МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЕиС И.Ю. Мезин

17.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

СОВРЕМЕННЫЕ ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Направление подготовки (специальность) 01.04.02 Прикладная математика и информатика

Направленность (профиль/специализация) программы Математическое моделирование

Уровень высшего образования - магистратура

Форма обучения очная

Институт/ факультет Институт естествознания и стандартизации

Кафедра Прикладной математики и информатики

Kypc 2

Семестр 3

Магнитогорск 2020 год Рабочая программа составлена на основе ФГОС ВО - магистратура по направлению подготовки 01.04.02 Прикладная математика и информатика (приказ Минобрнауки России от 10.01.2018 г. № 13)

Рабочая программа рассмотрена и одобрена на заседании кафедры Прикладной математики и информатики

11.02.2020, протокол № 6

Зав. кафедрой

С.И. Кадченко

Рабочая программа одобрена методической комиссией ИЕиС

17.02.2020 г. протокол № 6

Председатель

И.Ю. Мезин

Рабочая программа составлена:

зав. кафедрой ПМиИ, д-р физ.-мат. наук

С.И. Кадченко

Рецензент:

доцент кафедры уравнений математической физики ФГАОУ ВО "ЮУрГУ (НИУ)",

канд. физ.-мат. наук Г.А. Закирова

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 учебном году на заседании кафедры Прикладной математики и информатики					
	Протокол от	_20 г. № С.И. Кадченко			
Рабочая программа пересмотр учебном году на заседании ка		*			
	Протокол от	_20 г. № С.И. Кадченко			

1 Цели освоения дисциплины (модуля)

Освоение обучающимися основных понятий и методов вычислительной математики, связанных с решением краевых и начально-краевых задач для уравнений математической физики. Формирования у обучающихся представления о современных методах решения уравнений математической физики, как конечно-разностных методов, так и вариационных и проекционных методах. Формирование компетенций, предусмотренных ФГОС ВО по направлению 01.04.02 ПМиИ

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Современные численные методы математической физики входит в обязательую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Дополнительные главы уравнений математической физики

Математическое моделирование

Численные методы решения начально-краевых задач

Дополнительные главы функционального анализа

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Выполнение и защита выпускной квалификационной работы

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Современные численные методы математической физики» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции
	разрабатывать математические модели и проводить их анализ при ласти профессиональной деятельности
ОПК-3.3	Выполняет обзоры научной информации, подготавливает публикации по теме профессиональной деятельности
ОПК-3.2	Составляет и оформляет отчеты, выполняет требования нормоконтроля по результатам профессиональной деятельности
ОПК-3.1	Разрабатывает математические модели и производит их анализ при решении задач в области профессиональной деятельности

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 6 зачетных единиц 216 акад. часов, в том числе:

- контактная работа 56,3 акад. часов:
- аудиторная 54 акад. часов;
- внеаудиторная 2,3 акад. часов
- самостоятельная работа 124 акад. часов;
- подготовка к экзамену 35,7 акад. часа

Форма аттестации - экзамен

Раздел/ тема дисциплины	Семестр	конт	Аудиторн гактная р акад. ча	оабота	Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетенции
дисциплины	a)	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Элементы теории и мет решения разностных схем								
1.1 Построение разностных схем	3		7/1И		20	Изучение литературы, выполнение лабораторной работы	Устный опрос, беседа, проверка выполнения лабораторной работы	
1.2 Теория устойчивости разностных схем. Методы решения разностных уравнений	3		7/3И		18	Изучение литературы, выполнение лабораторной работы	Устный опрос, беседа, проверка выполнения лабораторной работы	
Итого по разделу			14/4И		38			
2. Численные мет решения начально-краевы обратных задач	годы ых и							
2.1 Решение начально-краевых задач методом Галеркина			10/2И		20	Изучение литературы, выполнение лабораторной работы	Устный опрос, беседа, проверка выполнения лабораторной рабо-ты	
2.2 Решение начально-краевых задач методом наименьших квадратов	3		12/8И		20	Изучение литературы, выполнение лабораторной работы	Устный опрос, беседа, проверка выполнения лабораторной работы	
2.3 Решение начально-краевых задач методом конечных элементов	3		9/8И		20	Изучение литературы, выполнение лабораторной работы	Устный опрос, беседа, проверка выполнения лабораторной работы	
2.4 Численные методы решения обратных задач			9/4И		26	Изучение литературы, выполнение лабораторной работы	Устный опрос, беседа, проверка выполнения лабораторной работы	
Итого по разделу			40/22И		86			

Итого за семестр	54/26И	124	экзамен	
Итого по дисциплине	54/26И	124	экзамен	

5 Образовательные технологии

В ходе изучения дисциплины используются образовательные и информационные технологии:

1. Традиционные технологии обучения, предполагающие передачу информации в готовом виде, формирование учебных умений по образцу: лабораторные работы, семинары.

Использование традиционных технологий обеспечивает ориентирование студента в потоке информации, связанной с различными подходами к определению сущности, со-держания, методов, форм развития и саморазвития личности; самоопределение в выборе оптимального пути и способов личностно-профессионального развития; систематизацию знаний, полученных студентами в процессе аудиторной и самостоятельной работы. Лабораторные занятия обеспечивают развитие и закрепление умений и навыков определения целей и задач саморазвития, а также принятия наиболее эффективных решений по их реализации.

2. Информационно-коммуникационные образовательные технологии – организация образовательного процесса, основанная на применении специализированных программных сред и технических средств работы с информацией.

Лабораторные занятия проводятся в компьютерных классах вычислительного центра ФГБОУ ВО «МГТУ». В ходе проведения лекционных занятий предусматривается:

- использование электронного демонстрационного материала по темам требующим иллюстрации работы программных продуктов: MS Word, MS Excel.
- в ходе проведения лабораторные работ предусматривается использование среды программирования PASCAL ABC, MS Visual C, математического пакета MAPLE при выполнении индивидуальных заданий.
 - использование образовательного портала ФГБОУ ВО «МГТУ».
- 3.Интерактивные формы обучения, предполагающие организацию обучения как продуктивной творческой деятельности в режиме взаимодействия студентов друг с другом и с преподавателем

Использование интерактивных образовательных технологий способствует повышению интереса и мотивации учащихся, активизации мыслительной деятельности и творческого потенциала студентов, делает более эффективным усвоение материала, позволяет индивидуализировать обучение и ввести экстренную коррекцию знаний.

4. Проблемная технология обучения

Методика ориентирована на лабораторные работы поисково-исследовательского типа, семинары проблемно-информационного характера и подготовку презентаций.

Лабораторные работы поисково-исследовательского типа

Обмен информацией, полученной студентами в ходе самостоятельного поиска и исследования по поставленной проблеме, рекомендуется организовать в рамках лабораторных работ. Ценность данной формы занятий в том, что в процессе обсуждения можно вы-сказать собственное мнение и попытаться доказать его правильность.

При изучении дисциплины для каждого раздела предлагается перечень вопросов для самоконтроля. Возможны три варианта использования данных вопросов при изучении теоретического материала: либо для контроля полученных студентами знаний по окончании изучения раздела, либо для обсуждения каждого вопроса как мини-проблемы в ходе лабораторной работы, либо то и другое в определенном сочетании. Допускается иная постановка вопросов преподавателем, а самостоятельная формулировка студентами вопросов для обсуждения при выполнении лабораторной работы только приветствуется. Лабораторные работы поисково-исследовательского типа не только способствует углубленной проработке теоретического материала

предмета на протяжении всего изучения курса, но и развивают творческую самостоятельность студентов, способность к обобщениям, укрепляя их интерес к исследованиям, содействуя выработке практических навыков работы.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1.Зализняк, В. Е. Численные методы. Основы научных вычислений : учебник и практикум для вузов / В. Е. Зализняк. 2-е изд., перераб. и доп. 1. Москва : Издательство Юрайт, 2020. 356 с. (Высшее образование). ISBN 978-5-534-02714-3. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/449891 (дата обращения: 19.04.2020).
- 2. Магомедов, К. М. Сеточно-характеристические численные методы: учебное пособие для вузов / К. М. Магомедов, А. С. Холодов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 313 с. (Высшее образование). ISBN 978-5-534-04220-7. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/452202 (дата обращения: 20.04.2020).
- 3. Численные методы в уравнениях математической физики : учебное пособие / М. Г. Персова, СоловейчикЮ.Г., Д. В. Вагин [и др.]. Новосибирск : НГТУ, 2016. 60 с. ISBN 978-5-7782-2971-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/118324 (дата обращения: 31.10.2020). Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

- 1. Зайцев, В. Ф. Обыкновенные дифференциальные уравнения в 2 ч. Часть 1 : справочник для вузов / В. Ф. Зайцев, А. Д. Полянин. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2020. 385 с. (Высшее образование). ISBN 978-5-534-02685-6. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/452277 (дата обращения: 20.04.2020).
- 2. Королев, А. В. Дифференциальные и разностные уравнения : учебник и практикум для вузов / А. В. Королев. Москва : Издательство Юрайт, 2020. 280 с. (Высшее образование). ISBN 978-5-9916-9896-2. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/451251 (дата обращения: 20.04.2020).

в) Методические указания:

- 1. Прокудин, Д. А. Уравнения математической физики : учебное пособие / Д. А. Прокудин, Т. В. Глухарева, И. В. Казаченко. Кемерово : КемГУ, 2014. 163 с. ISBN 978-5-8353-1631-1. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/58343 (дата обращения: 31.10.2020). Режим доступа: для авториз. пользователей.
- 2. Мезенцев, А. В. Аналитические и численные методы решения уравнений математической физики: учебное пособие / А. В. Мезенцев, С. А. Ягупов. Екатеринбург: , 2017. 86 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/121336 (дата обращения: 31.10.2020). Режим доступа: для авториз. пользователей
- 3. Деревич, И. В. Практикум по уравнениям математической физики : учебное пособие / И. В. Деревич. 2-е изд., стер. Санкт-Петербург : Лань, 2018. 428 с.

— ISBN 978-5-8114-2601-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/104942 (дата обращения: 31.10.2020). — Режим доступа: для авториз. пользователей.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
Maple 14 Classroom License	К-113-11 от 11.04.2011	бессрочно
MathWorks MathLab v.2014 Classroom License	К-89-14 от 08.12.2014	бессрочно
MathCAD v.15 Education University Edition	Д-1662-13 от 22.11.2013	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalogues/
Международная реферативная и полнотекстовая справочная база данных	http://scopus.com
Международная наукометрическая реферативная и полнотекстовая база данных научных изданий «Web of science»	
Международная база научных материалов в области физических наук и инжиниринга	http://materials.springer.com/
Международная реферативная и полнотекстовая справочная база данных научных изданий «Springer Nature»	https://www.nature.com/siteindex

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Компьютерный класс: Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Аудитории для самостоятельной работы: компьютерные классы; читальные залы библиотеки: Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета. Помещение для хранения и профилактического обслуживания учебного оборудования. Шкафы для хранения учебно-методической документации, учебного оборудование и учебных наглядных пособий.

Приложение 1

Оценочные средства для проведения промежуточной аттестации

Перечень контрольных вопросов и заданий для самостоятельной работы

- 1. Классификация уравнений математической физики.
- 2. Сетки и сеточные функции.
- 3. Аппроксимация разностных схем.
- 4. Понятие сходимости разностных схем.
- 5. Устойчивость разностных схем.
- 6. Методы составления разностных схем. Метод разностной аппроксимации. Интегро-интерполяционный метод.
- 7. Разностная аппроксимация задачи Дирихле для уравнения Пуассона
- 8. Принцип максимума и его следствия.
- 9. Устойчивость по граничным условиям разностной задачи Дирихле.
- 10. Примеры применения принципа максимума.
- 11. Монотонные разностные схемы.
- 12. Разностная задача на собственные значения.
- 13. Схема с весами для уравнения теплопроводности
- 14. Применение метода Якоби к решению сеточных уравнений.
- 15. Применение метода Зейделя к решению сеточных уравнений.
- 16. Метод верхней и нижней релаксации.
- 17. Самосопряженные и положительно определенные операторы. Метод Ритца.
- 18. Метод Галеркина.
- 19. Метод наименьших квадратов.
- 20. Метод наибыстрейшего спуска.
- 21. Метод конечных элементов.
- 22. Решение обратных эволюционных задач методом рядов Фурье.
- 23. Постановка обратных задач на основе методов теории возмущений.

Задания для самостоятельно работы

1. Найти решение уравнения Лапласа конечно-разностными методами в квадрате с вершинами A(0,0), B(0,1), C(1,1), D(1,0) при следующих граничных условиях:

Варианты	$u _{AB}$	$u _{_{BC}}$	$u _{CD}$	$u\Big _{ad}$
1	30 <i>y</i>	$30(1-x^2)$	0	0
2	30 <i>y</i>	$30\cos\frac{\pi x}{2}$	$30\cos\frac{\pi y}{2}$	0

3	$50\sin(\pi y)$	0	0	$50\sin(\pi x)$
4	$50y(1-y^2)$	20	$20y^2$	50x(1-x)
5	20 <i>y</i>	50x(1-x)	$50y(1-y^2)$	50x(1-x)
6	0	20 <i>x</i>	20 <i>y</i>	50x(1-x)
7	$30\sin(\pi y)$	$20\sqrt{x}$	20 <i>y</i>	30(1-x)
8	$50\sin(\pi y)$	$30\sqrt{x}$	$30y^2$	$50\sin(\pi x)$
9	$40y^2$	40	40	$40\sin\frac{\pi x}{2}$
10	50 <i>y</i>	50(1-x)	0	60 <i>x</i>

- 2. Найти решение уравнения Лапласа итерационным методам в квадрате с вершинами A(0,0), B(0,1), C(1,1), D(1,0) используя граничные условия задачи 1.
- 3. Найти численное решение уравнения

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

удовлетворяющего условиям

$$u(x,0) = \sin(\pi x), \ 0 \le x \le 1,$$

 $u(0,t) = u(1,t) = 0, \ 0 \le t \le 1,25$

используя явные и неявные схемы дискретизации.

4. Найти численное решение уравнения

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$

удовлетворяющего условиям

$$u(x,0) = \cos(\pi x), \quad \frac{\partial u}{\partial t}\Big|_{t=0} = \sin(\pi x), \quad 0 \le x \le 1,$$

$$u(0,t) = u(1,t) = 0, \quad 0 \le t \le 1,25$$

используя явные и неявные схемы дискретизации.

Перечень вопросов к экзамену

- 1. Дискретизация. Точность процесса дискретизации
- 2. Сетки и сеточные функции.
- 3. Аппроксимация производных.
- 4. Сходимость разностных схем.
- 5. Устойчивость разностных схем. Связь устойчивости и аппроксимации со сходимостью.
- 6. Метод разностной аппроксимации. Интегро интерполяционный метод.
- 7. Методы составления разностных схем. Метод неопределенных коэффициентов.
- 8. Разностная аппроксимация задачи Дирихле для уравнения Пуассона
- 9. Принцип максимума и его следствия.
- 10. Теорема сравнения. Устойчивость по граничным условиям.
- 11. Устойчивость по граничным условиям разностной задачи Дирихле.
- 12. Устойчивость по правой части и сходимость разностной задачи Дирихле.

- 13. Примеры применения принципа максимума.
- 14. Монотонные разностные схемы.
- 15. Разностная задача на собственные значения.
- 16. Задача на собственные значения для пятиточечного разностного оператора Лапласа.
- 17. Схема с весами для уравнения теплопроводности.
- 18. Исследование устойчивости по начальным данным схемы с весами для уравнения теплопроводности
- 19. Исследование устойчивости по правой части и сходимости схемы с весами для уравнения теплопроводности
- 20. Модельная задача.
- 21. Применение методов Якоби и Зейделя к решению сеточных уравнений.
- 22. Метод неполной релаксации.
- 23. Применение попеременно треугольного метода к модельной задаче.
- 24. Метод Ритца.
- 25. Метод Галеркина.
- 26. Метод наименьших квадратов.
- 27. Метод наибыстрейшего спуска.
- 28. Метод конечных элементов. Основные понятия метода.
- 29. Решение обратных эволюционных задач методом рядов Фурье.
- 30. Постановка обратных задач на основе методов теории возмущений.

Приложение 2

Промежуточная аттестация имеет целью определить степень достижения запланированных результатов обучения по дисциплине. Проводиться за 3 семестр в форме зачета.

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной

Код индикатора	Индикатор достижения	Оценочные средства
	компетенции	
ОПК-3: Способен разр	абатывать математически	не модели и проводить их анализ при
решении задач в облас	сти профессиональной деят	гельности
ОПК-3.1	Разрабатывает	Разработать математические модели
	математические модели и	решения следующих задач:
	производит их анализ при решении задач в области	1. Найти численное решение
	профессиональной	уравнения
	деятельности	$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$
		удовлетворяющего условиям
		$u(x,0) = \sin(\pi x), \ 0 \le x \le 1,$
		$u(0,t) = u(1,t) = 0, \ 0 \le t \le 1,25$
		используя явные и неявные схемы
		дискретизации.
		2. Найти численное решение

	уравнения
	$\partial^2 u \partial^2 u$
	$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$
	удовлетворяющего условиям
	$u(x,0) = \cos(\pi x), \left. \frac{\partial u}{\partial t} \right _{t=0} = \sin(\pi x)$
	$0 \le x \le 1,$
	$u(0,t) = u(1,t) = 0, \ 0 \le t \le 1,25$
	используя явные и неявные схемы
	дискретизации.
ОПК-3.2 Составляет и оформля отчеты, выполняет требования нормоконтроля по результатам профессиональной деятельности	 Составление конспектов ответов на следующие вопросы: 1. Дискретизация. Точность процесса дискретизации 2. Сетки и сеточные функции. 3. Аппроксимация производных. 4. Сходимость разностных схем. 5. Устойчивость разностных схем. Связь устойчивости и аппроксимации со сходимостью. 6. Метод разностной аппроксимации. Интегрочитерполяционный метод. 7. Методы составления разностных коэффициентов. 8. Разностная аппроксимация задачи Дирихле для уравнения Пуассона 9. Принцип максимума и его следствия. 10. Теорема сравнения. Устойчивость по граничным условиям. 11. Устойчивость по граничным условиям разностной задачи Дирихле. 12. Устойчивость по правой части и сходимость разностной задачи Дирихле. 13. Примеры применения принципа максимума. 14. Монотонные разностные схемы. 15. Разностная задача на собственные значения. 16. Задача на собственные значения для пятиточечного разностного

		17. Схема с весами для уравнения
		теплопроводности.
		18. Исследование устойчивости по
		начальным данным схемы с
		весами для уравнения
		теплопроводности
		19. Исследование устойчивости по
		правой части и сходимости
		схемы с весами для уравнения
0.7774.0.0		теплопроводности
ОПК-3.3	Выполняет обзоры	Составление конспектов ответов на
	научной информации,	следующие вопросы:
	подготавливает	 Модельная задача. Применение методов Якоби и
	публикации по теме профессиональной	Зейделя к решению сеточных
	деятельности	уравнений.
	деятельности	3. Метод неполной релаксации.
		4. Применение попеременно
		треугольного метода к
		модельной задаче.
		5. Метод Ритца.
		6. Метод Галеркина.
		7. Метод наименьших квадратов.
		8. Метод наибыстрейшего спуска.
		9. Метод конечных элементов.
		Основные понятия метода.
		10. Решение обратных
		эволюционных задач методом
		рядов Фурье.
		11. Постановка обратных задач на
		основе методов теории
		возмущений.
		-

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и навыков, проводится в форме зачета (3 семестр).

Показатели и критерии оценивания зачета:

 сдать зачет – обучающийся демонстрирует высокий и средний уровень сформированности компетенций, всестороннее, систематическое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в сложных ситуациях. не сдать зачет – обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач

Показатели и критерии оценивания экзамена:

- на оценку *«отлично»* студент демонстрирует высокий уровень сформированности компетенций, показывает высокий уровень знаний не только на уровне воспроизведения и объяснения теоретической информации, но и интеллектуальные навыки владения классическими и неклассическими методами обработки данных, математическими пакетами Mathcad и Maple, нахождения уникальных ответов к проблемам, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности;
- на оценку «хорошо» студент демонстрирует средний уровень сформированности компетенций, показывает знания не только на уровне воспроизведения и объяснения информации, но и хорошие навыки владения классическими и неклассическими методами обработки данных, математическими пакетами Mathcad и Maple: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации;
- на оценку *«удовлетворительно»* студент демонстрирует пороговый уровень сформированности компетенций, показывает знания на уровне воспроизведения и объяснения информации, навыки владения математическими пакетами обработки данных Mathcad и Maple для решения простых задач; проявляется отсутствие отдельных знаний, умений, навыков, испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации;
- на оценку *«неудовлетворительно»* студент не может показать знания на уровне воспроизведения и объяснения информации, не может показать навыки владения математическими пакетами обработки данных Mathcad и Maple.