МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЭиАС С.И. Лукьянов

двочундвочундрогиных 26.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД ПЕРЕМЕННОГО ТОКА

Направление подготовки (специальность) 13.04.02 Электроэнергетика и электротехника

Направленность (профиль/специализация) программы Электропривод и автоматика

Уровень высшего образования - магистратура

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Автоматизированного электропривода и мехатроники

 Курс
 2

 Семестр
 3

Магнитогорск 2019 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 13.04.02 Электроэнергетика и электротехника (уровень магистратуры) (приказ Минобрнауки России от 28.02.2018 г. № 147)

Рабочая программа рассмотрена и одобрена на заседании кафедры Автоматизированного электропривода и мехатроники 13.02.2020, протокол № 6

Зав. кафедрой А.А. Николаев
Рабочая программа одобрена методической комиссией ИЭиАС 26.02.2020 г. протокол № 5

Председатель С.И. Лукьянов
Рабочая программа составлена: профессор кафедры АЭПиМ, д-р техн. наук Е.Я. Омельченко

Рецензент:

зам. начальника ЦЭТЛ ПАО «ММК» по электроприводу, канд техн. наук

А.Ю. Юдин

Рабочая программа пересмучебном году на заседании мехатроники	отрена, обсуждена и одобрена для кафедры Автоматизированного з	реализации в 2020 - 2021 олектропривода и
	Протокол от <u>30</u> <u>Os</u> <u>20</u> 3ав. кафедрой <u>— — — — — — — — — — — — — — — — — — —</u>)20 г. № <u>1</u> А.А. Николаев
Рабочая программа пересмучебном году на заседания мехатроники	отрена, обсуждена и одобрена для кафедры Автоматизированного з	реализации в 2021 - 2022 электропривода и
	Протокол от 20 Зав. кафедрой	0 г. № А.А. Николаев

1 Цели освоения дисциплины (модуля)

Целью преподавания дисциплины «Современный электропривод переменного тока» является рассмотрение теории и практики современного автомати¬зированного электропривода переменного тока, тенденции его развития.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Регулируемый электропривод переменного тока входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Регулируемый электропривод постоянного тока

Дополнительные главы математики в электроэнергетике и электротехнике

Моделирование электротехнических комплексов и систем

Микропроцессорные средства в электроприводах и технологических комплексах

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Автоматизированный электропривод Shneider Electric

Подготовка к сдаче и сдача государственного экзамена

Подготовка к процедуре защиты и защита выпускной квалификационной работы

Производственная - научно-исследовательская работа

Производственная-преддипломная практика

Производственная - проектная практика

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Регулируемый электропривод переменного тока» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции						
ПК-2 Способность разрабатывать концепции системы электропривода							
ПК-2.1	Формирует	компетенции	И	задачи	на	разработку	системы
	электроприво	лектропривода					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 7 зачетных единиц 252 акад. часов, в том числе:

- контактная работа 123 акад. часов:
- аудиторная 119 акад. часов;
- внеаудиторная 4 акад. часов
- самостоятельная работа 93,3 акад. часов;
- в форме практической подготовки 1- акад. часов;
- подготовка к экзамену 35,7 акад. часа

Форма аттестации - экзамен

Раздел/ тема дисциплины	Семестр	конт	Аудиторн гактная р акад. ча	абота	Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетенции
дисциплины	Ce	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. 1.Введение Осного понятия и определе Современный электропри переменного тока направления его развы Преобразователи частоть электроприводе.	ения. ивод и ития.							
1.1 Современный электропривод переменного тока и направления его развития. Преобразователи частоты в электроприводе.	3	2	4/2И		4	Изучение вопросов теории по литературе		ПК-2.1
Итого по разделу		2	4/2И		4			
2. 2.Электромеханиче свойства асинхрон двигателя (АД) .Структу схема асинхронного двига как объекта регулирования	ного рная теля							
2.1 Статические характеристики АД при различных законах регулирования скорости U1/f1= const, $\Psi\mu$ = const, Ψ 2= const, I1 = const.		2	8/2И		4	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
2.2 Разомкнутые системы управления асинхронным частотно - регулируемым электроприводом	3	2	6/2И		8	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
2.3 Принципы построения систем частотного регулирования скорости АД.		2	8/2И		4	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
2.4 Замкнутые системы скалярного управления асинхронным частотно - регулируемым электроприводом		2	6/2И		8	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1

2.5 Моделирование системы скалярного управления с обратной связью по току статора.		2	6/2И	5,3	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
2.6 Исследование системы скалярного управления с обратной связью по скорости		2	5/2И	8	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
Итого по разделу		12	39/12И	37,3			
3. 3.Системы вектор управления асинхрон электроприводом							
3.1 Система управления с прямой ориентацией по вектору потокосцепления ротора АД.		2	8/2И	8	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
3.2 Исследование системы управления с косвенной ориентацией по вектору потокосцепления ротора	3	4	8/2И	6	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
3.3 Система управления моментом АД		2	4/2И	6	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
Итого по разделу		8	20/6И	20			
синхронного двигателя объекта регулирования							
4.1 1 Электромеханические свойства синхронного двигателя		3	6	8	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
4.2 Статические характеристики СД при U1 = const, f1 = const. Принципы частотного регулирования скорости и момента СД.	3	3	4	8	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
4.3 Моделирование системы автоматического регулирования координат СД.		2	6	8	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
4.4 Управление синхронным двигателем в схеме вентильного двигателя.		4	6	8	Изучение вопросов теории по литературе	устный опрос (собеседование)	ПК-2.1
Итого по разделу		12	22	32			
Итого за семестр		34	85/20И	93,3		экзамен	
Итого по дисциплине		34	85/20И	93,3		экзамен	
							

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Регулируемый электропривод переменного тока» используются традиционные технологии.

Передача необходимых теоретических знаний и формирование основных представлений по курсу происходит с использованием мультимедийного оборудования. Лекции проходят в традиционной форме, в форме лекций-консультаций и проблемных лекций. Лекционные занятия проводятся с использованием презентационного оборудования (проектор, экран, ноутбук), в качестве наглядных материалов используются схемы силовых цепей различных вариантов электроприводов переменного тока, функциональные и структурные схемы систем автоматического регулирования, диаграммы изменения основных параметров и тп. Теоретический материал на проблемных лекциях является результатом усвоения полученной информации посредством постановки проблемного вопроса и поиска путей его решения применяются методы IT. На лекциях – консультациях изложение нового материала сопровождается постановкой вопросов и дискуссией в поисках ответов на эти вопросы.

Лабораторные занятия представляют собой исследование свойств рассматриваемых электроприводов как с помощью персональных ЭВМ с набором специализированного программного обеспечения для их моделирования, визуализации и программирования, так и на лабораторных стендах с микропроцессорными САР, обеспечивающими их реализацию.

Практические/ лабораторные занятия проводятся в форме практической подготовки в условиях выполнения обучающимися видов работ, связанных с будущей профессиональной деятельностью и направленных на формирование, закрепление, развитие практических навыков и компетенций по профилю образовательной программы.

- **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
- **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
- 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Анучин А.С., Системы управления электроприводов [Электронный ресурс] : учебник для вузов / Анучин А.С. М. : Издательский дом МЭИ, 2015. 373 с. ISBN 978-5-383-00918-5 Режим доступа: http://www.studentlibrary.ru/book/ISBN9785383009185.html
- 2.Епифанов А. П., Малайчук Л. М., Гущинский А. Г. Электропривод [Электронный ресурс]: Учебник / Под ред. А. П. Епифанова. СПб.: Издательство «Лань», 2012. 400 с.:ил. (Учебники для вузов. Специальная литература). Режим доступа: http://e.lanbook.com/view/book/3812/page136/ ISBN 9785811412341

б) Дополнительная литература:

- 1. Фурсов, В. Б. Моделирование электропривода : учебное пособие / В. Б. Фурсов. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2019. 220 с. ISBN 978-5-8114-3566-1. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/121467 (дата обращения: 12.11.2020). Режим доступа: для авториз. пользователей.
- 2. Никитенко, Г. В. Электропривод производственных механизмов : учебное пособие / Г. В. Никитенко. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2013. 224 с. ISBN 978-5-8114-1468-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/5845 (дата обращения: 12.11.2020). Режим доступа: для авториз. пользователей.
- 3. Крылов, Ю. А. Энергосбережение и автоматизация производства в теплоэнергетическом хозяйстве города. Частотно-регулируемый электропривод : учебное пособие / Ю. А. Крылов, А. С. Карандаев, В. Н. Медведев. Санкт-Петербург : Лань, 2013. 176 с. ISBN 978-5-8114-1469-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/10251 (дата обращения: 12.11.2020). Режим доступа: для авториз. пользователей.
- 4. Герман-Галкин, С. Г. Виртуальные лаборатории полупроводниковых систем в среде Matlab-Simulink : учебно-методическое пособие / С. Г. Герман-Галкин. Санкт-Петербург : Лань, 2013. 448 с. ISBN 978-5-8114-1520-5. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/36998 (дата обращения: 12.11.2020). Режим доступа: для авториз. пользователей.

в) Методические указания:

- 1. Лукин, А. Н. Моделирование регулируемых электроприводов переменного тока : учебное пособие / А. Н. Лукин, А. В. Белый ; МГТУ. Магнитогорск, 2010. 67 с. : ил., табл. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=315.pdf&show=dcatalogues/1/10689 20/315.pdf&view=true (дата обращения: 25.09.2020). Макрообъект. Текст : электронный. Имеется печатный аналог.
- 2. Параметрирование преобразователей фирмы "SIMENS" : учебное пособие / [А. А. Радионов, А. В. Белый, С. А. Линьков и др.] ; МГТУ. Магнитогорск, 2012. 91 с. : ил., схемы, табл. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=608.pdf&show=dcatalogues/1/11049 71/608.pdf&view=true (дата обращения: 25.09.2020). Макрообъект. Текст : электронный. ISBN 978-5-9967-0315-9. Имеется печатный аналог.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

iipoi paminioe ocene ienne					
Наименование ПО	№ договора	Срок действия лицензии			
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно			
NI MultiSim Education	К-68-08 от 29.05.2008	бессрочно			

MathWorks MathLab v.2014 Classroom License	К-89-14 от 08.12.2014	бессрочно
MathCAD v.15 Education University Edition	Д-1662-13 от 22.11.2013	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	https://elibrary.ru/project_risc.asp
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

- 1.Персональные ЭВМ с набором специализированного программного обеспечения для моделирования, визуализации и программирования систем.
- 2.Лабораторные стенды частотно-регулируемых асинхронных и синхронных электроприводов на базе преобразователей частоты фирмы Siemens (Simovert Masterdrives Vector Control (2 шт.) и Sinamics (1шт.)).
 - 3. Комплект мультимедийного оборудования (а.023,027, 227).
 - 4. Комплект мультимедийных презентаций по всем темам дисциплины.

Приложение 1

Самостоятельная работа студентов на лабораторных занятиях осуществляется под контролем преподавателя в виде решения задач по изучению наиболее важных разделов теоретического курса дисциплины.

Внеаудиторная самостоятельная работа студентов осуществляется в виде подготовки лабораторным занятиям и изучении вопросов теории, не рассмотренных на лекциях, а также подготовку к лабораторным работам и экзаменам по контрольным вопросам.

Контрольные вопросы по проведению самостоятельной работы по разделам Раздел 1.

- 1. Как классифицируются преобразователи частоты?
- 2. Принцип действия различных типов преобразователей частоты.
- 3. В чем принципиальное отличие преобразователей частоты на основе инверторов напряжения и тока?
- 4. Перечислите достоинства и недостатки преобразователей частоты со звеном постоянного тока и с непосредственной связью.
- 5. В чем состоят недостатки преобразователей частоты на основе инверторов напряжения с ШИМ.
- 6. Особенности реализации моделей преобразователей частоты в среде Matlab_Simulink.
 - 7. Как реализуются тормозные режимы АД в системе ПЧ-АД?
 - 8. Способы получения рекуперативного торможения в системе ПЧ-АД.
- 9. Как программируются параметры преобразователей частоты фирмы Siemens (Simovert Masterdrives. Vector Control и Sinamiqs)?
 - 10. Энергетические показатели различных типов преобразователей частоты.

Раздел 2.

- 1. Представьте качественный вид зависимостей магнитных потоков намагничивания, статора и ротора АД от его скольжения при различных соотношениях между напряжением и частотой питания статора двигателя.
- 2. Дать сравнительный анализ механических характеристик АД при различных соотношениях между напряжением и частотой питания статора двигателя.
- 3. В чем отличия механических характеристик АД при его питании от источников напряжения и тока?
 - 4. Оцените области допустимых значений токов, напряжений, магнитных потоков и скорости АД при его частотном регулировании.
- 5. Как реализуется модель АД в среде Matlab_Simulink при его частотном регулировании?
- 6. Как программируются параметры АД в электроприводах.фирмы Siemens (Simovert Masterdrives. Vector Control и Sinamiqs)?
- 7. Как программируются разомкнутая САР ПЧ-АД в электроприводах. фирмы Siemens (Simovert Masterdrives. Vector Control и Sinamiqs)?
- 8. Как получить кривые переменных в электроприводе с помощью программы DriveMonitor?
- 9. Как программируются скалярная САР ПЧ-АД с обратными связями по току статора в электроприводах.фирмы Siemens (Simovert Masterdrives. Vector Control и Sinamiqs)?
- 10. Как программируются скалярная САР ПЧ-АД с обратной связью по скорости в электроприводах. фирмы Siemens (Simovert Masterdrives. Vector Control и Sinamiqs)?
- 11. Как реализуется модель разомкнутой и скалярной САР ПЧ-АД в среде Matlab_Simulink?

- 12. Оцените диапазоны частотного регулирования скорости АД в разомкнутой системе управления при различных зависимостях статического момента на валу АД от его скорости.
- 13. Какие факторы влияют на выбор минимального и максимального значений частоты и напряжения на выходе преобразователя частоты?
- 14. Какие обратные связи способствуют увеличению жесткости механической характеристики асинхронного частотно-регулируемого электропривода? Дать сравнительную оценку различным способам стабилизации скорости АД.
- 15. Какими факторами ограничивается максимальный коэффициент положительной обратной связи по току статора АД?
- 16. Определите для электропривода с ПИ-регулятором скорости характер изменения выходного напряжения регулятора скорости, частоты и напряжения на статоре двигателя, а также его скорости в функции момента на валу двигателя. Как они будут отличаться для двигателей с различными значениями номинальных скольжений?
- 17. Какими факторами ограничено применение разомкнутых систем с частотно-токовым управлением АД?

Раздел 3.

- 1. На примере векторной диаграммы основного потокосцепления и тока статора АД показать общность физических взаимосвязей в двигателе постоянного тока и АД.
- 2. Укажите особенности построения систем управления с ориентацией системы координат х, у по вектору потокосцепления статора и ротора.
- 3. Объясните назначение функциональных устройств A1...A12 и блоков ЭМФ и IM на функциональной схеме.
- 4. Как реализуется модель векторной САР с косвенной ориентацией по вектору потокосцепления ротора АД в среде Matlab_Simulink?
- 5. Построить и сравнить регулировочные характеристики асинхронного электропривода и диаграммы изменений частоты, напряжения, составляющих тока статора по осям х и у, магнитного потока ротора в функции сигнала управления скоростью АД в системе управления с косвенной ориентацией по вектору потокосцепления ротора АД при отсутствии и наличии статической нагрузки на валу двигателя.
- 6. Построить и сравнить механические характеристики асинхронного электропривода и диаграммы изменения частоты, напряжения, составляющих тока статора по осям х и у, магнитного потока ротора в функции момента на валу АД в системе управления с косвенной ориентацией по вектору потокосцепления ротора АД при исходных заданных частотах выходного напряжения меньше и больше номинального их значения.
- 7. Оценить изменение механической характеристики электропривода в этой же системе управления при вариациях параметров регуляторов скорости, тока, уровней ограничения в блоках БО1, БО2.

Раздел 4.

- 1. От каких параметров СД зависит его перегрузочная способность и как её можно регулировать?
- 2. В чём состоят конструктивные различия между асинхронным и синхронным двигателями?
- 3. В каких электроприводах целесообразно применять синхронные двигатели с частотным регулированием скорости?
 - 4. Как реализуется модель векторной САР ПЧ-СД среде Matlab_Simulink?
- 5. Как программируются векторной САР ПЧ-СД с обратной связью по скорости в электроприводах .фирмы Siemens (Sinamiqs)?
- 6. В чем заключаются особенности системы управления синхронным двигателем с прямой ориентацией по вектору потокосцепления ротора?

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
ПК-2 Способн	ость разрабатывать концеп	ции системы электропривода
ПК-2.1	Формирует	Раздел 1.
	компетенции и задачи на разработку системы электропривода	1. Как классифицируются преобразователи частоты?
		2. Принцип действия различных типов преобразователей частоты.
		3. В чем принципиальное отличие преобразователей частоты на основе инверторов напряжения и тока?
		4. Перечислите достоинства и недостатки преобразователей частоты со звеном постоянного тока и с непосредственной связью.
		5. В чем состоят недостатки преобразователей частоты на основе инверторов напряжения с ШИМ.
		6. Особенности реализации моделей преобразователей частоты в среде Matlab_Simulink.
		7. Как реализуются тормозные режимы АД в системе ПЧ-АД?
		8. Способы получения рекуперативного торможения в системе ПЧ-АД.
		9. Как программируются параметры преобразователей частоты фирмыSiemens (Simovert Masterdrives.VectorControl и Sinamiqs)?
		10. Энергетические показатели различных типов преобразователей частоты.
		Раздел 2.
		1. Представьте качественный вид зависимостей магнитных потоков намагничивания, статора и ротора АД от его скольжения при различных соотношениях между напряжением и частотой питания статора двигателя.
		2. Дать сравнительный анализ механических

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		характеристик АД при различных соотношениях между напряжением и частотой питания статора двигателя.
		3. В чем отличия механических характеристик АД при его питании от источников напряжения и тока?
		4. Оцените области допустимых значений токов, напряжений, магнитных потоков и скорости АД при его частотном регулировании.
		5. Как реализуется модель АДв среде Matlab_Simulink при его частотном регулировании?
		6. Как программируются параметры АД в электроприводах.фирмы Siemens (Simovert Masterdrives. Vector Control и Sinamiqs)?
		7. Как программируются разомкнутая САР ПЧ-АД в электроприводах.фирмы Siemens (Simovert Masterdrives. Vector Control и Sinamiqs)?
		8. Как получить кривые переменных в электроприводе с помощью программы Drive Monitor?
		9. Как программируются скалярная САР ПЧ-АД с обратными связями по току статора в электроприводах .фирмы Siemens (Simovert Masterdrives. Vector Control и Sinamiqs)?
		10.Как программируются скалярная САР ПЧ-АД с обратной связью по скорости в электроприводах .фирмы Siemens (Simovert Masterdrives. Vector Control и Sinamiqs)?
		11. Как реализуется модель разомкнутой и скалярной САР ПЧ-АД в среде Matlab_Simulink?
		12. Оцените диапазоны частотного регулирования скорости АД в разомкнутой системе управления при различных зависимостях статического момента на валу АД от его скорости.
		13. Какие факторы влияют на выбор минимального и максимального значений частоты и напряжения на выходе преобразователя частоты?
		14. Какие обратные связи способствуют увеличению жесткости механической характеристики асинхронного частотно-регулируемого электропривода? Дать сравнительную оценку

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		различным способам стабилизации скорости АД.
		15. Какими факторами ограничивается максимальный коэффициент положительной обратной связи по току статора АД в скалярной САР ПЧ-АД?
		16. Определите для электропривода с ПИ-регулятором скорости скалярной САР ПЧ-АД характер изменения выходного напряжения регулятора скорости, частоты и напряжения на статоре двигателя, а также его скорости в функции момента на валу двигателя. Как они будут отличаться для двигателей с различными значениями номинальных скольжений?
		17. Какими факторами ограничено применение разомкнутых систем с частотно-токовым управлением АД?
		Раздел 3.
		1. На примере векторной диаграммы основного потокосцепления и тока статора АД показать общность физических взаимосвязей в двигателе постоянного тока и АД.
		2. Укажите особенности построения систем управления с ориентацией системы координат х, у по вектору потокосцепления статора и ротора.
		3. Объясните назначение функциональных устройств A1A12 и блоков ЭМФ и IM на функциональной схеме CAP с косвенной ориентацией по вектору потокосцепления ротора АД.
		4. Как реализуется модель векторной САР с косвенной ориентацией по вектору потокосцепления ротора АД в среде Matlab_Simulink?
		5. Построить и сравнить регулировочные характеристики асинхронного электропривода и диаграммы изменений частоты, напряжения, составляющих тока статора по осям х и у, магнитного потока ротора в функции сигнала управления скоростью АД в системе управления с косвенной ориентацией по вектору потокосцепления ротора АД при отсутствии и наличии статической нагрузки на валу двигателя.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		6. Построить и сравнить механические характеристики асинхронного электропривода и диаграммы изменения частоты, напряжения, составляющих тока статора по осям х и у, магнитного потока ротора в функции момента на валу АД в системе управления с косвенной ориентацией по вектору потокосцепления ротора АД при исходных заданных частотах выходного напряжения меньше и больше номинального их значения. 7. Оценить изменение механической характеристики электропривода в этой же системе управления при вариациях параметров регуляторов скорости, тока, уровней ограничения в блоках БО1, БО2.
		1. От каких параметров СД зависит его перегрузочная способность и как её можно регулировать? 2. В чём состоят конструктивные различия между асинхронным и синхронным двигателями? 3. В каких электроприводах целесообразно применять синхронные двигатели с частотным регулированием скорости? 4.Как реализуется модель векторной САР ПЧ-СД среде Matlab_Simulink? 5. Как программируются векторная САР ПЧ-СД с обратной связью по скорости в электроприводах. Фирмы Siemens (Sinamiqs)? 6. В чем заключаются особенности системы управления синхронным двигателем с прямой ориентацией по вектору потокосцепления ротора.

Критерии оценки (в соответствии с формируемыми компетенциями и планируемыми результатами обучения):

 на оценку «отлично» – студент должен показать высокий уровень сформированности компетенций не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;

- на оценку «хорошо» студент должен показать средний уровень сформированности компетенций не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- на оценку «удовлетворительно» студент должен показать пороговый уровень сформированности компетенций на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку «неудовлетворительно» студент не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.