача математического программирования для определения оптимального качества	4	-		2	10,1	АР №4 (Задача №21)	Текущий контроль успеваемости	ПК 16 –зув; ОПК-5 – зув

Раздел/ тема	Курс	Аудиторная контактная работа (в акад. часах)			ьная работа часах)	Вид самостоятельной	Форма текущего контроля успе- ваемости и	структурный ыемент петенции
дисциплины		лекции	лаборат. занятия	практич. занятия	Самостоятельная (в акад. часа	работы	промежуточной аттестации	Код и структурн элемент компетенции
кокса и его стоимости.								
Итого по разделу		_		_	10,1	_	Текущий контроль успеваемости	_
Итого за семестр		6		10/4И	116,1	-	Промежуточная аттестация (экзамен)	-
Итого по дисциплине		6		10/4И	116,1	-	_	-

И – в том числе, часы, отведенные на работу в интерактивной форме.

5 Образовательные и информационные технологии

Для достижения планируемых результатов обучения, в дисциплине «Моделирование химико-технологических процессов» используются различные образовательные технологии:

- 1. Информационно-развивающие технологии, направленные на овладение большим запасом знаний, запоминание и свободное оперирование ими. Используется лекционно-семинарский метод, самостоятельное изучение литературы, применение новых информационных технологий для самостоятельного пополнения знаний, включая использование технических и электронных средств информации;
- 2. Деятельностные практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений при проведении экспериментальных исследований, обеспечивающих возможность качественно выполнять профессиональную деятельность;
- 3. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие проблемного мышления, мыслительной активности, способности проблемно мыслить, видеть и формулировать проблемы, выбирать способы и средства для их решения. Используются следующие виды проблемного обучения: освещение основных проблем изучаемой дисциплины на лекциях, учебные дискуссии, решение задач повышенной сложности. Преподаватель лишь создает проблемную ситуацию, а разрешают её обучаемые в ходе самостоятельной деятельности;
- 4. Личностно-ориентированные технологии обучения, обеспечивающие в ходе учебного процесса учет различных способностей обучаемых, создание необходимых условий для развития их индивидуальных способностей, развитие активности личности в учебном процессе. Личностно-ориентированные технологии обучения реализуются в результате индивидуального общения преподавателя и студента на консультациях, при выполнении домашних индивидуальных заданий, подготовке индивидуальных отчетов по индивидуальным заданиям, решении задач.

Методическая концепция преподавания дисциплины «Моделирование химикотехнологических процессов» предусматривает активную форму усвоения материала, которая обеспечивает максимальную самостоятельность студента в решении технологических задач при выполнении заданий.

Также предусмотрены различные виды лекционных занятий:

- лекция с разбором конкретной задачи, изложенной в устной форме или в виде слайда или видеозаписи, студенты совместно с преподавателем обсуждают и анализируют представленный материал;
- лекция с разбором нерешенных и проблемных вопросов дисциплины анализ и обсуждение возможных вариантов решения этих вопросов.

Самостоятельная работа стимулирует студентов к самостоятельной проработке тем в процессе написания рефератов, выполнения индивидуальных заданий, в процессе подготовки к коллоквиумам и итоговой аттестации.

Интерактивное обучение включает следующие методы:

- работа в команде
- проблемное обучение
- контекстное обучение
- обучение на основе опыта
- междисциплинарное обучение
- эвристическая беседа
- учебная дискуссия.

Для оценки знаний рекомендуется использовать рейтинговую систему, которая обеспечивает диагностику достижения обучаемым заданного уровня компетентности на каждом этапе текущего, промежуточного и рубежного, итогового контроля. Цель студента – набрать максимальное число баллов. При рейтинговой системе резко возрастает роль

текущего контроля. В конце семестра, студенты, набравшие суммарный рейтинг 50% получают допуск к экзамену.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Моделирование химико-технологических процессов» предусмотрена аудиторная и внеаудиторная работа обучающихся.

Аудиторная работа студентов предполагает решение задач на практических занятиях.

Аудиторные работы (АР):

АР №1 «Общие вопросы моделирования»

- №1. Составить блок-схему для вычисления суммы квадратов первых N чисел натурального ряда.
- №2. Составить блок-схему для решения задачи. Каково время падения тела, если известны высота, ускорение, начальная скорость. Примечание: предусмотреть корректную обработку всех возможных случаев: решение не имеет корней; один, два корня; задача не имеет физического смысла.

АР №2 «Аналитический подход к моделированию ХТП»

- №1. Рассчитать ионно-молекулярный состав в присутствии КСN, растворённого в количестве $C=10^{-5}$ моль / л. Задаться значениями рН в интервале 0-14 и численно рассчитать ионно-молекулярный состав данной системы. Результаты представить графически в информативном виде (использовать логарифмическую шкалу выходного параметра). Все расчёты произвести в табличном процессоре.
- №2. Рассчитать ионно-молекулярный состав раствора в присутствии растворённой углекислоты воздуха. Задаться значениями рН в интервале 0-14 и численно рассчитать ионномолекулярный состав данной системы. Результаты представить графически в информативном виде (использовать логарифмическую шкалу выходного параметра). Все расчёты произвести в табличном процессоре.
- №3. Значение рН раствора регулируется изменением концентрации соды. Рассчитать концентрацию $[CO^{3-}]$ ионов в растворе, с учётом растворённой углекислоты воздуха. Задаться значениями рН в интервале 0-14 и численно рассчитать ионно-молекулярный состав данной системы. Результаты представить графически в информативном виде (использовать логарифмическую шкалу выходного параметра). Все расчёты произвести в табличном процессоре.
- №4. При каком значении pH достигается практически полное осаждение MnS ($\Pi P_{MnS} = 2.5*10^{-10}$), содержащегося в растворе в количестве 0,005 моль, при употреблении 50 % избытка осадителя. Расчёт произвести на 1 л исследуемого раствора. Все численные расчёты произвести в табличном процессоре, аналитические записи предоставить в бумажном виде. Из каких соображений находится концентрация марганца [Mn^{2+}], и между какими химическими формами осуществляется материальный баланс по сере избыточной концентрации осадителя?
- №5. Пример 5. Рассчитать равновесный состав газовой фазы для установившегося термодинамического равновесия получения водяного газа по реакциям:

$$C + H_2O \Leftrightarrow CO + H_2$$
 (1)

$$CO + H_2O \Leftrightarrow CO_2 + H_2$$
 (2)

В данном задании достаточно ограничиться выводом кубического уравнения относительно рсо.

№6. Оценить с физико-химической точки зрения, при каком значении pH происходит переход PbSO₄ в Pb(OH)₂. Изменение pH происходит за счёт NaOH.

В системе предполагается протекание следующих химических реакций:

$$PbSO_{4_{TB.}} \Leftrightarrow Pb^{2+}_{p-p} + SO_{4_{p-p}}^{2-}$$
 (1)

$$Pb(OH)_{2_{TB}} \Leftrightarrow Pb^{2+}_{p-p} + 2OH^{-}_{p-p}$$
 (2)

$$Pb(OH)_{2_{TB.}} \Leftrightarrow H^{+}_{p-p} + HPbO_{2}^{-}_{p-p}$$
 (3)

$$Pb(OH)^{+}_{p-p} \iff Pb^{2+}_{p-p} + OH^{-}_{p-p}$$
 (4)

$$HSO_4^{-}_{p-p} \iff H^{+}_{p-p} + SO_4^{2-}_{p-p}$$
 (5)

$$H_2O \Leftrightarrow H^+ + OH^-$$
 (6)

Уравнение материального баланса:

$$[Na^+] \Leftrightarrow [OH^-] + [Pb(OH)^+]$$
 (7)

Уравнение электронейтральности:

$$[Na^+] + 2*[Pb^{2+}] + [Pb(OH)^+] + [H^+] \Leftrightarrow 2*[SO_4^{-2}] + [HSO_4^{-1}] + [HPbO_2^{-1}] + [OH^-]$$

Примечание: при решении задачи необходимо по имеющимся уравнениям составить систему нелинейных уравнений, из неё вывести уравнение:

$$2*{K_{2}}^{2}*{K_{4}}*{K_{5}}*{[H^{+}]}^{4}+{K_{2}}*{K_{5}}*{K_{w}}(2*{K_{2}}+{K_{4}}*{K_{w}})*{[H^{+}]}^{3}-\\-{K_{4}}*{K_{w}}^{2}({K_{1}}*{K_{w}}^{2}+{K_{2}}*{K_{3}}*{K_{5}})*{[H^{+}]}-2*{K_{1}}*{K_{4}}*{K_{5}}*{K_{w}}^{4}=0$$

Из справочных данных необходимо определить константы химических реакций $K_1 - K_6$ соответствующих реакций (1)-(6).

Из практических соображений установить, с какой точностью необходимо вычислять значение рН.

Нелинейное уравнение необходимо решить четырьмя методами: графическим, половинного деления, Ньютона, хорд. Сделать вывод о быстроте сходимости каждого из методов при заданной точности получаемого результата, а также пригодности для решения задачи физико-химического моделирования.

Рассмотреть эвристический метод, основанный на специфике решаемой задачи, решения системы нелинейных уравнений.

Все вычисления произвести в табличном процессоре.

№7. Пользуясь результатами задачи №6 исключить из системы нелинейных уравнений уравнение (3). Решить полученную систему уравнений эвристическим методом. Сделать вывод о влиянии уравнения (3) на моделируемую систему и итоговое значение рН.

№8. Пользуясь результатами задачи №6 исключить из системы нелинейных уравнений уравнение (3) и (5). Решить полученную систему уравнений эвристическим методом. Сделать вывод о влиянии уравнения (3) и (5) на моделируемую систему и итоговое значение рН.

№9. Пользуясь результатами задачи №6 исключить из системы нелинейных уравнений уравнение (1), (3), (5). Решить полученную систему уравнений эвристическим методом. Сделать вывод о влиянии уравнения (1) на моделируемую систему и итоговое значение рН.

№10. Решить нелинейное уравнение из задачи (6) с помощью встроенных функций специализированной программы MathCad. Сравнить полученное значение с уже полученными

№11. Решить систему нелинейных уравнений из задачи (6) с помощью встроенных функций специализированной программы MathCad. Сравнить полученное значение с уже полученными.

№12. Исходя из понятия линейная зависимость/независимость химических реакций, с помощью встроенных математических функций MathCad для системы реакций

$$C + H_2O \Leftrightarrow CO + H_2 \quad (1)$$

$$CO + H_2O \Leftrightarrow CO_2 + H_2 \quad (2)$$

$$2*CO \Leftrightarrow C + CO_2 \quad (3)$$

$$C + 2*H_2O \Leftrightarrow CO_2 + 2*H_2 \quad (4)$$

Определить количество линейно-независимых химических реакций. Что это означает с точки зрения математического описания данной системы реакций.

№13. Для необратимой реакции первого порядка:

$$A \xrightarrow{\kappa_1} B$$

Составить дифференциальное уравнение скорости изменения концентрации А. Решить полученное дифференциальное уравнение методом Эйлера, модифицированным методом Эйлера, Рунге-Кутта. Сделать вывод о точности каждого из методов в сравнении друг с другом. Для расчёта принять следующие значения неизвестных параметров:

$$C_A^0 = 0.7$$
 моль/л; $\kappa_1 = 0.001$ 1/c; $h = 0.1$ (шаг интегрирования).

№14. Для последовательной схемы необратимых химических реакций первого порядка: А

$$A \xrightarrow{\kappa_1} B \xrightarrow{\kappa_2} C$$

Составить систему дифференциальных уравнений и решить её с помощью метода Эйлера, модифицированного Эйлера, Рунге-Кутта 4-ого порядка. Сделать вывод о точности получаемого решения, сравнивая методы между собой. Для расчёта принять следующие значения неизвестных параметров:

$$C_A^0 = 0.5$$
 моль/л; $C_B^0 = C_C^0 = 0$ моль/л; $\kappa_1 = 0.05$ 1/c; $\kappa_2 = 0.07$ 1/c; $\kappa_2 = 0.1$ (шаг интегрирования).

АР №3 «Экспериментальный подход»

№15. С надёжностью P = 0.95 обеспечить однородность представленных в таблице данных, исключив грубые ошибки.

К	1	2	3	4	5	6	7	8
<i>y_k</i> , %	54	53	54	30	46	52	55	54
$\Delta y_{k,\%}$	4,2	3,2	4,2	-19,8	-3,8	2,2	5,2	4,2
Δy_k^2 , %	18	10	18	392	14	4,8	27	18

Решение данной задачи осуществить на основе двух методов: правила 2σ и критерия максимального отклонения г. Расчёты выполнить с использованием табличного процессора. №16. С помощью анализа однородности средних. Дать заключение о возможности пре-

имущества (Р = 0,95) одного аппарата перед другим по производительности.

$y_k \setminus k$	1	2	3	4	5	6	7	8	9	10	Σ
y_{k1}	188	192	189	193	190	191	190	188	190	-	1711
y_{k2}	193	192	189	194	195	192	194	198	196	195	1933

Расчёты выполнить с использованием табличного процессора.

№17. Для проверки правильности вольтамперометрической (ВА) методики определения кадмия Cd использовали атомно-абсорбционную (АА) методику, не содержащую систематической погрешности. При анализе одного и того же объекта получены следующие результаты (нг / мл Cd):

BA: 20,5; 22,4; 23,4; 20,8

Содержит ли вольтамперометрическая методика систематическую погрешность?

Расчёты выполнить с использованием табличного процессора без использования специальной надстройки.

№18. Решить задачу №17 используя надстройку табличного процессора.

№19. Используя три различных генерирующих соотношения, составить планы экспериментов ДФЭ 2^{5-2} . Записать формулы для расчёта коэффициентов линейной модели.

№20. На основе латинских квадратов составить пятиуровневый план пятифакторного эксперимента для исследования процесса инфракрасной сушки гранулированных материалов в вакууме при импульсном энергоподводе. Получить математическую в виде суммы нелинейных функций и найти оптимальные значения режимных параметров процесса: плотности теплового потока на поверхности слоя материала C_I (Вт/см²), толщина слоя продукта C_{II} (мм), диаметра гранул C_{III} (мм), величины разряжения C_{IV} (мм. рт.ст.) и скважности импульса C_V (%,отношение времени работы инфракрасной сушилки к общему времени пребывания в сушильной камере). Выходом процесса у (руб/т) или критерием оптимальности принята величина приведённых доходов с учётом производительности установки и потребляемой мошности.

Уровни	1	2	3	4	5
$C_{\rm I} ({\rm BT/cm}^2)$	0,50	0,75	1,00	1,25	1,50
C_{II} (MM)	5	10	15	20	25
C _{III} (MM)	2	3	4	5	6
C _{IV} (MM.	0	150	300	450	600
рт.ст.)					
C_{V}	0,2	0,4	0,6	0,8	1,0
х(безразм.)	-2	-1	0	1	2

u	План	\overline{y}	u	План	\overline{y}	u	План	y	u	План	\overline{y}
		руб/т			руб/т			руб/т			руб/т
1	11111	130	8	41352	270	15	21543	320	22	12345	200
2	23451	140	9	53142	320	16	44444	320	23	24135	170
3	35241	230	10	15432	200	17	51234	390	24	31425	240
4	42531	290	11	33333	400	18	13524	240	25	432151	250
5	54321	260	12	45123	260	19	25314	220			
6	22222	350	13	52413	340	20	32154	220			
7	34512	260	14	14253	180	21	55555	40			

АР №4 «Комбинированный подход»

№ 21. По данным работы [Кокс и химия. 1978. № 8. С.12–14] на основе ПФЭ 2^4 рассчитать значения коэффициентов линейной модели для прогнозирования показателей качества кокса M_{25} и M_{10} , сравнить их с предложенными в самой научной статье.

Указание к выполнению задания: на листе ТП в информативном виде создать таблицу планирования эксперимента ПФЭ 2^4 , ввести средние значения показателей качества кокса M_{25} и M_{10} и рассчитать коэффициенты линейной модели.

Содержание практического раздела дисциплины

- 1) Алгоритм решения нелинейного уравнения методом хорд;
- 2) Алгоритм решения нелинейного уравнения методом Ньютона;
- 3) Алгоритм решения нелинейного уравнения методом деления отрезка пополам.
- 4) Использование пакета прикладных программ MathCad для решения нелинейных уравнений;

- 5) Алгоритм решения дифференциальных уравнений методом Эйлера.
- 6) Алгоритм решения дифференциальных уравнений модифицированным методом Эйлера.
- 7) Алгоритм решения дифференциальных уравнений методом Рунге-Кута четвёртого порядка.
- 8) Использование пакета прикладных программ MathCad для решения дифференциальных уравнений;
- 9) Решение систем дифференциальных уравнений методом Эйлера, модифицированным методом Эйлера, Рунге-Кута.
- 10) Использование пакета прикладных программ MathCad для решения систем дифференциальных уравнений.
- 11) Практический анализ существующих моделей в области профессиональной компетенции (прогнозирование показателей качества кокса M25 и M10) в пакете MathCad.
- 12) Использование встроенной надстройки табличного процессора для решения задач математического программирования.
- 13) Использование программы MathCad для решения задач математического программирования.

Перечень вопросов к экзамену

Общие вопросы моделирования:

- 1. Общее представление о модели. Математические модели: определение, достоинства и недостатки, по сравнению с другими формами представления модели. Понятие «моделирование». Классификация математических моделей;
- 2. Сущность аналитического подхода к математическому моделированию. Моделирование XTП при аналитическом подходе;
 - 3. Сущность экспериментального подхода к математическому моделированию;
 - 4. Сущность комбинированного подхода к математическому моделированию;
- 5. Триединство при описании объекта моделирования. Требования к каждой из составной части при описании объекта;
 - 6. Основные этапы моделирования (с поясняющими примерами).

Аналитический подход к созданию математических моделей:

- 7. Уравнение изотермы химической реакции при различном способе выражения концентрации. Выражение уравнения изотермы химической реакции в стандартных условиях. Связь между константами равновесия в зависимости от способа описания состава реакционной смеси. Соотношения для констант равновесия K_N , K_m , K_c в идеальном растворе;
- 8. Метод Тёмкина-Шварцмана расчёта констант равновесия химической реакции. Понятие о линейной зависимости и независимости уравнений химических реакций. Основные способы определения линейно независимых уравнений химических реакций;
- 9. Возможности моделирования при термодинамическом подходе к определению равновесных значений участвующих в химических реакциях веществ. Основные достоинства и недостатки при термодинамическом подходе.
- 10. Основные понятия и определения формальной кинетики: скорость химической реакции, способы её выражения, молекулярность реакции, порядок реакции, частный порядок реакции, постулат химической кинетики (уравнение Гульдберга и Вааге), константа скорости химической реакции (правило Вант-Гоффа, уравнение Аррениуса);
- 11. Скорость необратимых реакций первого, второго, п-ого порядков. Обратимая реакция первого порядка;
- 12. Обратимая реакция второго порядка (разобрать только частный случай: отсутствие в начальный момент времени продуктов реакции, начальные концентрации реагирующих веществ равны между собой). Параллельные реакции;

- 13. Последовательные реакции первого порядка (для трёх химических соединений). Разобрать различные случаи соотношения между собой констант химических реакций;
- 14. Общее уравнение динамики и скорости химической реакции, протекающей в потоке в режиме идеального вытеснения. Необратимая реакция первого и второго порядков, протекающих в потоке в режиме идеального вытеснения.
- 15. Обратимая реакция первого и второго порядков, протекающих в потоке в режиме идеального вытеснения. Последовательная реакция первого порядка, протекающая в потоке в режиме идеального вытеснения.
- 16. Кинетика гомогенных реакций, протекающих в режиме идеального перемешивания.

Экспериментальный подход к созданию математических моделей:

- 17. Статистические методы анализа экспериментальных данных: оценка истинного значения измеряемой величины и её дисперсии; определение грубых ошибок; средневзвешенные оценки дисперсии; анализ однородности исходных оценок дисперсии.
- 18. Определение доверительной ошибки экспериментальной оценки измеряемого параметра. Определение числа повторностей опыта, обеспечивающего получение заданной доверительной ошибки оценки определяемого параметра. Проверка нормальности закона распределения.
- 19. Метод наименьших квадратов. Сущность планирования эксперимента в сравнении с непосредственным применением метода наименьших квадратов. Симметричный и равномерный план однофакторного эксперимента Проверка адекватности полученного уравнения и его использование для оптимизации процесса. Получение экспоненциальной зависимости по результатам однофакторных экспериментов.
- 20. Метод наименьших квадратов при обработке результатов многофакторного эксперимента. Двухуровневый план полного факторного эксперимента $\Pi\Phi \ni 2^n$. Уравнения, получаемые по результатам реализации планов $\Pi\Phi \ni 2^n$. Статистический анализ значимости оценок коэффициентов уравнения, его адекватности и работоспособности.
- 21. Дробный факторный эксперимент ДФЭ $2^{n-n'}$. Планирование эксперимента при изменяющемся во времени влиянии на процесс неучтённых факторов. Использование планов ПФЭ 2^n ДФЭ $2^{n-n'}$ для получения уравнения процесса в виде экспоненциальной зависимости.
- 22. Многоуровневые многофакторные планы, использующие свойства латинских квадратов. Построение планов. Получение и использование для оптимизации уравнений различной структуры.
- 23. Применение методов приближённых вычислений при обработке результатов экспериментов. Оценки точности измерений и приближённых вычислений. Оценка точности окончательного результата. Практическое вычисление ошибок.

Численные методы решения задач, возникающих при моделировании:

- 24. Решение нелинейного уравнения методом деления отрезка пополам;
- 25. Решение нелинейного уравнения методом Ньютона;
- 26. Решение нелинейного уравнения методом хорд;
- 27. Решение дифференциального уравнения методом Элейра. Модифицированный метод Эйлера. Адаптация метода Эйлера на случай систем дифференциальных уравнений. Особенности решения систем дифференциальных уравнений при моделировании ХТП;
- 28. Решение дифференциального уравнения методом Рунге-Кута четвёртого порядка. Адаптация метода Рунге-Кута на случай систем дифференциальных уравнений. Особенности решения систем дифференциальных уравнений при моделировании ХТП;

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		ами получения, хранения, переработки информации, навыками работы с компьютером как
средством управ	ления информацией	
Знать	 интерфейс и основные возможности программ общего назначения (электронные таблицы) и специализированных программ для решения задач, связанных с математическим моделированием; возможности ТП при решении типовых задач; 	Решение нелинейного уравнения методом Ньютона;Решение нелинейного уравнения методом хорд;
Уметь	 создать собственную функцию в табличном процессоре; использовать возможности ТП для реализации алгоритма по блок-схеме; выполнить в ТП вычисления по итерационным формулам; 	№ 21. По данным работы [Кокс и химия. 1978. № 8. С.12–14] на основе ПФЭ 2^4 рассчитать значения коэффициентов линейной модели для прогнозирования показателей качества кокса M_{25} и M_{10} , сравнить их с предложенными в самой научной статье. Указание к выполнению задания: на листе ТП в информативном виде создать таблицу планирования эксперимента ПФЭ 2^4 , ввести средние значения показателей качества кокса M_{25} и M_{10} и рассчитать коэффициенты линейной модели.
		Содержание практического раздела дисциплины 14) Практический анализ существующих моделей в области профессиональной компетенции (прогнозирование показателей качества кокса M25 и M10) в пакете MathCad.
Владеть	 практическими навыками работы в табличном процессоре (ТП); практическими навыками работы в специализированных программах; 	Содержание практического раздела дисциплины 15) Использование встроенной надстройки табличного процессора для решения задач математического программирования. 16) Использование программы MathCad для решения задач математического

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства						
		программирования.						
ПК-16 способно	ПК-16 способностью планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешно-							
сти, выдвигать г	ипотезы и устанавливать границы их примене	ния, применять методы математического анализа и моделирования, теоретического и экс-						
периментального	периментального исследования.							
Знать	– понятия «модель», «математическая	Перечень вопросов к экзамену						

- понятия «модель», «математическая модель», необходимость наличия математической модели для описания химикотехнологического процесса для сферы производства;
- физико-химический метод моделирования равновесного состава смеси;
- понятие о линейной зависимости/независимости химических реакций;
- основные блок-схемы для описания вычислительного алгоритма;
- основные численные методы решения уравнения, получаемого в ходе физикохимического моделирования равновесного состава смеси;
- основные дифференциальные уравнения формальной кинетики;
- основные методы численного решения дифференциальных уравнений;
- общую методику построения (выведения) дифференциальных уравнений на основе материального и теплового баланса;
- дифференциальные уравнения непрерывности потока для неустановившегося движения несжимаемой жидкости, теплопроводности, конвективной теплопро-

Общие вопросы моделирования:

- 1. Общее представление о модели. Математические модели: определение, достоинства и недостатки, по сравнению с другими формами представления модели. Понятие «моделирование». Классификация математических моделей;
- 2. Сущность аналитического подхода к математическому моделированию. Моделирование XTП при аналитическом подходе;
- 3. Сущность экспериментального подхода к математическому моделированию;
- 4. Сущность комбинированного подхода к математическому моделированию;
- 5. Триединство при описании объекта моделирования. Требования к каждой из составной части при описании объекта;
- 6. Основные этапы моделирования (с поясняющими примерами).

Аналитический подход к созданию математических моделей:

- 7. Уравнение изотермы химической реакции при различном способе выражения концентрации. Выражение уравнения изотермы химической реакции в стандартных условиях. Связь между константами равновесия в зависимости от способа описания состава реакционной смеси. Соотношения для констант равновесия K_N , K_m , K_c в идеальном растворе;
- 8. Метод Тёмкина-Шварцмана расчёта констант равновесия химической реакции. Понятие о линейной зависимости и независимости уравнений химических реакций. Основные способы определения линейно независимых уравнений химических реакций;
- 9. Возможности моделирования при термодинамическом подходе к определению равновесных значений участвующих в химических реакциях веществ. Основные достоинства и недостатки при термодинамическом подходе.
- 10. Основные понятия и определения формальной кинетики: скорость химической реакции, способы её выражения, молекулярность реакции, порядок реакции, част-

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	водности, диффузии, конвективной диффузии; уравнение материального баланса для элементарного объёма реактора любого типа. — элементы теории подобия (происхождение критериев подобия, критериальных уравнений, из основных дифференциальных уравнений, описывающих процесс); уравнение стандартного нормального распределения, его свойства;	константа скорости химической реакции (правило Вант-Гоффа, уравнение Аррениуса); 11. Скорость необратимых реакций первого, второго, п-ого порядков. Обратимая реакция первого порядка; 12. Обратимая реакция второго порядка (разобрать только частный случай: отсутствие в начальный момент времени продуктов реакции, начальные концентрации

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		20. Метод наименьших квадратов при обработке результатов многофакторного эксперимента. Двухуровневый план полного факторного эксперимента ПФЭ2 ⁿ . Уравнения, получаемые по результатам реализации планов ПФЭ2 ⁿ . Статистический анализ значимости оценок коэффициентов уравнения, его адекватности и работоспособности. 21. Дробный факторный эксперимент ДФЭ2 ^{n-n'} . Планирование эксперимента при изменяющемся во времени влиянии на процесс неучтённых факторов. Использование планов ПФЭ2 ⁿ ДФЭ2 ^{n-n'} для получения уравнения процесса в виде экспоненциальной зависимости. 22. Многоуровневые многофакторные планы, использующие свойства латинских квадратов. Построение планов. Получение и использование для оптимизации уравнений различной структуры. 23. Применение методов приближённых вычислений при обработке результатов экспериментов. Оценки точности измерений и приближённых вычислений. Оценка точности окончательного результата. Практическое вычисление ошибок.
Уметь	 вывести основные уравнения формальной кинетики; уметь аналитически решить основные уравнения формальной кинетики; вывести на основе материального или теплового баланса основные дифференциальные уравнения: непрерывности потока для неустановившегося движения несжимаемой жидкости, теплопроводности, конвективной теплопроводности, диффузии, конвективной диффузии; уравнение материального баланса для элементарного объёма реактора любого типа; создать собственную функцию в табличном процессоре. 	№1. Рассчитать ионно-молекулярный состав в присутствии КСN, растворённого в количестве C=10 ⁻⁵ моль / л. Задаться значениями рН в интервале 0-14 и численно рассчитать ионно-молекулярный состав данной системы. Результаты представить графически в информативном виде (использовать логарифмическую шкалу выходного параметра). Все расчёты произвести в табличном процессоре. №2. Рассчитать ионно-молекулярный состав раствора в присутствии растворённой углекислоты воздуха. Задаться значениями рН в интервале 0-14 и численно рассчитать ионно-молекулярный состав данной системы. Результаты представить графически в информативном виде (использовать логарифмическую шкалу выходного параметра). Все расчёты произвести в табличном процессоре. №3. Значение рН раствора регулируется изменением концентрации соды. Рассчитать концентрацию [CO ³⁻] ионов в растворе, с учётом растворённой углекислоты воздуха. Задаться значениями рН в интервале 0-14 и численно рассчитать ионно-молекулярный состав данной системы. Результаты представить графически в информативном виде (использовать логарифмическую шкалу выходного параметра). Все расчёты произвести в табличном процессоре. №4. При каком значении рН достигается практически полное осаждение MnS (ПР _{мпS} =

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		2.5*10 ⁻¹⁰), содержащегося в растворе в количестве 0,005 моль, при употреблении 50 % избытка осадителя. Расчёт произвести на 1 л исследуемого раствора. Все численные расчёты произвести в табличном процессоре, аналитические записи предоставить в бумажном виде. Из каких соображений находится концентрация марганца [Mn²+], и между какими химическими формами осуществляется материальный баланс по сере избыточной концентрации осадителя? №5. Пример 5. Рассчитать равновесный состав газовой фазы для установившегося термодинамического равновесия получения водяного газа по реакциям: С+H₂О ⇔ CO+H₂ (1) СО+H₂O ⇔ CO₂+H₂ (2) В данном задании достаточно ограничиться выводом кубического уравнения относительно рсо. №6. Оценить с физико-химической точки зрения, при каком значении рН происходит переход PbSO₄ в Pb(OH)₂. Изменение рН происходит за счёт NaOH. В системе предполагается протекание следующих химических реакций: PbSO₄тв. ⇔ Pb²+р-р + SO₄2-р-р (1)
		$Pb(OH)_{2_{TB.}} \Leftrightarrow Pb^{2+}_{p-p} + 2OH^{-}_{p-p} (2)$
		$Pb(OH)_{2_{TB.}} \Leftrightarrow H^{+}_{p-p} + HPbO_{2}^{-}_{p-p} (3)$
		$Pb(OH)^{+}_{p-p} \iff Pb^{2+}_{p-p} + OH^{-}_{p-p}$ (4)
		$HSO_{4p-p}^{-} \Leftrightarrow H_{p-p}^{+} + SO_{4p-p}^{2-}$ (5)
		$H_2O \Leftrightarrow H^+ + OH^- $ (6)
		Уравнение материального баланса: $[Na^+] \Leftrightarrow [OH^-] + [Pb(OH)^+] (7)$
		Уравнение электронейтральности:

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		$[Na^+] + 2*[Pb^{2^+}] + [Pb(OH)^+] + [H^+] \Leftrightarrow 2*[SO_4^{\ 2^-}] + [HSO_4^{\ -}] + [HPbO_2^{\ -}] + [OH^-]$ Примечание: при решении задачи необходимо по имеющимся уравнениям составить систему нелинейных уравнений, из неё вывести уравнение: $2*K_2^{\ 2}*K_4^{\ 2}*K_5^{\ 2}*[H^+]^4 + K_2^{\ 2}*K_5^{\ 2}*K_w(2*K_2 + K_4^{\ 2}*K_w)*[H^+]^3 -$
		$-K_4 * K_w^2 (K_1 * K_w^2 + K_2 * K_3 * K_5) * [H^+] - 2 * K_1 * K_4 * K_5 * K_w^4 = 0$
		Из справочных данных необходимо определить константы химических реакций $K_1 - K_6$ соответствующих реакций (1)-(6).
		Из практических соображений установить, с какой точностью необходимо вычислять значение рН.
		Нелинейное уравнение необходимо решить четырьмя методами: графическим, половинного деления, Ньютона, хорд. Сделать вывод о быстроте сходимости каждого из методов при заданной точности получаемого результата, а также пригодности для решения задачи физико-химического моделирования.
		Рассмотреть эвристический метод, основанный на специфике решаемой задачи, решения системы нелинейных уравнений.
		Все вычисления произвести в табличном процессоре.
		№7. Пользуясь результатами задачи №6 исключить из системы нелинейных уравнений уравнение (3). Решить полученную систему уравнений эвристическим методом. Сделать вывод о влиянии уравнения (3) на моделируемую систему и итоговое значение рН.
		№8. Пользуясь результатами задачи №6 исключить из системы нелинейных уравнений уравнение (3) и (5). Решить полученную систему уравнений эвристическим методом.
		Сделать вывод о влиянии уравнения (3) и (5) на моделируемую систему и итоговое значение рН.
		№9. Пользуясь результатами задачи №6 исключить из системы нелинейных уравнений уравнение (1), (3), (5). Решить полученную систему уравнений эвристическим методом.
		Сделать вывод о влиянии уравнения (1) на моделируемую систему и итоговое значение рН.
		№10. Решить нелинейное уравнение из задачи (6) с помощью встроенных функций специализированной программы MathCad. Сравнить полученное значение с уже полученными.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		№11. Решить систему нелинейных уравнений из задачи (6) с помощью встроенных функций специализированной программы MathCad. Сравнить полученное значение с уже полученными. №12. Исходя из понятия линейная зависимость/независимость химических реакций, с помощью встроенных математических функций MathCad для системы реакций
		$C + H_2O \Leftrightarrow CO + H_2$ (1)
		$CO + H_2O \Leftrightarrow CO_2 + H_2$ (2)
		$2*CO \Leftrightarrow C+CO_2$ (3)
		$C + 2*H_2O \Leftrightarrow CO_2 + 2*H_2$ (4)
		Определить количество линейно-независимых химических реакций. Что это означает с точки зрения математического описания данной системы реакций. $\mathbb{N} \ \ $ Для необратимой реакции первого порядка:
		№14. Для последовательной схемы необратимых химических реакций первого порядка: $A \xrightarrow{\kappa_1} B \xrightarrow{\kappa_2} C$
		Составить систему дифференциальных уравнений и решить её с помощью метода Эйлера, модифицированного Эйлера, Рунге-Кутта 4-ого порядка. Сделать вывод о точности получаемого решения, сравнивая методы между собой. Для расчёта принять следующие значения неизвестных параметров: $C^0_A = 0.5$ моль/л; $C^0_B = C^0_C = 0$ моль/л; $\kappa_1 = 0.05$ 1/c; $\kappa_2 = 0.07$ 1/c; $\kappa_2 = 0.07$ 1/c; $\kappa_3 = 0.07$ 1/c; $\kappa_4 = 0.07$ 1/c; $\kappa_5 = 0.0$

Структурный элемент компетенции	Планируемые результаты обучения					О	ценочнь	не средс	гва				
Владеть	падеть – практическими навыками работы в М	№15. С ных, исп					печить с	днородн 4		редстав	ленных	к в табл 7	ице дан-
специализированных программах; — методом статистического анализа однородности дисперсий; — методом статистического анализа выборки на наличие грубых ошибок; — методом статистического анализа однородности средних; — методом наименьших квадратов (МНК); — методом обработки результатов пассивных экспериментов на основе МНК;	У	k , %		54	53	54	30	4	46	52	55	54	
	Δ	'k,%	4	,2	3,2	4,2	-19,8	-,	3,8	2,2	5,2	4,2	
	Δy	k ² ,%	-	.8	10	18	392		14	4,8	27	18	
	Решение данной задачи осуществить на основе двух методов: правила 2σ и критерия максимального отклонения г. Расчёты выполнить с использованием табличного процессора. №16. С помощью анализа однородности средних. Дать заключение о возможности преимущества (P = 0,95) одного аппарата перед другим по производительности.												
	— методом ПФЭ; анализ полученной мо- дели на адекватность и работоспособ-	$y_k \setminus k$	1 1	2	3	4	<u>та перед</u> 5	<u>другим</u> 6	7	<u>8</u>	9	<u>1и.</u>	Σ
ность; — методом ДФЭ;	y_{k1}	188	192	189	193	190	191	190	188	190	-	1711	
	методом построения многоуровневого многофакторного плана, использующего	y_{k2}	193	192	189	194	195	192	194	198	196	195	1933
свойства латинских квадратов.	№17. Дл кадмия матичес результа Содерж	ия пров Сфиспо кой пои аты (нг ит ли во	ерки прользова прешно / мл Сс	оавиль ли ато сти. П): пероме	ности в омно-аб ри анал АА: 2	сорбцио пизе одн ВА : 20,4 23,5; 20,1	ерометр нную (А ого и то 5; 22,4; 2 ; 19,9; 1 дика сис	оическо А) мет ого же 23,4; 20 9,2; 19 стемати	й (ВА) годику, объекта ,8 ,0; 22,8 ческую	не соде получ погреп	ержащу ены сле иность?	еделения ю систе- едующие	

Структурный элемент компетенции	Планируемые результаты обучения					0	ценочні	ые сред	іства				
		ально	й надстр	ойки.									
					№17 ис	спользуя	надстро	ойку та	бличног	о проце	eccopa.		
		№ 19.	Использ	зуя три	различ	ных ген	ерирую	щих со	отноше	ния, со	ставит	ь планы э	экспери-
		менто	в ДФЭ2 ⁵	⁵⁻² . Запи	сать ф	ормулы	для расч	чёта ко	эффици	ентов л	инейно	ой модели	Т.
		№ 20.	На осно	ове лат	инских	квадра	гов сост	гавить	пятиуро	вневыі	й план	пятифак	торного
												ированнь	
		-	-			-	-					тическую	
												параметр	
												Вт/см ²), т С _{IV} (мм.	
												сушилки	
												сушилки б/т) или к	
		- 1		-		-						оизводите	
				_		иощност	-	,	, , , ,	J	1	, ,	
		Уров	НИ	1		2		3		4		5	
		C _I (B	т/см ²)	0,50		0,75		1,00		1,25		1,50	
		C_{II} (N	им)	5		10		15		20		25	
		C_{III} (1	мм)	2		3		4		5		6	
		C_{IV}	(MM.	. 0		150		300		450		600	
		рт.ст	.)										
		C_{V}		0,2		0,4		0,6		0,8		1,0	
		x(be3	разм.)	-2		-1		0		1		2	
		I	П	Γ —		П	_	l	п	_	T	П	
		u	План	$\frac{-}{y}$	u	План	\overline{y}	u	План	\overline{y}	u	План	$\frac{1}{y}$
				руб/т			руб/т			руб/т			руб/т
		1	11111	130	8	41352	270	15	21543	320	22	12345	200
		2	23451	140	9	53142	320	16	44444	320	23	24135	170
		3	35241	230	10	15432	200	17	51234	390	24	31425	240
		4	42531	290	11	33333	400	18	13524	240	25	432151	250
		5	54321	260	12	45123	260	19	25314	220			

Структурный элемент компетенции	Планируемые результаты обучения					О	ценочн	ые сре	дства				
		6	22222	350	13	52413	340	20	32154	220			
		7	34512	260	14	14253	180	21	55555	40			
		полал нейни тодо четв фере	1) 2) 3) м. 4) ых уравн 5) 6) Эм Эйлер 7) ёртого п 8)	Алгорип Алгорип Алгорип Использ ений; Алгорип а. Алгорип Юспольз Использ Решени	Содер пм реи пм реи	ржание иения не. иения не е пакет иения ди иения до иения до	практ пинейно пинейно глинейн а прикл ффере иффере а прикл	ическо ого ура ого ура адных ициалы нциалы енциал падных	г о разде. внения м внения програм ных урав ных урав ьных урав	па дисц етодом методом методо методо методо методом менодом методом нетодом нетодом нетодом нетодом нетодом нетодом нетодом н	i хорд; i Ньют oм деле iCad дл eemoдол модифі i мето		ия нели- ным ме- ге-Кута ия диф-
					-				програм	и MathC	Cad для	решения	систем
			, bеренциа				T 37		1 F			1	
												і профес и M10) в	сиональ-
		Math		, , 1		-							

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Моделирование химикотехнологических процессов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое залание.

Показатели и критерии оценивания экзамена:

- на оценку «отлично» (5 баллов) обучающийся демонстрирует высокий уровень освоения компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку «хорошо» (4 балла) обучающийся демонстрирует средний уровень освоения компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку «удовлетворительно» (3 балла) обучающийся демонстрирует пороговый уровень освоений компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку «неудовлетворительно» (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку «неудовлетворительно» (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

а) Основная литература:

- 8.1. Моделирование химико-технологических процессов : учебник / Г.И. Ефремов. Москва : ИНФРА-М, 2019. 255 с. + Доп. материалы [Электронный ресурс; Режим доступа: https://new.znanium.com]. (Высшее образование: Бакалавриат). www.dx.doi.org/10/12737/12066. Текст : электронный. URL: https://new.znanium.com/catalog/product/989195 (дата обращения: 11.11.2019).
- 8.2. Закгейм А. Ю. Общая химическая технология: введение в моделирование химико-технологических процессов [Электронный ресурс]: учеб. пособие / А. Ю. Закгейм. 3-е изд., перераб. и доп. Москва: Логос, 2012. 304 с. (Новая университетская библиотека). ISBN 978-5-98704-497-1. Текст : электронный. URL: https://new.znanium.com/catalog/product/468690 (дата обращения: 11.11.2019).

б) Дополнительная литература:

- 8.3. Системный анализ процессов и аппаратов химической технологии : учеб. пособие / Э.Д. Иванчина, Е.С. Чернякова, Н.С. Белинская, Е.Н. Ивашкина ; Томский политехнический университет. Томск : Изд-во Томского политехнического университета, 2017. 115 с. ISBN 978-5-4387-0787-5. Текст : электронный. URL: https://new.znanium.com/catalog/product/1043896 (дата обращения: 11.11.2019)
- 8.4. Статистические методы обработки экспериментальных данных с использованием пакета MathCad: Учебное пособие/Ф.И.Карманов, В.А.Острейковский Москва: КУРС, НИЦ ИНФРА-М, 2015. 208 с.: 60х90 1/16 (Обложка) ISBN 978-5-905554-96-4 Текст: электронный. URL: https://new.znanium.com/catalog/product/508241 (дата обращения: 11.11.2019).
- 8.5. Статистический анализ данных в MS Excel: учеб. пособие / А.Ю. Козлов, В.С. Мхитарян, В.Ф. Шишов. Москва: ИНФРА-М, 2019. 320 с. (Высшее образование: Бакалавриат). www.dx.doi.org/10.12737/2842. Текст: электронный. URL: https://new.znanium.com/catalog/product/987337 (дата обращения: 11.11.2019).
- 8.6. Шклярова, Е. И. Обработка результатов многократных измерений. Проверка соответствия эксперементального распределения нормальному (гауссову) распределению по статистическому критерию Пирсона (хи-квадрат) [Электронный ресурс]: Методические указания по выполнению лабораторной работы / Е. И. Шклярова. Москва: МГАВТ, 2010. 12 с. Текст: электронный. URL: https://new.znanium.com (дата обращения: 11.11.2019).
- 8.7. Головнев, Н.Н. Энергетика и направленность химических процессов. Химическая кинетика и химическое равновесие: учеб. пособие / Н.Н. Головнев. Красноярск: Сиб. федер. ун-т, 2018. 148 с. ISBN 978-5-7638-3783-4. Текст: электронный. URL: https://new.znanium.com/catalog/product/1031881 (дата обращения: 11.11.2019).
- 8.8. Максименко И. И., Нагорный Ю. С., Глущенко И. М., Иванченко В. А. Влияние технологических факторов коксования на показатели прочности кокса // Кокс и химия. 1978. \mathbb{N} 8. С. 12–14.
- 8.9. Михно В. П., Скляр М. Г., Лурье М. В. и др. Исследование зависимости физи-ко-механических свойств и выхода кокса от режима коксования // Кокс и химия. 1975. № 2. С. 8-12.
- 8.10. Станкевич А. С. О прогнозе коксуемости углей на основе их петрографических особенностей // Кокс и химия. 1964. № 8. С. 5–7.
- 8.11. Станкевич А. С. Физико-химические методы снижения влажности коксовой шихты // Кокс и химия. 1967. № 4. С. 1–7.
- 8.12. Станкевич А. С., Мыкольников И. А. Составление угольных шихт и прогноз их коксуемости на основе химико-петрографических параметров углей // Кокс и химия. 1973. № 4. С. 3–7.

- 8.13. Станкевич А. С., Золотухин Ю. А., Проскуряков А. Е., Пьянкова И. С. Зависи-мость внешней структуры и свойств кокса от петрографической характеристики угольных смесей // Кокс и химия. 1980. № 10. С. 13–17.
- 8.14. Станкевич А. С., Золотухин Ю. А., Калинина Г. И. и др. Взаимосвязь между механической прочностью кокса, химико-петрографическими параметрами шихт из кузнецких углей и режимом их коксования // Кокс и химия. 1981. № 2. С. 27–31.
- 8.15. Станкевич А. С., Мюллер И. П., Лельчук В. И. Распределение углей и состав-ление угольных шихт для коксования с прогнозом качества кокса на основе линейного программирования // Кокс и химия. 1981.№ 11. С. 4–8.
- 8.16. Станкевич А. С. Расчет шихт и прогноз качества кокса из углей восточных бас-сейнов на основе их петрографических параметров // Кокс и химия. 1983. № 9. С. 11–16.
- 8.17. Станкевич А. С., Трегуб В. В., Алешин В. И. и др. Прогноз качества кокса на основе параметров Единой промышленно-генетической классификации углей // Кокс и химия. 1990. № 12. С. 36–39.
- 8.18. Станкевич А. С., Чегодаева Н. А., Венс В. А., Черемискина А. Н. Оптимизация состава шихты для коксования и прогноз качества кокса по химико-петрографическим параметрам // Кокс и химия. 1998. № 9. С. 11–17.
- 8.19. Станкевич А. С., Круглов В. Н., Ворсина Д. В., Золотухин Ю. А. Модель опти-мизации показателей прочности кокса на основе химико-петрографических параметров углей и нелинейного программирования // Кокс и химия. 2000. № 5. С. 21–29.
- 8.20. Станкевич А. С., Яблочкин Н. В., Когтев Ю. П. и др. Составление шихт для коксования на основе оптимизации и прогноза прочности кокса по химико-петрографическим показателям углей // Кокс и химия.2002. № 3. С. 9–15.
- 8.21. Станкевич А. С., Смелянский А. З., Беркутов Н. А. и др. Рациональное распре-деление углей и оптимизация состава шихт для коксования // Кокс и химия. 2003. № 9. С. 8–16.
- 8.22. Станкевич А. С., Степанов Ю. В., Гилязетдинов Р. Р., Попова Н. К. Прогноз прочности кокса на основе химико-петрографических параметров угольных шихт с учётом их пневмомеханической сепарации // Кокс и химия. 2005. № 12. С.14—21.
- 8.23. Станкевич А. С., Гилязетдинов Р. Р., Попова Н. К., Кошкаров Д. А. Модель прогноза показателей CSR и CRI на основе химико-петрографических параметров угольных шихт и условий их коксования // Кокс и химия. 2008. № 9. С. 37–44.
- 8.24. Станкевич А. С., Станкевич В. С. Определение технологической ценности уг-лей, используемых для производства кокса // Кокс и химия. 2011. № 6. С. 2–10.
- 8.25. Станкевич А. С., Станкевич В. С. Методика определения коксуемости и техно-логической ценности углей пластов и их смесей // Кокс и химия. 2012.№ 1. С. 4–12.
- 8.26. Станкевич А. С., Базегский А. Е. Оптимизация качества кокса ОАО «ЕВРАЗ ЗСМК» с учетом особенностей угольной сырьевой базы // Кокс и химия. 2013. № 10. С. 14–21.
- 8.27. Аммосов И. И., Ерёмин И. В., Сухенко С. И., Ошуркова Л. С. Расчет шихт для коксования на основе петрографических особенностей углей // Кокс и химия. 1957. № 12. С. 9–12.
- 8.28. Ерёмин И. В., Гагарин С. Г. Расчет шихт для коксования на основе петрографической модели // Кокс и химия. 1992. № 12. С. 9–15.
- 8.29. Гагарин С. Г. Оценка петрографической модели прогноза прочности кокса на примере углей Монголии // Кокс и химия. 2011. № 4. С. 21–26.
- 8.30. Основы программирования на VBA для Microsoft Excel/БычковМ.И. Новосибирск : HГТУ, 2010. 99 с.: ISBN 978-5-7782-1460-6 Текст : электронный. URL: https://new.znanium.com/catalog/product/549331 (дата обращения: 11.11.2019).
- 8.31. Деева, В.С. Компьютерное моделирование в нефтегазовом деле: учеб. пособие / В.С. Деева; Томский политехнический университет. Томск: Изд-во Томского по-

- литехнического университета, 2018. 86 с. ISBN 978-5-4387-0806-3. Текст : электронный. URL: https://new.znanium.com/catalog/product/1043846 (дата обращения: 11.11.2019)
- 8.32. Назаров, С. В. Программирование в пакетах MS Office [Электронный ресурс]: учеб. пособие / С. В. Назаров, П. П. Мельников, Л. П. Смольников и др.; под ред. С. В. Назарова. Москва: Финансы и статистика, 2007. 656 с.: ил. ISBN 978-5-279-02926-6 Текст: электронный. URL: https://new.znanium.com/catalog/product/369386 (дата обращения: 11.11.2019).
- 8.33. Андреев, С. М. Моделирование объектов и систем управления : учебное пособие / С. М. Андреев ; МГТУ. Магнитогорск : МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3337.pdf&show=dcatalogues/1/1138 496/3337.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст : электронный. ISBN 978-5-9967-1028-7. Сведения доступны также на CD-ROM.
- 8.34. Баженов, Н. М. Методы одномерной и многомерной оптимизации : практикум по дисциплине "Моделирование систем" / Н. М. Баженов, Е. С. Рябчикова ; МГТУ, Кафедра промышленной кибернетики и систем управления. Магнитогорск : МГТУ, 2011. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=1344.pdf&show=dcatalogues/1/1123 747/1344.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 8.35. Гаврилова, И. В. Имитационное моделирование : учебное пособие / И. В. Гаврилова ; МГТУ. Магнитогорск : МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=2836.pdf&show=dcatalogues/1/1133 202/2836.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 8.36. Кухта, Ю. Б. Компьютерное моделирование технологических процессов : учебное пособие / Ю. Б. Кухта. Магнитогорск : МГТУ, 2014. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=928.pdf&show=dcatalogues/1/11189 39/928.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 8.37. Лукина, О. А. Chemical and Oil Production. Практикум по иностранному языку: учебное пособие / О. А. Лукина, Е. А. Пикалова. Магнитогорск: МГТУ, 2012. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=986.pdf&show=dcatalogues/1/11191 22/986.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.

Периодические издания:

- 1. Журнал «Теория и технология металлургического производства». URL: http://ttmp.magtu.ru/ru/
 - 2. Журнал «Кокс и химия». URL: http://www.metallurgizdat.com/content.php?puid_name=journal2

Периодические издания:

- 1. Журнал «Теория и технология металлургического производства». URL: http://ttmp.magtu.ru/ru/
- 2. Журнал «Кокс и химия». URL: http://www.metallurgizdat.com/content.php?puid_name=journal2

в) Методические указания:

Крылова, С. А. Введение в анализ и синтез химико-технологических систем : учебное пособие / С. А. Крылова ; МГТУ. - Магнитогорск : МГТУ, 2016. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL: https://magtu.informsystema.ru/uploader/fileUpload?name=25.pdf&show=dcatalogues/1/113146 4/25.pdf&view=true .

г) Программное обеспечение и Интернет-ресурсы:

- 1. Научно-технический и научно-производственный журнал "Известия Высших Учебных Заведений. Черная Металлургия". URL: https://fermet.misis.ru/jour/index
- 2. Научно-технический и производственный журнал «Металлург». URL: http://www.metallurgizdat.com/index.php
- 3. Научно-технический, производственный и учебно-методический журнал «Производство проката». URL: http://www.nait.ru/journals/index.php?p_journal_id=7
- 4. Научно-технический и производственный журнал «Чёрная металлургия. Бюллетень научно-технической и экономической информации». URL: https://chermetinfo.elpub.ru/jour
- 5. Научный журнал «Чёрные металлы». URL: https://www.rudmet.ru/catalog/journals/5/
 - 6. Научный журнал «Вестник МГТУ им. Г.И. Hocoba». URL: http://vestnik.magtu.ru/
- 7. Специализированный научно-технический журнал «Литейное производство. URL: http://www.foundrymag.ru/
- 8. Научно-технический журнал «Литейщик России». URL: http://www.ruscastings.ru/work/396/6988
- 9. Ежемесячный научно-технический и производственный журнал «Металловедение и термическая обработка металлов». URL: http://mitom.folium.ru/
- 10. Ежемесячный рецензируемый производственный, научно-технический и учебнометодический журнал "Технология металлов". URL: http://www.nait.ru/journals/index.php?p_journal_id=8
- 11. Журнал «Теория и технология металлургического производства». URL: http://ttmp.magtu.ru/ru/

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7	Д-1227 от 08.10.2018	11.10.2021
	Д-757-17 от 27.06. 2017	27.07.2018
	Д-593-16 от 20.05.2016	20.05.2017
MS Office 2007	№ 135 от 17.09.2007	бессрочно
Mathcad Education - Univer-	Д-1662-13 от 22.11.2013	бессрочно
sity Edition (200 pack)		
FAR Manager	свободно распространяемое ПО	бессрочно
7Zip	свободно распространяемое	бессрочно

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Tim it it was with a state of the state of t	Тип и название аудитории	Оснащение аудитории
--	--------------------------	---------------------

Тип и название аудитории	Оснащение аудитории
Учебные аудитории для проведения занятий лекционного типа	Мультимедийные средства хранения, передачи и представления информации.
Учебная аудитория для проведения практических занятий.	Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.
Учебные аудитории для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Доска, учебные столы, стулья.
Учебные аудитории для само- стоятельной работы обучающих- ся	Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета
Помещения для хранения и профилактического обслуживания учебного оборудования	Стеллажи для хранения оборудования, методическая литература для учебных занятий