МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МОДЕЛИ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Направление подготовки (специальность) 09.04.01 Информатика и вычислительная техника

Направленность (профиль/специализация) программы Программное обеспечение средств вычислительной техники и автоматизированных систем

Уровень высшего образования - магистратура

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Вычислительной техники и программирования

Kypc 2

Семестр 3

Магнитогорск 2020 год

Рабочая программа составлена на основе ФГОС ВО - магистратура подготовки 09.04.01 Информатика и вычислительная техника (прика России от 19.09.2017 г. № 918)	а по направлению аз Минобрнауки
Рабочая программа рассмотрена и одобрена на засед Вычислительной техники и программирования 19.02.2020 г. протокол № 5	дании кафедры О.С. Логунова
Рабочая программа одобрена методической комиссией ИЭ и АС 26.02.2020 г. протокол № 5	_ С.И. Лукьянов
Рабочая программа составлена: доцент кафедры ВТ и П, канд. физмат. наук	Е.Г. Филиппов
Рецензент: Начальник отдела технологических платформ ООО "Компас Плюс", канд. техн. наук	_Д.С. Сафонов

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 учебном году на заседании кафедры Вычислительной техники и программирования				
		20 г. № О.С. Логунова		
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2022 - 2023 учебном году на заседании кафедры Вычислительной техники и программирования				
	Протокол от Зав. кафедрой	20 г. № О.С. Логунова		

1 Цели освоения дисциплины (модуля)

Целью преподавания дисциплины (модуля) «Математическая физика» является ознакомление студентов с базовыми понятиями, алгоритмами и методами решения задач математической физики с использованием программных средств вычислительной техники, а также практического их использования при описании физических и технических процессов.

Для достижения цели в ходе преподавания дисциплины решаются задачи:

- изучение решения уравнений математической физики эффективными численными метода-ми;
 - изучение и классификацию уравнений математической физики;
- реализацию основных алгоритмов решения уравнений математической физики средствами программного обеспечения и вычислительной техники;
- формирование навыков по применению уравнений математической физики к решению прикладных задач и выбору эффективных методов решения.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Модели математической физики входит в обязательую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Учебная - ознакомительная практика

Основы научной коммуникации

Современные проблемы информатики и вычислительной техники

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Информационные технологии научных исследований

Производственная - научно-исследовательская работа

Промышленные информационные системы

Информационно-управляющие системы

Методы оптимизации

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Модели математической физики» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции						
ОПК-1 Способен самостоятельно приобретать, развивать и применять математические,							
естественнонаучные, социально-экономические и профессиональные знания для решения							
нестандартных зада	нестандартных задач, в том числе в новой или незнакомой среде и в междисциплинарном						
контексте;							
ОПК-1.1	Самостоятельно приобретает математические, естественнонаучные и						
	социально-экономические знания для использования их в профессиональной деятельности						
ОПК-1.2	Решает нестандартные профессиональные задачи, в том числе в новой						
	или незнакомой среде и в междисциплинарном контексте с						
	применением математических, естественно-научных социально-						
	экономических и профессиональных знаний						

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 52,95 акад. часов:
- аудиторная 51 акад. часов;
- внеаудиторная 1,95 акад. часов
- самостоятельная работа 55,05 акад. часов;

Форма аттестации - курсовая работа, зачет

Раздел/ тема	Семестр	Аудиторная контактная работа (в акад. часах)			Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код
дисциплины	Cer	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Классификация уравнен частных производных вто порядка								
1.1 Классификация уравнений математической физики и постановка граничных и начальных условий.	3	1	4		1,05	Индивидуальное задание	идз	ОПК-1.1, ОПК-1.2
1.2 Примеры уравнений математической физики		1	5		9	Индивидуальное задание	идз	ОПК-1.1, ОПК-1.2
Итого по разделу		2	9		10,05			
2. Понятие о краевых	х и			-				
начальных условиях				1				
2.1 Назначение и виды краевых и начальных условий для уравнений математической физики.	3	3	5		9	Индивидуальное задание	идз	ОПК-1.1, ОПК-1.2
Итого по разделу		3	5		9			
3. Численные методы реше уравнений математичее физики.								
3.1 Метод сеток решения задачи Дирихле для уравнения Пуассона в прямоугольной области и области произвольной формы		3	5		9	Подготовка к практическому занятию	идз	ОПК-1.1, ОПК-1.2
3.2 Метод сеток решения волнового уравнения на основе разностной схемы	3	3	5		9	Подготовка к практическому занятию	идз	ОПК-1.1, ОПК-1.2
3.3 Методы решения уравнения теплопроводности численными методами		3	5		9	Подготовка к практическому занятию	идз	ОПК-1.1, ОПК-1.2
3.4 Метод Фурье для решения задачи о колебаниях закрепленной струны		3	5		9	Подготовка к практическому занятию	идз	ОПК-1.1, ОПК-1.2

Итого по разделу	12	20	36		
Итого за семестр	17	34	55,05	зачёт,кр	
Итого по дисциплине	17	34	55,05	курсовая работа, зачет	

5 Образовательные технологии

Проектирование обучения строится на основе следующих принципов:

- Обучение на основе интеграции с наукой и производством.
- Профессионально-творческая направленность обучения.
- Ориентированность обучения на личность.
- Ориентированность обучения на развитие опыта самообразовательной деятельности будущего специалиста.

Для достижения планируемых результатов обучения, в дисциплине «Математическая физика» используются образовательные технологии:

- 1. Традиционные образовательные технологии: практическое занятие, семинар.
- 2. Технологии проблемного обучения: практическое занятие в форме семинара и домашнее задание, направленное на решение комплексной учебно-познавательной задачи, требующей от студента применения как научно-теоретических знаний, так и практических навыков.
- 3. Интерактивные технологии: семинар-дискуссия коллективное обсуждение какого-либо спорного вопроса, проблемы, выявление мнений в группе. Изложение проблем и их совместное решение.
- 4. Информационно-коммуникационные образовательные технологии: . Практическое занятие в форме презентации представление результатов с использованием специализированных программных сред.
 - **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
 - 7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
 - 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Торшина, О.А. Уравнения математической физики : учебное пособие / О.А. Торшина. М.: ИНФРА-М, 2020. -59 с. Режим доступа: http://www.znanium.com/read?id=358334

б) Дополнительная литература:

1. Давыдов, А.П. Методы математической физики. Классификация уравнений и постановка задач. Метод Даламбера: курс лекций / А.П. Давыдов, Т.П. Злыднева.- М.: ИНФРА-М; Znanium.com, 2017. — 100с. — Режим доступа: http://www.znanium.com/read?id=263066

в) Методические указания:

1. Логунова, О.С. Метод сеток решения задачи Дирихле для уравнения

Пуассона в пря-моугольной области: Методические указания к лабораторной работе по дисциплине «Численные методы решения уравнений математической физики» [Текст]. / О.С. Ло-гунова, Ю.Б. Кухта, Л.Г. Егорова. – Магнитогорск : МГТУ, 2011. – 14 с.

- 2. Логунова, О.С. Метод сеток решения задачи Дирихле для уравнения Пуассона в об-ласти произвольной формы: Методические указания к лабораторной работе по дисциплине «Численные методы решения уравнений математической физики» [Текст]. / О.С. Логунова, Ю.Б. Кухта, Л.Г. Егорова. Магнитогорск: МГТУ, 2011. 16 с.
- 3. Логунова, О.С. Метод сеток решения уравнения теплопроводности на основе явной разностной схемы: Методические указания к лабораторной работе по дисциплине «Численные методы решения уравнений математической физики» [Текст]. / О.С. Логунова, Ю.Б. Кухта, Л.Г. Егорова. Магнитогорск: МГТУ, 2011. 16 с.
- 4. Логунова, О.С. Метод сеток решения уравнения теплопроводности на основе неявной разностной схемы: Методические указания к лабораторной работе по дисциплине «Численные методы решения уравнений математической физики» [Текст]. / О.С. Логунова, Ю.Б. Кухта, Л.Г. Егорова. Магнитогорск: МГТУ, 2011. 16 с.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Windows 7 Professional (для классов)	Д-757-17 от 27.06.2017	27.07.2018
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

II	C	
Название курса	Ссылка	
Электронная база периодических изданий East View	https://dlib.eastview.com/	
Illiorniation Services. OOO «PIDPIC»		
Национальная информационно-аналитическая	URL:	
система – Российский индекс научного цитирования	https://alibrary.ru/project_rise_asp	
(РИНЦ)	https://enorary.ru/project_risc.asp	
Поисковая система Академия Google (Google Scholar)		
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/	
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»		
сооственности»		

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Материально-техническое обеспечение дисциплины включает:

Тип и название аудитории Оснащение аудитории

Лекционная аудитория Мультимедийные средства хранения, передачи и представления информации

Компьютерный класс Персональные компьютеры с пакетом Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Аудитории для самостоятельной работы: компьютерные классы; читальные залы библиотеки Все классы УИТ и АСУ с персональными компьютера-ми, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Аудиторий для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Ауд. 282 и классы УИТ и АСУ

Помещения для самостоятельной работы обучающихся, оснащенных компьютерной техникой с возможностью подключения к сети «Интернет» и наличием доступа в электронную информационно-образовательную среду организации Классы УИТ и АСУ

Помещения для хранения и профилактического обслуживания учебного оборудования Центр информационных технологий – ауд. 379

Приложение 1

Перечень вопросов к зачету

- 1. Основные понятия о методах математичкой физики (МФ). Математические модели физических объектов. Записать телеграфное уравнение.
- 2. Уравнения математической физики. Дифференциальные уравнения в частных производных. Основные понятия и определения. Основные типы уравнений математической физики. Корректность постановок задач МФ.
- 3. Вывод волнового уравнения (уравнения колебаний струны). Задача о колебаниях мембраны.
- 4. Решение уравнения колебаний струны методом Фурье.
- 5. Задача о распространении тепла в стержне. Уравнение теплопроводности. Краевая задача. Распространение теплоты в пространстве.
- 6. Решение задачи теплопроводности в неограниченном стержне методом Фурье.
- 7. Задача о распространения теплоты в ограниченном стержне.
- 8. Уравнение Лапласа. Задача о стационарное распределение температуры в однородном теле. Типы краевых задач.
- 9. Решение задачи Дирихле для кольца. Уравнение Лапласа в цилиндрической системе координат.
- 11. Решение первой краевой задачи для уравнения теплопроводности методом конечных разностей.
- 12. Классификация уравнений МФ (однородные, неоднородные; линейный. квазилинейные; порядок уравнения).
- 13. Решение линейного дифференциального уравнения первого порядка в частных производных. Уравнение задачи динамического программирования.

Приложение 2

Код индикатора	Индикатор достижения компетенции	Оценочные средства				
ОПК-1: Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;						
ОПК-1.1:	Решает профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования	 Записать и найти решения уравнения Кордевега де Фриза. 				
	Решает профессиональные задачи с применением методов теоретического и экспериментального исследования	2. Поиск солитонов на «мелкой воде» (в уравнении Кордевега де Фриза.)				