МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ:

Директор института металлургии,

матичностроения и материалообработки

А.С. Савинов

«11» сентября 2017 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МЕХАНИЧЕСКОЕ ОБОРУДОВАНИЕ АГЛОДОМЕННЫХ ЦЕХОВ

Направление подготовки

15.03.02 Технологические машины и оборудование

Профиль программы

Гидравлические машины, гидроприводы и гидропневмоавтоматика

Уровень высшего образования – бакалавриат

Программа подготовки – академический бакалавриат

Форма обучения Заочная

Институт Кафедра

Курс

Металлургии, машиностроения и материалообработки Проектирования и эксплуатации металлургических машин и оборудования

4

Магнитогорск 2017 г.

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 15.03.02 Технологические машины и оборудование, утвержденного приказом МОиН РФ от «20» октября 2015 г. № 1170.

Рабочая программа рассмотрена и одобрена на заседании кафедры проектирования и эксплуатации металлургических машин и оборудования «08» сентября 2017 г.,

Зав. кафедрой / А.Г. Корчунов/

Рабочая программа одобрена методической комиссией института металлургии, машиностроения и материалообработки «11» сентября 2017 г., протокол № 1.

Председатель / А.С. Савинов/

Рабочая программа составлена:

доцент, к.т.н.

/ Н.Ш. Тютеряков/

Рецензент:

и.о. гл. механика ООО «НПЦ «Гальва»», к.т.н.

/B.A. PVCaHOR/

Лист регистрации изменений и дополнений

№ п/п	Раздел программы	Краткое содержание изменения / дополнения	Дата № протокола заседания кафедры	Подпись зав. кафедрой
1	Раздел 8	Актуализация перечня основной, дополнительной литературы и лицензионного программного обеспечения	04.09.2018. Протокол №1	They
2	Раздел 8	Актуализация перечня основной, дополнительной литературы и лицензионного программного обеспечения	04.09.2019. Протокол №1	They
3	Раздел 9	Актуализация материально- технического обеспечения дисциплины	04.09.2019. Протокол №1	They
4	Раздел 8	Актуализация перечня основной, дополнительной литературы и лицензионного программного обеспечения	31.08.2020. Протокол №1	They

1 Цели освоения дисциплины

Целью освоения дисциплины «Механическое оборудование аглодоменных цехов» является:

- овладение студентами знаниями оборудования аглодоменных цехов металлургического производства, необходимых им для производственно-технологической, проектноконструкторской и исследовательской деятельности;
- овладение достаточным уровнем профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению 15.03.02 «Технологические машины и оборудование», профиль «Гидравлические машины, гидроприводы и гидропневмоавтоматика»..

2 Место дисциплины в структуре ООП подготовки бакалавра

Дисциплина Б1.В.08 «Механическое оборудование аглодоменных цехов» входит в вариативную часть блока 1 образовательной программы.

Для успешного освоения материала необходимы знания и умения, полученные студентами при изучении дисциплин Б1.В.06 «Технология конструкционных материалов», Б1.Б.15 «Сопротивления материалов», Б1.Б.16 «Теории машин и механизмов», Б1.Б.14 «Теоретической механики», Б1.В.14 «Детали машин».

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы при изучении следующих дисциплин в соответствии с учебным планом:

При прохождении производственной - практики по получению профессиональных умений и опыта профессиональной деятельности $52.B.02(\Pi)$, производственной — преддипломной практики $52.B.03(\Pi)$, подготовке к защите выпускной квалификационной работы 53.F.02.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины:

В результате освоения дисциплины (модуля) «Механическое оборудование аглодоменных цехов» студент должен обладать следующими компетенциями:

Структурный элемент компетенции	Планируемые результаты обучения
ПК-5 Способн талей и узлов	постью принимать участие в работах по расчету и проектированию демашиностроительных конструкций в соответствии с техническими заспользованием стандартных средств автоматизации проектирования
Знать	- Назначение и сущность комплексов, процессов, оборудования и производственных объектов аглодоменных цехов
Уметь	- Применять все известные методы расчета при проектировании деталей и узлов машиностроительных конструкций аглодоменных цехов.
Владеть	 навыками совершенствования профессиональных знаний и умений путем использования возможностей информационной среды при расчете оборудования аглодоменных цехов. Навыками применение современных САПР при проектировании обору-
	дования аглодоменных цехов.

ПК-12 Способностью участвовать в работах по доводке и освоению технологических процессов в ходе подготовки производства новой продукции, проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей

Структурный элемент компетенции	Планируемые результаты обучения							
Знать	Основные требования к проверке качества монтажа и наладки нового механического оборудования аглодоменных цехов							
Уметь	Грамотно обосновать результат принятых решений. Проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий							
Владеть	Способами совершенствования профессиональных знаний и умений путем использования возможностей информационной среды. Навыками проверки качества монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий в условиях аглодоменного цеха.							
	ем проверять техническое состояние и остаточный ресурс технологиче- ования, организовывать профилактический осмотр и текущий ремонт технологических машин и оборудования							
Знать	Основные методы при оценке технического состояния и остаточного ресурса технологического оборудования аглодоменных цехов.							
Уметь	Корректно выражать и аргументированно обосновывать принимаемые решения по результатам анализа оценки технического состояния технологического оборудования аглодоменных цехов.							
Владеть	Ведения статистики технического состояния технологического оборудования с целью прогнозирования текущих ремонтов.							

4 Структура и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 12,7 акад. часов:
 - аудиторная 12 акад. часов;
 - внеаудиторная 0,7 акад. часов
- самостоятельная работа 127,4 акад. часов;
- подготовка к зачету– 3,9 акад. часа

Раздел/ тема	Kypc	конта	/дитор актная та кад. ча	рабо-	ельная ра- ад. часах)	Вид самостоятельной	Форма текущего контроля успеваемости и	ц и структурный элемент компетенции
дисциплины	Ä	лекции	IKA T		Самостоят бота (в ак	работы	промежуточной аттеста- ции	Код и стр элем компет
1. Введение. Основные представления о металлургическом производстве, состояние и перспективы развития металлургической промышленности. Технический прогресс в области производства чугуна.	4	0,5			7,4	Самостоятельное изучение учебной и научно литературы Поиск дополнительной информации по заданной теме Работа с электронными библиотеками	Устный опрос.	ПК-5, 12, 13 з.у.в.
2. Оборудование агломерационной фабрики.	4	1	1	1	40	Самостоятельное изучение учебной и научно литературы Работа с электронными библиотеками Подготовка и выполнение практических и лабораторных работ Выполнение контрольной	Устный опрос. Защита практической и лабораторной работ. Контрольная работа	ПК-5, 12, 13 з.у.в.

Раздел/ тема дисциплины	Kypc	конт	/дитор актная та кад. ча кадимимимимимимимимимимимимимимимимимимим	рабо-	Самостоятельная ра- бота (в акад. часах)	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
3. Оборудование фабрики по производству окатышей.	4	1	1	1	40	Самостоятельное изучение учебной и научно литературы Работа с электронными библиотеками Подготовка и выполнение практических и лабораторрных работ Выполнение контрольной работы	Устный опрос. Защита практической и лабораторной работ. Контрольная работа	ПК-5, 12, 13 з.у.в.
4. Оборудование доменных цехов	4	1,5	2И	2И	40	Самостоятельное изучение учебной и научно литературы Работа с электронными библиотеками Подготовка и выполнение практических и лабораторных работ Выполнение контрольной работы	Устный опрос. Защита практической и лабораторной работ. Контрольная работа	ПК-5, 12, 13 з.у.
Итого по курсу	4	4	4/2И	4/2И	127,4		зачет	ПК-5, 12, 13 в.

Раздел/ тема дисциплины	Курс	конта	дитор та та кад. ча занятия	рабо-	Самостоятельная ра- бота (в акад. часах)	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
Итого по дисциплине	4	4	4/2И	4/2И	127,4		зачет	ПК-5, 12,
								13 з.у.в.

5 Образовательные технологии

Образовательный процесс реализуется с помощью традиционных образовательных технологий: формы, направленные на теоретическую подготовку студентов (лекции, самостоятельная работа в аудитории, консультации) и формы, направленные на практическую подготовку (лабораторные работы, практические занятия и самостоятельная работа).

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Технология конструкционных материалов» используются:

1. **Традиционные образовательные технологии** ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция — последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

Лабораторная работа — организация учебной работы с реальными материальными и информационными объектами, экспериментальная работа с аналоговыми моделями реальных объектов.

2. **Интерактивные технологии** — организация образовательного процесса, которая предполагает активное и нелинейное взаимодействие всех участников, достижение на этой основе личностно значимого для них образовательного результата. Наряду со специализированными технологиями такого рода принцип интерактивности прослеживается в большинстве современных образовательных технологий. Интерактивность подразумевает субъект-субъектные отношения в ходе образовательного процесса и, как следствие, формирование саморазвивающейся информационно-ресурсной среды.

В образовательном процессе активно применяются мультимедийные технологии. В процессе чтения лекций применяются презентации, содержащие различные виды информации: текстовую, звуковую, графическую. Широко применяются студентами электронные учебники, где представлен достаточно широкий арсенал мультимедийных средств, что не идет в сравнение с использованием обычных «бумажных» учебников. На практических занятиях - использование тестовых программ для закрепления и контроля знаний.

6 Учебно-методическое обеспечение самостоятельной работы студентов

По дисциплине «**Механическое оборудование аглодоменных цехов**» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает выполнение лабораторных и практических работ.

ЗАДАНИЯ ДЛЯ ЛАБОРАТОРНЫХ РАБОТ

Лабораторная работа №1

ИЗУЧЕНИЕ ОСНОВНОГО ОБОРУДОВАНИЯ АГЛОМЕРАЦИОННОЙ ФАБРИКИ

Цель работы: изучить технологию и общее устройство механического оборудования агломерационной фабрики.

1. Выполнение лабораторной работы

При проведении лабораторной работы, студенты должны ознакомиться с работой и устройством механического оборудования в следующей последовательности:

- 1. Подача составляющих агломерационной шихты к бункерам агломерационной фабрики. Подача концентрата, кокса, возврата, известняка, колошниковой пыли.
 - 2. Устройство и работа четырехвалковой дробилки кокса.
 - 3. Устройство и работа питателей шихты, конвейеров.
 - 4. Устройство и работа смесителя шихты.
 - 5. Устройство и работа питателя для загрузки шихты на этом машину.
 - 6. Устройство и работа агломерационной машины (привод, хвостовая часть и т.д.).
 - 7. Оборудование цикла возврата (охладители, конвейеры).

Студенты во время экскурсии составляют эскизы кинематических схем основного оборудования: коксодробилки, тарельчатого питателя, смесителя, агломашины.

2. Отчет по лабораторной работе

Отчет по лабораторной работа № 1 составляется каждым студентом индивидуально и должен включать название и цель работы, краткое описание технологического процесса агломерационной фабрики, а также краткое описание и кинематические схемы следующих механизмов и машин:

- 1. Четырехвалковая коксодробилка.
- 2. Тарельчатыий питатель.
- 3. Смеситель шихты.
- 4. Система загрузки аглошихты на спекательные тележки.
- 5. Привод агломашины.
 - В конце отчета по работе дается краткий анализ результатов работы и выводы.

В этом разделе отчета студент излагает соображения о технологии агломерации и конструкции машин и механизмов аглофабрики, отмечает положительные стороны и недостатки в технологии и конструкции машин.

Зачет по лабораторной работе ставится при наличии отчета по результатам беседы студента и преподавателя.

Лабораторная работа № 2

ИЗУЧЕНИЕ ОСНОВНОГО ОБОРУДОВАНИЯ ДОМЕННОГО ЦЕХА

Цель работы: изучить технологию и общее устройство механического оборудования доменного цеха MMK.

1. Порядок выполнения работы

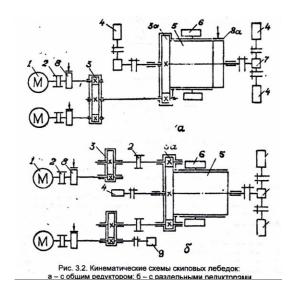
При проведении лабораторной работы, студенты должны ознакомиться с работой и устройством механического оборудования в следующей последовательности:

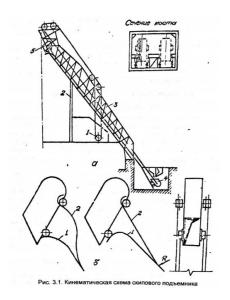
- 1. Устройство и работа оборудования бункерной эстакады: бункера и их затворы, питатели, конвейеры.
 - 2. Скиповой подъемник.
 - 3. Скиповая лебедка управления конусами.
- 4. Оборудование литейного двора: электропушка и сверлильная машина, фурменные приборы, желоба, маневровое устройство для передвижения чугуновозов.

Студенты при изучении оборудования составляют кинематические схемы механизмов.

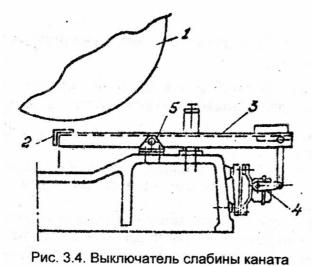
2. Отчет по лабораторной работе

Отчет по лабораторной работе № 2 составляется каждым студентом индивидуально и должен включать название и цель работы, краткое описание технологического процесса производства чугуна в доменном цехе ММК, а также краткое описание и кинематические схемы механизмов и машин по заданию преподавателя.


В конце отчета по работе дается краткий анализ результатов выполненной работы и выгоды. В этом разделе отчета студент соображения о технологии доменного производства и конструкции машин и механизмов (например, сравнивая конвейерную систему подачи со скиповой, вагон-весы и конвейер, блочное и островное расположение доменных печей).


Зачет по лабораторной работе ставится при наличии отчета по результатам беседы студента и преподавателя.

Лабораторная работа № 3


ИЗУЧЕНИЕ КОНСТРУКЦИИ РАБОТЫ СКИПОВОГО ПОДЪЕМНИКА ДОМЕННОИ ПЕЧИ ПО МОДЕЛИ

Цель работы: изучение принципа действия, конструкции и работы скипового подъемника.

The of the parione factoring condomination Ramara

Рис. 3.3. Кинематическая схема центробежного ртутного выключателя

1. Выполнение лабораторной работы

- 1. Изучить назначение, устройство и работу скипового подъемника доменной печи.
- 2. Изучить конструкции узлов скипового подъёмника.
- 3. Изучить конструкцию и работу скипового подъемника на модели.
- 4. Вычертить в отчете кинематическую схему скипового подъемника модели, описать её недостатки и отличия схемы типового скипового подъёмника.
- 5. Составить схему силового взаимодействия элементов скипового подъёмника и выполнить требуемый расчет в соответствии с заданием преподавателя.

2. Отчетность по работе

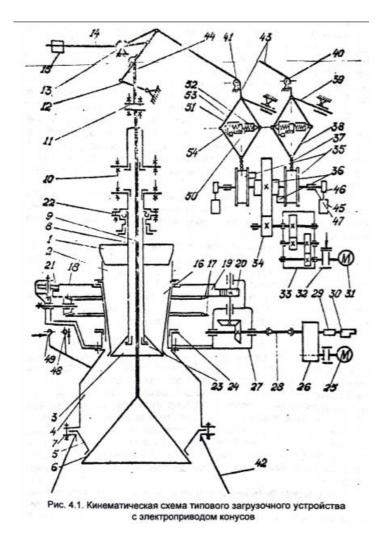
Отчет по лабораторной работе № 3 составляется каждым студентом индивидуально и должен включать название и цель работы, краткое описание способов подачи шихтовых материалов к загрузочному устройству доменной печи, кинематические схемы краткое описание скипового подъемника. Анализ конструкции скипового подъемника модели. Схему силового взаимодействия элементов скипового подъемника и расчет в соответствии с заданием преподавателя.

3. Примеры заданий по составлению схем силового взаимодействия элементов скипового полъемника

- 1. Определить натяжение каната на основном участке моста при заданном весе груженого скипа.
- 2. Определить момент и мощность на валу барабана скиповой лебедки при заданном натяжении канатов, размеров угловой скорости барабана.
- 3. Определить статический момент и мощность двигателя скиповой лебедки при заданном статическом моменте на валу барабана и заданных передаточных числах зубчатых передач.

Контрольные вопросы

- 1. Требования, предъявляемые к машинам для подачи шихтовых материалов к загрузочному устройству?
 - 2. Как производится разгрузка скипа в приемную воронку?
 - 3. Какие конструкции лебедок вы знаете?
 - 4. Как осуществляется управление и контроль работы лебёдки?
 - 5. Для чего устанавливается два двигателя на лебедке?
 - 6. Назначение и работа центробежного ртутного выключателя?
 - 7. Как работает выключатель слабины канатов?
 - 8. В чем отличие конструкции передних и задних скатов скипа?
- 9. В чем отличие кинематических схем лабораторной установки и реального скипового подъемника?


Лабораторная работа №4

ИЗУЧЕНИЕ КОНСТРУКЦИИ И РАБОТЫ ТИПЧОВОГО ЗАГРУЗОЧНОГО УСТРО-ИСТВА ДОМЕННОИ ПЕЧИ В УСЛОВИЯХ ММК И ПО МОДЕЛИ

Цель работы: изучение принципа действия, конструкции и работы типового загрузочного устройства.

1. Конструкция и работа типового загрузочного устройства

Типовое двухконусное загрузочное устройство предназначено для приема, загрузки и распределения шихтовых материалов на колошнике печи в соответствии с программой загрузки и выполняет функции газового затвора, предупреждающего выход газа в атмосферу.

2. Выполнение работы

- 1. Изучить назначение, устройство и работу типового загрузочного устройства по настоящей инструкции.
 - 2. Изучить конструкцию загрузочного устройства на модели.
- 3. Вычертить в отчете кинематическую схему загрузочного устройства модели, описать его недостатки и отличие от схемы типового загрузочного устройства.
- 4. Составить схему силового взаимодействия элементов типового загрузочного устройства с заданием преподавателя.

3. Отчет по работе

Отчет по лабораторной работе №. 4 составляется каждым студентом индивидуально и должен включать название и цель работы, кинематические схемы и краткое описание загрузочного устройства модели. Анализ конструкции загрузочного устройства модели и схему силового взаимодействия элементов загрузочного устройства в соответствии с заданием преподавателя.

- 4. Примеры заданий по составлению схем силового взаимодействия элементов загрузочного устройства
- 1. Определить натяжение каната на барабане лебедки при заданных размерах рычага балансира, прямильного устройства и заданном весе контргруза и конуса.

- 2. Определить момент на барабане лебедки при заданных размерах балансирного привода и весе конуса и контргруза.
- 3. Определить момент и мощность двигателя лебедки при заданных усилиях в канате, размерах барабанов и передаточных числах элементов схемы.
- 4. Определить момент и мощность привода распределителя шихты при заданных значениях момента сопротивления вращению распределителя шихты и передаточных чисел зубчатых передач.

Контрольные вопросы

- 1. Назначение загрузочного устройства.
- 2. Состав загрузочного устройства.
- 3. Показать засыпной аппарат. Из каких элементов он состоит?
- 4. Чем обеспечивается прямолинейное вертикальное перемещение конусов? Покажите взаимодействие элементов цепочки конус-контргруз.
- 5. Чем предотвращается одновременное открывание конусов? Объясните принцип работы лебедки.
- 6. Что происходит при чрезмерном натяжении или ослаблении канатов?
- 7. Что делается с давлением в межконусном пространстве перед открыванием больного или малого конусов?
 - 8. Что происходит при взрыве газа в межконусном пространстве?
 - 9. Что произойдет с открытым конусом при обрыве каната?
 - 10. Назначение, конструкция и работа распределителя шихты?
 - 11. Для чего нужны командоаппараты и конечные выключатели в конструкции лебедки и распределителя шихты?

ЗАДАНИЯ ДЛЯ ПРАКТИЧЕСКИХ РАБОТ

Задача 1.

Описать типы и дать краткую характеристику применяемых перегрузочных грейферных кранов. Описать конструкции механизма передвижения, противоугонного устройства и грейферной тележки перегрузочного крана. Определить мощность электродвигателя механизма передвижения грейферной тележки.

Расчет произвести при следующих исходных данных: все колеса тележки приводные; коэффициенты трения в подшипниках качения μ_1 = 0,05; в подшипниках скольжения μ_2 = 0,1; плечо трения качения колес по рельсам f = 0,6 см; коэффициент учитывающей трение реборд о рельсы, k = 2,5; поверхность тележки, подверженная действию ветра S = 45 м2; распределенная ветровая нагрузка P_b = 250 H/м; скорость передвижения тележки V = 4 м/с; КПД механизма передвижения тележки V = 2,85.

Задача 2.

Описать устройство агломерационной фабрики и привести схему технологического процесса агломерации. Описать конструкцию смесителей и окомкователей агломерациоьной шихты, приведя схему барабанного смесителя (без учета момента от сил, возникающих при срезании гарнисажа).

Задача 3.

Описать конструкцию и работу агломерационной машины. Определить мощность двигателя машины.

Задача 4

Описать системы подачи шихтовых материалов к скиповому подъемнику доменной печи. Определить момент, необходимый для вращения барабана затвора бункера с агломератом.

Задача 5.

Описать устройство современного доменного цеха, показать его грузопотоки и привести типы планировок.

Подобрать дебалансы и определить мощность привода самоцентрирующегося вибрационного грохота.

Задача 6.

Описать конструкцию и работу типового двухконусного загрузочного устройства доменной печи и дать краткую характеристику его оборудования.

Определить статистический момент при вращении типового распределителя шихты. Коэффициенты, учитывайте сопротивления трения в сальниковых уплотнениях штанг и в подшипнике подпятника $k = \mu = 0.06$. Трение в центрирующих роликах, угловом редукторе и открытой передаче учитывается общим КПД- $\eta = 0.85$

Задача 7.

Описать конструкцию и работу балансирного электрического привода конусов доменной печи.

Определить усилие в канате лебедки управления конусами при открывании конуса с шихтой в положении соответствующем углу поворота балансира β_{6i} = 20°. Начальный угол кривошипа с горизонталью α_0 -= 37°; угол, определяющий начальное положение радиуса контргруза β_0 = 26°; угол; определяющий начальное положение центра тяжести ϕ = 50°; угол между рычагом и канатом в начальном положении β_{no} = 55°. Моментом *от* сил трения в подшипниках балансира пренебречь.

Задача 8.

Перечислить типы и кратко охарактеризовать конструкции машин для вскрытия и забивки чугунной латки. Определить мощность электродвигателя механизма выталкивания и время выхода глины из цилиндра электропушки при следующих исходных данных: диаметр отверстия носка $\alpha = 0.15$ м: угол подъема винтовой линии $\alpha = 6^{\circ}$;

угол трения в винтовой паре $\rho_b = 4^\circ$; угловая скорость двигателя $\omega = 100$ рад/с; общий КПД механизма $\eta = 0,42$; допускаемый коэффициент перегрузки двигателя $\lambda = 2$.

Задача 9.

Привести краткое описание двухленточной разливочной машины и дать характеристику оборудования отделения разливки чугуна. Определить мощность привода разливочной машины.

Задача 10.

Описать конструкцию роторного стационарного вагоноопрокидывателя. Определить суммарные статические моменты, приведенные к валу двигателя механизма кантования ротора. Вес материала при кантовании принять неизменным (для случая смерзшегося груза).

Примеры задания для контрольной работы

1. «Проектная оценка мощности привода шнекового (винтового) конвейера»

Контрольная работа должна содержать следующие разделы: исходные данные; расчетную схему; методику расчета; расчеты; выводы.

Исходные данные для расчета ^

		Annual Mary has seen											
Параметр Обозначение Ед.		En 11214					Bapı	иант					
Параметр	١	оозначение	Ед. изм.	1	2	3	4	5	6	7	8	9	10
Производительность		Q	т/сут	400	1500	1200	900	750	1800	600	1300	800	1400
Насыпная плотность материала		Рн	κг/м³	1290	870	2200	3450	1570	1320	1865	2380	1150	980
Длина конвейера		L	M	15	7	12	15	5	13	8	15	8	10
Угол наклона конвейера		ф	град	-15	10	-5	0	10	20	5	15	-10	-20
	1	Тяжелые малооб	разивные										
Envers to co	2	Легкие неабра	зивные	1	2	3	4	2	4	1	4		2
Группа грузов	3	Легкие малообр	азивные	1		3	4		4	1	4	1	
	4	Тяжелые абра	зивные										
Папамата	Обозначение		F	Вариант									
Параметр	U	оозначение	Ед. изм.	11	12	13	14	15	16	17	18	19	20
Производительность		Q	т/сут	1500	800	700	850	450	1150	1250	1400	1800	1500
Насыпная плотность материала		$\rho_{\scriptscriptstyle H}$	κг/м³	870	1570	1865	1150	1290	2200	980	2380	1320	980
Длина конвейера		L	М	7	6	8	5	15	12	10	15	13	11
Угол наклона конвейера		ф	град	10	10	5	-10	-15	-5	-20	15	20	-20
		разивные											
		Легкие неабра	зивные	2	2	1	1	1	2	2	4	4	2
Группа грузов	3	Легкие малообр	азивные	1 2	2	1	1	1	3	2	4	4	2
	4	Тяжелые абра	зивные]									

2. Оценить показатели надежности агломерационной конвейерной машины. Составить график технических осмотров и график ремонтов. Контрольная работа должна содержать: исходные данные; расчетную схему; методику расчета; расчеты; выводы. Исходные данные для расчета

Исходные данные										Ba	рианты	заданиі	ĭ								
Параметр	Ед. изм	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Число спекательных тележек	шт	72	74	76	78	80	82	84	72	72	72	72	72	72	72	72	72	72	72	72	72
Максимальная скорость передвижения			2.7	2.5	2.0	4.26	4.00	F 20				7.5	0.24	0.40	10.00	10.00	44.7	44.0	40		42
тележек	м/мин	1,4	2,7	3,5	3,9	4,36	4,82	5,28	5,74	6,2	6,66	7,5	8,34	9,18	10,02	10,86	11,7	11,2	10	9	12
Длина горизонтального участка контура	м	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4	40,4
Радиус траектории движения оси ската на	_ M	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835	1,835
участке подъема	, m	1,033	1,033	1,033	1,033	1,033	1,033	1,033	1,033	1,033	1,033	1,633	1,033	1,033	1,033	1,033	1,033	1,033	1,033	1,033	1,033
Радиус траектории движения оси ската на	, M	1,076	1,076	1,076	1,076	1,076	1,076	1,076	1,076	1,076	1,076	1,076	1,076	1,076	1,076	1.076	1,076	1,076	1,076	1,076	1,076
участке разгрузки								-						-		-,				-	-
Вес тележки	кН	19	17,15	18	17,15	19	17,15	18	17,15	16	17,15	15	17,15	19	17,15	18	17,15	20	17,15	22	17,15
Диаметр ролика	MM	260	245	250	240	240	260	240	250	240	260	240	245	240	260	240	250	240	260	240	240
Диаметр цапфы ролика	MM	120	90	100	90	90	110	90	100	90	120	90	95	90	120	90	110	90	120	90	90
Длина пути движения незагруженной	_ M	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
тележки по горизонтальному участку																					
Длина пути движения загруженной	_ M	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
тележки над вакуум-камерами спекания																					
Длина пути движения загруженной																					
тележки над вакуум-камерами	M	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
охлаждения																					-
Длина пути движения загруженной	M	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4
тележки после вакуум-камер охлаждения	140	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
Разряжение в вакуум-камерах спекания	МПа	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007
Разряжение в вакуум-камерах охлаждения	МПа	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005
Давление уплотняющих пластин на	MD.	0.013	0.013	0.013	0.013	0.013	0.012	0.013	0.012	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
пластины тележек	МПа	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012
Объемная масса шихты (принимают	T/M ³	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
равной объемной массе агломерата)	T/M	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1
Усилие одного торцевого уплотнения,	кН	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
действующее на тележку	KIT	- 4	- 2	- 2	-	-	- 4	- 2	- 2	- 2	- 2	-	- 2	-	- 4	-	-	- 2	-	-	2
Суммарная ширина уплотняющих пластин	MM	180	178	176	174	172	170	172	174	176	178	180	178	176	174	172	170	172	174	176	178
(на обе стороны тележки)	mm		170	170	1/4	1/2	170		1/4	170	1/0	100		1/0	1/4	1/2			1/4		
Длина спекательной тележки	м	1,5	1,4	1,3	1,2	1,1	1	1,05	1,1	1,15	1,2	1,25	1,3	1,35	1,4	1,45	1,5	1	1	1	1
Ширина спекательной тележки	м	3	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Толщина (высота) слоя шихты в тележке	м	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
Коэффициент трения в уплотныющих		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
пластинах		-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-		-,-
Коэффициент трения качения роликов по	MM	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
рельсам (направляющим)															-						-
Коэффициент учитывающий трение в		2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1
ребордах		,-	,-	,-	-	-			-	,-			,-		-	-		,-	-	-	
Коэффициент трения в подшипниках		0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
роликов		0.65	0.65	0.65	-	0.65	0.65	0.65	0.65	-	0.65	-	0.05	0.65	0.65	0.65	-	-	0.65	0.65	
КПД (коэффициент полезного действия)		0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65

№3 «Оценка статического момента при вращении воронки распределителя шихты двухконусного загрузочного устройства доменной печи»

Контрольная работа должна содержать следующие разделы: исходные данные; расчетную схему; методику расчета; расчеты; выводы.

Исходные данные

Наименование параметра	Обозначение	Ед. изм.	. Вариант										
			1	2	3	4	5	6	7	8	9	10	
Коэффициент сопротивления трению в сальниковых	k=μ=k _v		0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	
уплотнениях штанг и в подшипнике подпятника	. ,												
Коэффициент трения в подшипниках роликов	μ_1		0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	
Общий КПД	η		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	
Вес вращающихся деталей воронки	G_d	кН	380	480	500	360	450	600	550	520	350	520	
Вес узла малого конуса	G_k	кН	110	150	160	100	130	200	180	165	100	170	
Вес шихты	G _w	кН	250	350	360	240	320	450	420	370	230	370	
Усилие в штанге малого конуса	Q_k	кН	400	500	500	380	475	400	450	520	370	500	
Коэффициент удельного сопротивления перемещению		11/11	0.012	0.014	0.013	0.012	0.014	0.013	0.012	0.014	0.013	0.013	
воронки по роликами	w	н/н	0,013	0,014	0,012	0,013	0,014	0,012	0,013	0,014	0,012	0,013	
Диаметр беговой дорожки роликового хода в	6		3,06	3,5	3,6	3	3,3	3,5	3,2	3,5	2,8	3,7	
подпятнике	D ₃	MM	3,00	3,3	3,0	3	3,3	3,3	3,2	3,3	2,0	3,7	
Средний диаметр роликового хода в подпятнике	D	MM	310	350	360	300	320	400	380	350	300	380	
Наружный диаметр вращающейся воронки	D ₅	мм	2,4	3	3,2	2,3	2,8	3,2	2,8	3,1	2,2	3	
Высота сальника	h	MM	280	320	300	250	300	350	350	320	250	300	
Давление газа под колошником	р		0,1	0,15	0,2	0,25	0,1	0,15	0,2	0,25	0,1	0,15	
Диаматр начальной окружности зубчатого венца	D ₆	мм	3650	3700	3450	3670	3770	5470	4540	3450	3670	3770	
Диаметр центрирующего ролика	D ₂	м	0,3	0,32	0,35	0,38	0,4	0,7	0,6	0,35	0,38	0,4	
Диаметр поверхности катания венца по	D_4	м	3,6	3,65	3,4	3,45	3.6	5,36	4,37	3,4	3,45	3.6	
центрирующим роликам	D ₄		3,0	3,03	٥, ١	3,13	5,0	5,55	.,07	٥, .	3,13	5,0	
Диаметр цапфы ролика по венцу	d ₂	м	0,06	0,07	0,08	0,09	0,1	0,15	0,12	0,08	0,09	0,1	

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		ету и проектированию деталей и узлов машиностроительных конструкций в соот-
T	ическими заданиями и использованием ста	ндартных средств автоматизации проектирования
Знать	- Назначение и сущность комплексов, процессов, оборудования и производственных объектов аглодоменных цехов	Вопросы к зачету Общее устройство доменного цеха 1. Как устроен современный доменный цех? Из каких участков и отделений он состоит? 2. Как устроена современная доменная печь? 3. Какие схемы подачи шихты применяют для загрузки доменных печей? 3. Какие существуют типы планировок доменных цехов? Машины и механизмы бункерной эстакады доменного цеха 1. Как устроена бункерная эстакада? Рудный перегрузочный вагон и конвейеры для загрузки бункеров - конструкция, работа, основы расчета. 2. Какие системы подачи шихтовых материалов к скиповому подъемнику применяют в настоящее время? 3. Как устроены вагон-весы, из каких механизмов и узлов они состоят и как работают? Методика расчета механизмов. 4. Как рассчитывают мощность привода барабанного затвора? 5. Какое оборудование входит в состав конвейерной системы подачи шихтовых матери-
		алов к скиповому подъемнику? Его устройство и назначение. 6. Какие системы и оборудование применяют для рассева и подачи кокса в скип? 7. Как определяют мощность привода вибрационного грохота?
		Машина для подачи шихты к загрузочному устройству доменной печи

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		 Какие существуют способы подачи шихты к загрузочному устройству? Как устроен скиповой подъемник? Конструкция скипа. Устройство и принцип работы скиповой лебедки. 5. Как рассчитывают время движения скипа, производительность скипового подъемника и мощность электродвигателя скиповой лебедки? Как устроена конвейерная система подачи шихты к загрузочному устройству? Как рассчитывают мощность двигателей конвейера?
Уметь	- Применять все известные методы расчета при проектировании деталей и узлов машиностроительных конструкций аглодоменных цехов.	Практические задания на зачете 1. Описать системы. подачи шихтовых материалов к скиповому подъемнику доменной печи. Определить момент, необходимый для вращения барабана затвора бункера с агломератом. Описать устройство современного доменного цеха, показать его грузопотоки и привести типы планировок. 2. Подобрать дебалансы и определить мощность привода самоцентрирующегося вибрационного грохота. 3. Описать типы и дать краткую характеристику применяемых перегрузочных грейферных кранов. Описать конструкции механизма передвижения, противоугонного устройства и грейферной тележки перегрузочного крана. Определить мощность электродвигателя механизма передвижения грейферной тележки. Конструкцию механизма принять по. Пример расчета (с использованием устаревших единиц измерения) приведен в. Расчет произвести при следующих исходных данных: все колеса тележки приводные; коэффициенты трения в подшипниках качения µ1= 0,05; в подшипниках скольжения µ2= 0,1; плечо трения качения колес по рельсам f = 0,6 см; коэффициент учитывающей трение реборд о рельсы, k = 2,5; поверхность тележки, подверженная действию ветра S = 45 м2; распределенная ветровая нагрузка P _b = 250 H/м; скорость передвижения тележки V = 4 м/с; КПД механизма передвижения тележки η=0,85.
Владеть	- навыками совершенствования профес-	Практические задания

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	 сиональных знаний и умений путем использования возможностей информационной среды при расчете оборудования аглодоменных цехов. Навыками применение современных САПР при проектировании оборудования аглодоменных цехов. 	 Оценка работоспособности линии привода конвейера агломерационной машины №3 ПАО «ММК» Техническое диагностирование линии привода разгрузочной части агломерационной машины №3 Оценка работоспособности привода (конусной, щековой, молотковой, валковой) дробилок Техническое диагностирование линии привода машин для вскрытия леток ПАО «ММК»
		освоению технологических процессов в ходе подготовки производства новой продукиях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей
Знать	Основные требования к проверке качества монтажа и наладки нового механического оборудования аглодоменных цехов	 Теоретические вопросы к зачету. Механическое оборудование колошникового устройства доменной печи Как устроено колошниковое устройство? Как устроено типовое двухконусное загрузочное устройство? Как оно работает и из каких основных узлов состоит? Какие распределители шихты применяют на доменных вечах? Как рассчитывают мощность привода распределителя шихты? В каких условиях работает загрузочное устройство и какие методы повышения его долговечности применяют в настоящее время? Как устроена и работает балансирная система маневрирования конусами загрузочного устройства доменной печи? Как рассчитывают мощность привода конусов? Какие новые конструкции загрузочных устройств получают распространение на доменных печах? Тенденции их развития. Как работает система выравнивания давления разов в доменной печи и в межконус-

дика расчета мощности привода клапана.

ном пространстве? Конструкция и принцип работы уравнительных клапанов. Мето-

10. Какие устройства применяют для измерения уровня шихты в доменной печи?

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
·		11. Как осуществляется автоматическая работа механизмов загрузки доменной печи?
		Машины и механизмы для обслуживания леток доменной печи.
Уметь	Грамотно обосновать результат принятых решений. Проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий	 Как устроены чугунная и шлаковая летки? Какие типы и конструкции машин применяют для вскрытия чугунной летки? Как определяют момент сопротивления сверления и сопротивление подачи бура при скрытии чугунной летки? Какие типы и конструкции машин применяют для забивки чугунной летки? Как устроена и каков принцип работы электропушки для забивки чугунной летки? Как рассчитывают мощность электродвигателей механизмов поворота, прижима и выталкивания легочной массы из цилиндра электропушки? Как устроен шлаковый стопор? Практические задания Описать конструкцию и работу типового двухконусного загрузочного устройства доменной печи и дать краткую характеристику его оборудования. Определить статистический момент при вращении типового распределителя шихты. Коэффициенты, учитывайте сопротивления трения в сальниковых уплотнениях штанг и в подшипнике подпятника k = μ = 0,06. Трение в центрирующих роликах, угловом редукторе и открытой передаче учитывается общим КПД- η = 0,85 Описать конструкцию и работу балансирного электрического привода конусов доменной печи. Определить усилие в канате лебедки управления конусами при открывании конуса с шихтой в положении соответствующем углу поворота балансира β₆= 20°. Начальный угол кривошипа с горизонталью α₀-= 37°; угол, определяющий начальное положение центра тяжести φ= 50°; угол между рычагом и канатом в начальном положении 0 положение центра тяжести ф= 50°; угол между рычагом и канатом в начальном положении опрожение центра тяжести ф= 50°; угол между рычагом и канатом в начальном положении опрожение центра тяжести ф= 50°; угол между рычагом и канатом в начальном положении опрожение центра тяжести ф= 50°; угол между рычагом и канатом в начальном положении опрожение центра тяжести ф= 50°; угол между рычагом и канатом в начальном положение центра тяжести ф= 50°; угол между рычагом и канатом в начальном положение центра тяжести ф= 5
Владеть	Способами совершенствования профессиональных знаний и умений путем использования	Практические задания

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	возможностей информационной среды. Навыками проверки качества монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий в условиях аглодоменного цеха.	 Оценка работоспособности линии привода конвейера агломерационной машины №1 ПАО «ММК» Техническое диагностирование линии привода разгрузочной части агломерационной машины №1 Оценка работоспособности линии привода вагоноопрокидывателя аглодоменных цехов ПАО «ПАО «ММК» Техническое диагностирование линии привода электропушек ПАО «ММК»
	<u> </u>	очный ресурс технологического оборудования, организовывать профилактический
Знать	основные методы при оценке технического состояния и остаточного ресурса технологического оборудования и аглодоменных цехов.	Теоретические вопросы к зачету Машины и механизмы литейного двора 1. Типы и устройство литейных дворов. 2. Какие типы желобов применяют для одноносковой разливки чугуна и шлака? Их конструкция, работа, достоинства и недостатки. 3. Как устроен кольцевой мостовой кран литейного двора? 4. Какие типы и конструкции чугуновозов и шлаковозов применяют в настоящее время? 5. Как определяют момент при кантовании ковша чугуновоза? 6. Какие типы механизмов применяют для кантования чаш шлаковозов? Машины и агрегаты для переработки жидких продуктов доменной плавки 1. Какие применяют способы переработки жидких продуктов доменной плавки 2. Состав оборудования отделения для разливки чугуна. 3. Устройство и принцип работы типовой двухленточной разливочной машины? 4. Как рассчитывают' производительность и мощность привода разливочной машины? 5. Какие устройства применяют для кантования ковшей у разливочной машины? Методика их расчета.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
Уметь	Корректно выражать и аргументированно	 Как осуществляется нагрев дутья для подачи в доменную печь? Какие тракты входят в состав комплекса воздухонагревателей? Принцип работы воздухонагревателей и обслуживающего их оборудования. Какие типы клапанов применяют для обеспечения нормальной работы воздухонагревателей? Как устроен клапан горячего дутья? Какие предъявляют к нему требования? Как устроен фурменный прибор? Состав оборудования комплекса газоочистки доменной печи. Перспективы развития доменного производства, совершенствования машин и агрегатов. Практические задания
	обосновывать принимаемые решения по результатам анализа оценки технического состояния технологического оборудования аглодоменных цехов.	 Описать системы. подачи шихтовых материалов к скиповому подъемнику доменной печи. Определить момент, необходимый для вращения барабана затвора бункера с агломератом. Описать устройство современного доменного цеха, показать его грузопотоки и привести типы планировок. Подобрать дебалансы и определить мощность привода самоцентрирующегося вибрационного грохота. Перечислить типы и кратко охарактеризовать конструкции машин для вскрытия и забивки чугунной латки. Определить мощность электродвигателя механизма выталкивания и время выхода глины из цилиндра электропушки при следующих исходных данных: диаметр отверстия носка α = 0,15 м: угол подъема винтовой линии α = 6°; угол трения в винтовой паре ρ_b = 4°; угловая скорость двигателя ω = 100 рад/с; общий КПД механизма η = 0,42; допускаемый коэффициент перегрузки двигателя λ = 2.
Владеть	Ведения статистики технического состояния технологического оборудования с целью прогнозирования текущих ремонтов.	Практические задания 1. Оценка работоспособности линии привода конвейера агломерационной машины №2 ПАО «ММК» 2. Техническое диагностирование линии привода разгрузочной части агломерационной машины №2

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		3. Оценка работоспособности линии привода двухконусного загрузочного устройства доменных печей ПАО «ММК» 4. Техническое диагностирование линии привода приемной воронки малого конуса, загрузочного устройства доменных печей ПАО «ММК»

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Механическое оборудование аглодоменных цехов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета.

Критерии оценки для получения зачета

— «зачтено» — обучающийся показывает пороговый уровень сформи-рованности компетенций, т.е. должен знать основные понятия и определения при проектировании деталей и узлов машиностроительных конструкций, основные требования к технологическим процессам металлургического производства, основы компоновки линий технологического оборудования аглодоменных и сталеплавильных цехов; уметь выполнять стандартные расчеты оборудования, делать выбор узлов и деталей оборудования аглодоменных и сталеплавильных цехов, применять знания в профессиональной деятельности; владеть навыками детализации требований при описании функциональных, эксплуатационных и технических характеристик, оценки технического состояния технологического оборудования аглодоменных и сталеплавильных цехов;

-«не зачтено» – результат обучения не достигнут, обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может по казать интеллектуальные навыки решения простых задач.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

- а) Основная литература:
- 1. Савельева, Р. Н. Проектирование доменных цехов: учебное пособие / Р. Н. Савельева; МГТУ, [каф. МОМЗ]. 2-е изд., подгот. по печ. изд. 2011 г. Магнитогорск, 2016. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=2733.pdf&show=dcatalogues/1/1132614/2733.pdf&view=true (дата обращения: 09.10.2020). Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM. Проектирование оборудования агломерационных цехов: учебное пособие / М. В. Андросенко, В. И. Кадошников, И. Д. Кадошникова, Е. В. Куликова. Магнитогорск: МГТУ, 2015. 87 с.: табл., ил. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=895.pdf&show=dcatalogues/1/11

https://magtu.informsystema.ru/uploader/fileUpload?name=895.pdf&show=dcatalogues/1/11 18820/895.pdf&view=true (дата обращения: 09.10.2020). - Макрообъект. - Текст : электронный. - Имеется печатный аналог.

- б) Дополнительная литература:
- 1. Точилкин, В. В. Проектирование элементов металлургических машин и оборудования: учебное пособие / В. В. Точилкин, О. А. Филатова; МГТУ. Магнитогорск: МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3319.pdf&show=dcatalogues/1/1138305/3319.pdf&view=true (дата обращения: 09.10.2020). Макрообъект. Текст: электронный. ISBN 978-5-9967-0975-5. Сведения доступны также на CD-ROM. 2.

- 3. Проектирование оборудования цехов агломерационного и доменного производства: учебное пособие / М. В. Андросенко, О. А. Филатова, В. И. Кадошников, Е. В. Куликова; МГТУ. Магнитогорск: МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:
- https://magtu.informsystema.ru/uploader/fileUpload?name=2568.pdf&show=dcatalogues/1/1130 370/2568.pdf&view=true (дата обращения: 09.10.2020). - Макрообъект. - Текст : электронный. - Сведения доступны также на CD-ROM.
- 4. Расчет и выбор грузоподъемных машин горно-металлургического производства: учебное пособие / В. В. Точилкин, О. А. Филатова, А. Д. Кольга, В. С. Вагин; МГТУ. Магнитогорск, 2014. 238 с.: ил., схемы, табл. URL:

https://magtu.informsystema.ru/uploader/fileUpload?name=795.pdf&show=dcatalogues/1/11158
01/795.pdf&view=true
(дата обращения: 09.10.2020). - Макрообъект. - Текст : электронный. - ISBN 978-5-9967-0483-5. - Имеется печатный аналог.

б) Перечень методических указаний по видам занятий

- 1. Пиксаев В.А. Методические указания к практическим работам по дисциплине MOM3 «Оборудование металлургических цехов» для студентов спец. 170300. Магнитогорск: 2007.
- 2. Пиксаев В.А. Определение технологических нагрузок на привод и станцию натяжения конвейера с резинотканевой лентой. Методические указания по курсу «МОМЗ» для студентов специальности 150404. Магнитогорск: МГТУ, 2008.
- 3. Пиксаев В.А. Определение технологических нагрузок на привод и станцию натяжения пластинчатого конвейера. Методические указания по курсу «МОМЗ» для студентов специальности 150404. Магнитогорск: МГТУ, 2008.
- Точилкин В.В., Филатов А.М., Задорожный В.Д., Иванов С.А., Кольга А.Д., Вагин В.С. Основы функционирования гидравлических систем металлургического оборудования. Лабораторный практикум по гидроприводу и гидроавтоматике. Учеб. пособие. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2009. 105 с. (допущено УМО по образованию в области металлургии в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности «Металлургические машины и оборудование»). ISBN 978-5-9967-0085-1

г) Программное обеспечение и Интернет-ресурсы: Программное обеспечение

Наименование № договора Срок действия лицензии ПО MS Windows 7 Professional(для Д-1227-18 от 08.10.2018 11.10.2021 классов) MS Office 2007 № 135 от 17.09.2007 бессрочно Professional Adobe Reader свободно бессрочно распространяе-Браузер Yandex свободно распространяебессрочно Браузер Mozilla свободно распространяебессрочно Firefox мое ПО Autodesk учебная версия бессрочно AutoCAD Mechanical 2020 Autodesk учебная версия бессрочно AutoCAD 2020

АСКОН Компас	T 2 4 4 7 4 4 6 2 2 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	_
	Д-261-17 от 16.03.2017	бессрочно
3D в.16	' '	1

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Национальная информационно- аналитическая система — Российский индекс научного цитирования (РИНЦ)	
Поисковая система Академия Google (Google Scholar)	
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Федеральное государственное бюджетное учреждение «Федеральный институт про- мышленной собственности»	
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	http://magtu.ru:8085/marcweb2/Default.asp
Международная наукометрическая реферативная и полнотекстовая база данных научных изданий «Web of science»	http://webofscience.com
Международная реферативная и полнотекстовая справочная база данных научных из-	http://scopus.com
Международная база полнотекстовых журналов Springer Journals	http://link.springer.com/

Следует использовать и другие актуальные справочные материалы информационных ресурсов сети Интернет, которые возможно использовать в практике преподавания и самостоятельной подготовки студентов к дисциплине «Механическое оборудование аглодоменных цехов».

9 Материально-техническое обеспечение дисциплины

Материально-техническое обеспечение дисциплины включает:

Тип и название аудитории	Оснащение аудитории
Учебные аудитории для проведе-	Мультимедийные средства хранения, передачи и
ния занятий лекционного типа	представления информации. Комплекты раздаточного
	наглядного материала, которые включают в себя
	опорные схемы, графики, таблицы, иллюстрации.
Учебные аудитории для проведе-	1. Действующая модель доменной печи.
ния практических занятия, груп-	2. Действующая модель литейного двора.
повых консультаций, текущего	3. Действующие модели для обслуживания леток.
контроля и промежуточной атте-	3. Комплекс текстовых заданий для проведения про-
стации	межуточных и рубежных контролей.
Помещения для самостоятельной	Персональные компьютеры с пакетом MS Office, вы-
работы обучающихся	ходом в интернет и с доступом в электронную ин-
	формационно-образовательную среду университета.
Помещение для хранения и про-	Шкафы для хранения учебно-методической докумен-
филактического обслуживания	тации, учебного оборудования и учебно-наглядных
учебного оборудования	пособий.