НИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Спецдисциплина

Направление подготовки 09.06.01 Информатика и вычислительная техника

Направленность (профиль) программы Автоматизация и управление технологическими процессами и производствами

> Уровень высшего образования подготовка кадров высшей квалификации

> > Форма обучения очная

Институт Кафедра Курс Семестр энергетики и автоматизированных систем автоматизированных систем управления

3 5

Магнитогорск 2017 г.

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 09.06.01 Информатика и вычислительная техника, утвержденного приказом МОиН РФ от 30.07.2014 № 845.

Рабочая программа рассмотрена и одобрена на заседании кафедры вычислительной техники и программирования от «26» (Шипибри 2017, протокол № 2).

Зав. кафедрой

Свер О.С. Логуновой

Рабочая программа одобрена методической комиссией института энергетики и автоматизированных систем от « $\frac{27}{N}$ » *Шетобре* 2017, протокол № $\frac{2}{N}$.

Рабочая программа составлена: заведующим кафедрой вычислительной техники и программирования, д-ром техн. наук, профессором

Ор О.С. Логуновой

Рецензент: начальник отдела инновационных разработок ЗАО «КонсОМ-СКС». канд. техн. наук

Лист актуализации рабочей программы

Рабочая программа пересмотр учебном году на заседании кас	ена, обсуждена и одобрена для реализации в 2017-2018 федры Вычислительной техники и программирования
	Протокол от <u>26 09 £ 20</u> 17 г. № <u>2</u> Зав. кафедрой О.С. Логунова
учеоном году на заседании каф	ена, обсуждена и одобрена для реализации в 2018 - 2019 редры Вычислительной техники и программирования Протокол от 5 20 г. № 1 О.С. Логунова
учеоном году на заседании каф I	ена, обсуждена и одобрена для реализации в 2019 - 2020 редры Вычислительной техники и программирования Протокол от 19 20 г. № 5 Вав. кафедрой О.С. Логунова
учеоном году на заседании каф	ена, обсуждена и одобрена для реализации в 2020 - 2021 редры Вычислительной техники и программирования Протокол от (9 20 20 20 20 20 20 20 20 20 20 20 20 20

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Спецдисциплина» являются: научные основы и формализованные методы построения автоматизированных систем управления технологическими процессами (АСУТП) и производствами (АСУП), а также технической подготовкой производства (АСТПП); теоретические основы и методы математического моделирования организационно-технологических систем и комплексов, функциональных задач и объектов управления и их алгоритмизация; научные основы, модели и методы идентификации производственных процессов, комплексов и интегрированных систем управления.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Спецдисциплина входит в вариативную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Системы обработки информации и принятия решений

Средства автоматизации научных исследований

Визуализация, трансформация и анализ информации

Структура АСУП, АСУТП и АСУТПП

Представление результатов научных исследований

Защита интеллектуальной собственности

Методология и информационные технологии в научных исследованиях

Научная коммуникация

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Научно-исследовательская деятельность и подготовка НКР

Подготовка к сдаче и сдача государственного экзамена

Представление научного доклада об основных результатах подготовленной НКР

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Спецдисциплина» обучающийся должен обладать следующими компетенциями:

Структурный	Планируемые результаты обучения
элемент	
компетенции	
ПК-1 Способность	разрабатывать и применять научные основы и формализованные мето-
ды построения авто	оматизированных систем управления технологическими процессами
(АСУТП) и произв	одствами (АСУП), а также технической подготовкой производства
(АСТПП) и т.д.	
Знать	научные основы, модели и методы идентификации производственных
	процессов, комплексов и интегрированных систем управления;
	формализованные методы анализа, синтеза, исследования и оптимиза-
	ция мо-дульных структур систем сбора и обработки данных в АСУТП,
	АСУП, АСТПП;
	методы и алгоритмы анализа, синтеза и исследования модульных
	структур систем сбора и обработки данных;

Уметь	использовать аппарат формализации решений при анализе, синтезе и исследовании систем сбора и обработки данных и получать формализованные решения; использовать методы и типовые алгоритмы для анализа, синтеза, исследования и оптимизации систем сбора и обработки данных АСУ; реализовывать методы и алгоритмы для анализа, синтеза, исследования и оптимизации систем сбора и обработки данных АСУ с использование различных программно-технических средств; навыками оперирования аппаратом формализации, формализовать типовые задачи анализа, синтеза и исследования структур АСУ; способностью производить анализ, синтез, исследование и оптимизацию типовых модульных структур сбора и обработки данных АСУ; навыками реализации законченных программно-технических комплексов для анализа, синтеза, исследования и оптимизации модульных структур сбора и обработки данных различных типов.
Владеть	навыками оперирования аппаратом формализации, формализовать типовые задачи анализа, синтеза и исследования структур АСУ; способностью производить анализ, синтез, исследование и оптимизацию ти-повых модульных структур сбора и обработки данных АСУ; навыками реализации законченных программно-технических комплексов для анализа, синтеза, исследования и оптимизации модульных структур сбора и обработки данных различных типов.
ческого моделиров	вания организационно-технологических систем и комплексов, функи объектов управления и их алгоритмизация
Знать	типовые методы математического моделирования сложных динамических объектов и систем управления и их алгоритмизация; современные теоретические и экспериментальные методы разработки математических моделей организационно- технологических систем, комплексов и объектов управления; методы формализации и решения задач моделирования сложных систем и объектов управления; методы алгоритмизации сложных взаимосвязанных структур систем и объектов управления;
Уметь	применять методы математического моделирования для исследования и про-ектирования организационно-технологических систем и комплексов; разрабатывать алгоритмы для математического моделирования систем и объ-ектов управления; производить программную реализацию алгоритмов моделирования; разрабатывать и реализовывать структурные модели сложных управляющих систем и комплексов с учетом современных научных достижений;

_	
Владеть	навыками разработки и реализации математических моделей типовых
	орга-низационно-технологических систем и комплексов, функцио-
	нальных задач и объектов управления;
	навыками алгоритмизации математических моделей с использовани-
	ем типо-вых программных комплексов;
	навыками использования интегрированных сред разработки алгорит-
	мизации и программной реализации математических моделей систем и
	объектов управления;
ПК-3 Способно	ость к разработке и применению научных основ, моделей и методов иден-
тификации про	ризводственных процессов, комплексов и интегрированных систем управ-
ления	
Знать	научные основы, модели и методы идентификации производственных
Siluib	про-цессов, комплексов и интегрированных систем управления;
	методы разработки моделей идентификации производственных про-
	цессов, комплексов; методику применения типовых методов иденти-
	фикации;
	комплексный подход в вопросах идентификации и построения моде-
	лей про-изводственных процессов и интегрированных систем управ-
	ления;
	JICHWA,
Уметь	использовать типовые алгоритмы и методы идентификации простых
- H1012	произ-водственных процессов; делать логические выводы о структуре
	идентифици-руемой системы;
	выбирать необходимый набор методов и алгоритмов для идентифика-
	ции сложных производственных процессов и интегрированных систем
	управле-ния;
	разрабатывать модели и методы идентификации на основе типовых,
	для сложных производственных процессов и интегрированных систем
	управле-ния; определять последовательность идентификации, осуще-
	ствлять поиск и идентификацию критически важных участков в сис-
	теме управления;
Владеть	способами работы с типовыми средствами идентификации производ-
Бладеть	ствен-ных процессов;
	методами определения направлений исследований при идентификации
	управляющих систем, в том числе и специального назначения;
	практическими навыками разработки специализированных методов и
	моде-лей идентификации, используя современные научные достиже-
	ния для иден-тификации систем и процессов.

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 26 акад. часов:
- аудиторная 26 акад. часов;
- внеаудиторная 0 акад. часов
- самостоятельная работа 46 акад. часов;
- подготовка к экзамену 36 акад. часа

Форма аттестации - экзамен

Раздел/ тема дисциплины	Семестр	конта	дитор ктная кад. ча	работа	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттеста-	Код компетенции
)	Лек.	лаб. зан.	практ. зан.	Само рабо	· · · · ·	ции	
1. Методы построения а	автом	иатизир	ованн	ых сист	ем уг	равления технолог	тическими процессами и про	оизводствами
1.1 Структура систем управления сложными технологическими процессами	5	1/1И		1	3	1. Подготовка к практическому занятию. 2. Выполнение практических работ. 3. Самостоятельное изучение учебной и научно литературы	1. Беседа-обсуждение 2. Проверка индивидуаль- ных заданий	ПК-1
1.2 Интегрированные системы проектирования и управления АСУ	5	2/2И		2	3	1. Подготовка к практическому занятию. 2. Выполнение практических работ. 3. Самостоятельное изучение учебной и научно литературы	1. Беседа-обсуждение 2. Проверка индивидуаль- ных заданий	ПК-1
Итого по разделу		3/3И	monor	3	6		HA II IIV O TEODYT AVOOTIVA	
2. методы математичес	KOFO	моделі	трован	ия сист	-м и	ооъектов управлен Г	ия и их алгоритмизация	
2.1 Синтез систем контуров управления. Оптимизационный и синергетический подход к синтезу систем управления	5	2/2И		2	6	1. Подготовка к практическому занятию. 2. Выполнение практических работ. 3. Самостоятельное изучение учебной и научно литературы.	1. Беседа-обсуждение 2. Проверка индивидуаль- ных заданий.	ПК-2

2.2 Современные теоретические и экспериментальные методы разработки математических моделей исследуемых объектов и процессов		2/2И		2	6	1. Подготовка к практическому занятию. 2. Выполнение практических работ. 3. Самостоятельное изучение учебной и научно литературы	1. Беседа-обсуждение 2. Проверка индивидуаль- ных заданий	ПК-2
2.3 Методы имитаци- онного моделирования сложных систем		2/1И		2	8	1. Подготовка к практическому занятию. 2. Выполнение практических работ. 3. Самостоятельное изучение учебной и научно литературы.	1. Беседа-обсуждение 2. Проверка индивидуаль- ных заданий.	ПК-2
Итого по разделу		6/5И		6	20			
3. Модели и методы идо ления	ентис	фикаци	и прои	зводств	еннь	их процессов, комп	лексов и интегрированных	систем управ-
3.1 Декомпозиция и агрегирование при исследовании сложных динамических систем управления		1		1	6	1. Подготовка к практическому занятию. 2. Выполнение практических работ. 3. Самостоятельное изучение	1. Беседа-обсуждение 2. Проверка индивидуаль- ных заданий	ПК-3
3.2 Методы идентификации процессов и систем управления. Методы автоматической идентификации.		1		1	6	1. Подготовка к практическому занятию. 2. Выполнение практических работ. 3. Самостоятельное изучение учебной и научно литературы.	1. Беседа-обсуждение 2. Проверка индивидуаль- ных заданий.	ПК-3
3.3 Применение авторегрессионных моделей в задачах идентификации и прогнозирования	5	2		2	8	1. Подготовка к практическо-му занятию. 2. Выполнение практических работ. 3. Самостоятельное изучение учебной и научно литературы 4. Подготовка доклада по трансформации и визуализа-ции данных по теме научно- исследовательск ой работы	1 Доклад по трансформа- ции и визуализации дан- ных по теме научно- исследовательской работы	ПК-3
Итого по разделу		4		4	20			
T		-		•				

4. Экзамен							
4.1 Экзамен	5				Подготовка к экзамену	Экзамен	ПК-1, ПК-2, ПК-3
Итого по разделу							
Итого за семестр		13/8И	13	46		экзамен	
Итого по дисциплине		13/8 И	13	46			ПК-1,ПК- 2,ПК-3

5 Образовательные технологии

1. Традиционные образовательные технологии, ориентированные на организацию образовательного процесса и предполагающую прямую трансляцию знаний от преподавателя к аспиранту.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция – последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

2. Технологии проблемного обучения — организация образовательного процесса, кото-рая предполагает постановку проблемных вопросов, создание учебных проблемных ситуаций для стимулирования активной познавательной деятельности аспирантов.

Формы учебных занятий с использованием технологий проблемного обучения:

Практическое занятие в форме практикума – организация учебной работы, направ-ленная на решение комплексной учебно-познавательной задачи, требующей от студента применения как научно-теоретических знаний, так и практических навыков.

3. Интерактивные технологии — организация образовательного процесса, которая предполагает активное и нелинейное взаимодействие всех участников, достижение на этой основе личностно значимого для них образовательного результата.

Формы учебных занятий с использованием специализированных интерактивных технологий:

Лекция «обратной связи» – лекция–провокация (изложение материала с заранее запланированными ошибками), лекция-беседа, лекция-дискуссия, лекция-прессконференция.

Семинар-дискуссия – коллективное обсуждение вопросов, проблемы, выявление мнений в группе по теме научного исследования аспирантов.

- 4. Информационно-коммуникационные образовательные технологии организация образовательного процесса, основанная на применении программных сред и технических средств работы с информацией по теме научно-исследовательской работы аспирантов.
 - **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
 - **7 Оценочные средства для проведения промежуточной аттестации** Представлены в приложении 2.
 - 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Конюх, В.Л. Проектирование автоматизированных систем производства [Электронный ресурс]: учебное пособие / В.Л. Конюх. М.: КУРС: НИЦ ИНФРА-М, 2014. 312 с. Режим доступа: http://znanium.com/catalog.php?bookinfo=449810т Загл. с экрана. ISBN 978-5-905554-53-7
- 2. Голубева, Н. В. Математическое моделирование систем и процессов [Электронный ресурс]: учебное пособие / Н. В. Голубева. СПб.: «Лань», 2013. -192 с (Учебники для вузов. Специальная литература). Режим. доступа : http://e.lanbook.com/books/element.php?pl1_id=4862 .- Загл. с экрана. -ISBN 978-5-8114-1424-6

б) Дополнительная литература:

- 1. Управления в АСУ ТП промышленного производства: монография / Б. Н. Парсун-кин, С. М. Андреев, О.С. Логунова и др. Магнитогорск: Полиграфия, 2013. 376 с.
- 2. Андреев, С.М. Проектирование систем визуализации технологических процессов в среде Intouch [Текст]: практикум / С.М. Андреев, М.Ю. Рябчиков. Магнитогорск: ГОУ ВПО «МГТУ», 2010.-160 с.
- 3. Андреев, С.М. Принципы построения и организации комплексов технических средств в системах автоматического управления. Курс лекций [Электронный ресурс]: учебное пособие. С.М. Андреев. 2-е изд. ФГБОУ ВПО «МГТУ им. Г.И. Носова», 2013. 1 электрон. опт. диск (CD-R) (Учебная литер. для высшего проф. образ.) Номер гос. регистрации 0321302401 М.: ФГУП НТЦ «Информрегистр» Загл. с этикетки диска
- 4. Проблемы теории и практики управления [Текст]: международный журнал. М.: OOO «Международная Медиа Группа»
- 5. Автоматизация в промышленности [Текст]: ежемесячный научно-технический и производственный журнал. М.: ООО Издательский дом «ИнфоАвтоматизация»
- 6. Измерительная техника [Текст]: научно-технический журнал. М.: ФГУП «Российский научно-технический центр информации по стандартизации, метрологии
- 7. Информационные технологии [Текст]: ежемесячный теоретический и прикладной научно-технический журнал (с приложением). М.: Издательство «Новые технологии»
- 8. Приборы + автоматизация [Текст]: отраслевой научно-технический и производственный журнал. М.: COO «Международное HTO приборостроителей и метрологов

в) Методические указания:

1. Практикум [Электронный ресурс]: учеб. пособие / Б.Н. Парсункин, С.М. Андреев, Е.С. Рябчикова, Т.Г.Обухова. – Электрон. дан. – ФГБОУ ВПО «МГТУ им. Г.И. Носова», 2014. – 1 электрон. опт. диск (CD-R) Номер гос. регистрации 0321400062– М.: ФГУП НТЦ «Информрегистр» – Загл. с этикетки диска

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
CorelDraw 2017 Academic Edition	Д-504-18 от 25.04.2018	бессрочно
Maple 14 Classroom License	К-113-11 от 11.04.2011	бессрочно
Anaconda Python	свободно распространяемое ПО	бессрочно
MathCAD v.15 Education University Edition	Д-1662-13 от 22.11.2013	бессрочно
MS Office Visio Prof 2019(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
AnyLogic University	Д-895-14 от 14.07.2014	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка

Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

- 1. Лекционная аудитория Мультимедийные средства хранения, передачи и представления информации
- 2. Компьютерный класс. Персональные компьютеры с виртуальной машиной для установки серверного ПО, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.
- 3. Аудитории для самостоятельной работы: компьютерные классы; читальные залы библиотеки. Все классы УИТ и АСУ с персональными компьютерами, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.
- 4. Аудиторий для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Ауд. 282 и классы УИТ и АСУ.
- 5. Помещения для самостоятельной работы обучающихся, оснащенных компьютерной техникой с возможностью подключения к сети «Интернет» и наличием доступа в электронную информационно-образовательную среду организации. Классы УИТ и АСУ.
- 6. Помещения для хранения и профилактического обслуживания учебного оборудования. Центр информационных технологий ауд. 372.

Приложение 1

Учебно-методическое обеспечение самостоятельной работы обучающихся

Перечень вопросов для подготовки к экзамену:

- 1. Методы синтеза математических моделей АСУ и объектов управления. Характеристики аналитических, экспериментальных и аналитико-экспериментальных методов. Области применения этих методов.
- 2. Настройка математических моделей процессов и систем. Пассивные методы определения динамических характеристик объекта управления. Регрессионные модели динамических и статических характеристик систем.
- 3. Поисковые методы идентификации моделей систем. Виды поисковых методов, пример поискового метода нахождения коэффициентов регрессионного управления.
- 4. Способы математического описания технологических систем управления и их элементов. Статистические модели. Динамические модели.
- 5. Имитационное моделирование, принцип построение имитационных моделей, область применения имитационных моделей.
- 6. Модели транспортных систем. Методы решения транспортных задач.
- 7. Модели надежности систем. Модели планирования графика технического обслуживания.
- 8. Метод математического программирования, основа и обоснование метода, использование метода для построения и адаптации математических моделей.
- 9.Построение графиков загрузки агрегатов автоматизированных производственных комплексов с использованием методов математического программирования.
- 10. Методы нелинейного программирования. Виды ограничений.
- 11. Вариационные исчисления. Уравнения Эйлера. Метод множителей Лагранжа. Уравнение Эйлера-Лагранжа
- 12. Назначение математических моделей при разработке современных систем автоматизированного управления процессами.
- 13. Статические и динамические модели автоматизированных систем управления технологическими процессами.
- 14. Методы исследования статических и динамических свойств и параметров сложных динамических систем управления.
- 15. Информационное обеспечение различных уровней управления в иерархической системе.
- 16. Виды статических моделей, используемых в АСУ ТП, достоинства и недостатки, способы их представления.
- 17. Динамические модели объектов управления, достоинства и недостатки, способы их представления.
- 18. Уровневая модель представления современных систем управления. Назначение каждого уровня, его функциональные характеристики, методы взаимосвязи с соседними уровнями.
- 19. Интегрированные системы управления производством (ИАСУП). Основные принципы создания ИАСУП, принцип системного подхода к созданию ИАСУП.
- 20. Принципы открытых систем, используемые при проектировании ИАСУП. Сетевая архитектура ИАСУП, принципы клиент серверного взаимодействия между элементами и уровнями ИАСУП
- 21. Уровень сбора информации об объекте, структура уровня, основные классификационные параметры.
- 22. Уровень управления технологическим процессом, структура уровня, технические средства и характеристики уровня.
- 23. Уровень диспетчеризации процесса управления, общая структура и назначение элементов уровня, возможные примеры использования, виды программных средств для построения уровня.
- 24Уровень оперативного планирования производства. Задачи уровня, область применения, общая структура уровня диспетчеризации для непрерывных и дискретных технологических процессов.

- 25. Уровень процесса производства, основное назначение уровня, элементы входящие в уровень.
- 26. Сопряжение элементов и подсистем в одноуровневых и многоуровневых системах АПК, основные методы, примеры сопряжения.
- 27. Классификация видов обрабатываемых данных. Виды архитектур баз и банков данных
- 28. Организация сбора экспериментальной информации в условиях крупного производства, управляемого распределенной системой включающей контроллеры и станции SCADA систем.
- 29. Структура распределенной системой управления производством включающей контроллеры и станции SCADA систем.
- 30. Методы и способы получения данных с применением SCADA систем.
- 31. Встроенное и модельное программирование. Отличия. Достоинства и недостатки.
- 32. Общие принципы построения самонастраивающихся систем управления. Классификация адаптивных системы управления.

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства					
ванных систе	ПК-1 Способность разрабатывать и применять научные основы и формализованные методы построения автоматизированных систем управления технологическими процессами (АСУП) и производствами (АСУП), а также технической под-						
готовкой про	готовкой производства (АСТПП) и т.д						
Знать	научные основы, модели и методы идентификации производственных процессов, комплексов и интегрированных систем управления; формализованные методы анализа, синтеза, исследования и оптимизация модульных структур систем сбора и обработки данных в АСУТП, АСУП, АСТПП; методы и алгоритмы анализа, синтеза и исследования модульных структур систем сбора и обработки данных;						
Уметь	использовать аппарат формализации решений при анализе, синтезе и исследовании систем сбора и обработки данных и получать формализованные решения;	· · · · · · · · · · · · · · · · · · ·					

C -		
Структурный	П	
элемент	Планируемые результаты обучения	Оценочные средства
компетенции		
	использовать методы и типовые алгоритмы для	
	анализа, синтеза, исследования и оптимизации	
	систем сбора и обработки данных АСУ;	
	реализовывать методы и алгоритмы для анализа,	
	синтеза, исследования и оптимизации систем	
	сбора и обработки данных АСУ с использова-	
	ние различных программно-технических	
	средств;	
Владеть	навыками оперирования аппаратом формализа-	Задания на решение задач из профессиональной области
	ции, формализовать типовые задачи анализа,	. 1. Разработайте схему функционирования программно-
	синтеза и исследования структур АСУ;	технических комплекса для анализа результатов исследования.
	способностью производить анализ, синтез, ис-	
	следование и оптимизацию типовых модульных	
	структур сбора и обработки данных АСУ;	
	навыками реализации законченных программно-	
	технических комплексов для анализа, синтеза,	
	исследования и оптимизации модульных струк-	
	тур сбора и обработки данных различных типов	
ПК-2 Способи	ость к разработке и применению теоретически	х основ и методов математического моделирования организа-
ционно-техно	логических систем и комплексов, функциональ	ных задач и объектов управления и их алгоритмизация
Знать	типовые методы математического моделирова-	Вопросы к экзамену
	ния сложных динамических объектов и систем	÷ ,
	управления и их алгоритмизация;	вание метода, использование метода для построения и адаптации
	современные теоретические и эксперименталь-	математических моделей.
	ные методы разработки математических моделей	2.Построение графиков загрузки агрегатов автоматизированных
	организационно-технологических систем, ком-	производственных комплексов с использованием методов мате-
	плексов и объектов управления;	матического программирования.
	методы формализации и решения задач модели-	3. Методы нелинейного программирования. Виды ограничений.
	рования сложных систем и объектов управления;	4. Вариационные исчисления. Уравнения Эйлера. Метод множи-
	методы алгоритмизации сложных взаимосвязан-	телей Лагранжа. Уравнение Эйлера-Лагранжа
	ных структур систем и объектов управления;	5. Назначение математических моделей при разработке совре-
	1 1 7	1 1 1 1

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		менных систем автоматизированного управления процессами. 6. Статические и динамические модели автоматизированных систем управления технологическими процессами. 7. Методы исследования статических и динамических свойств и параметров сложных динамических систем управления. 8. Информационное обеспечение различных уровней управления в иерархической системе. 9. Виды статических моделей, используемых в АСУ ТП, досточиства и недостатки, способы их представления. 10. Динамические модели объектов управления, достоинства и недостатки, способы их представления. 11. Уровневая модель представления современных систем управления. Назначение каждого уровня, его функциональные характеристики, методы взаимосвязи с соседними уровнями. 12. Организация сбора экспериментальной информации в условиях крупного производства, управляемого распределенной системой включающей контроллеры и станции SCADA систем. 13. Структура распределенной системой управления производстьюм включающей контроллеры и станции SCADA систем. 14. Методы и способы получения данных с применением SCADA систем. 15. Встроенное и модельное программирование. Отличия. Достоинства и недостатки. 16. Общие принципы построения самонастраивающихся систем
Уметь	применять методы математического моделирования для исследования и проектирования организационно-технологических систем и комплексов; разрабатывать алгоритмы для математического моделирования систем и объектов управления;	управления. Классификация адаптивных системы управления Практические задания 1. Приведите классификацию моделей, применимых для решения научной задачи по теме диссертационного исследования.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	производить программную реализацию алгоритмов моделирования; разрабатывать и реализовывать структурные модели сложных управляющих систем и комплексов с учетом современных научных достижений;	
Владеть	навыками разработки и реализации математических моделей типовых организационнотехнологических систем и комплексов, функциональных задач и объектов управления; навыками алгоритмизации математических моделей с использованием типовых программных комплексов; навыками использования интегрированных сред разработки алгоритмизации и программной реализации математических моделей систем и объектов управления;	Задания на решение задач из профессиональной области 1. Определите элементы научной новизны для математических моделей, используемых в диссертационной работе по теме исследования.
	юсть к разраоотке и применению научных осно іексов и интегрированных систем управления	в, моделей и методов идентификации производственных про-
Знать	научные основы, модели и методы идентификации производственных процессов, комплексов и интегрированных систем управления; методы разработки моделей идентификации производственных процессов, комплексов; методику применения типовых методов идентификации; комплексный подход в вопросах идентификации и построения моделей производственных процессов и интегрированных систем управления;	Вопросы к экзамену 1. Интегрированные системы управления производством (ИА-СУП). Основные принципы создания ИАСУП, принцип системного подхода к созданию ИАСУП. 2. Принципы открытых систем, используемые при проектировании ИАСУП. Сетевая архитектура ИАСУП, принципы клиент — серверного взаимодействия между элементами и уровнями ИАСУП 3. Уровень сбора информации об объекте, структура уровня, основные классификационные параметры. 4. Уровень управления технологическим процессом, структура уровня, технические средства и характеристики уровня. 5. Уровень диспетчеризации процесса управления, общая струк-

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
Уметь	использовать типовые алгоритмы и методы идентификации простых производственных процессов; делать логические выводы о структуре идентифицируемой системы; выбирать необходимый набор методов и алгоритмов для идентификации сложных производственных процессов и интегрированных систем управления; разрабатывать модели и методы идентификации на основе типовых, для сложных производственных процессов и интегрированных систем управления; определять последовательность идентификации, осуществлять поиск и идентификацию критически важных участков в системе управления;	1. Приведите типовые алгоритмы и методы идентификации простых производственных процессов.
Владеть	способами работы с типовыми средствами идентификации производственных процессов;	Задания на решение задач из профессиональной области . 1. Приведите модификацию типовых алгоритмов и методов

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	методами определения направлений исследований при идентификации управляющих систем, в том числе и специального назначения; практическими навыками разработки специализированных методов и моделей идентификации, используя современные научные достижения для идентификации систем и процессов	идентификации простых производственных процессов, которая должна быть выполнена при их использовании в диссертационной работе.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Спецдисициплина» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета с оценкой.

Экзамен по дисциплине проводится по теоретическим вопросам.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.