МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МОДЕЛИРОВАНИЕ В МАШИНОСТРОЕНИИ

Направление подготовки (специальность) 15.04.02 ТЕХНОЛОГИЧЕСКИЕ МАШИНЫ И ОБОРУДОВАНИЕ

Направленность (профиль/специализация) программы Инжиниринг в металлургическом машиностроении

Уровень высшего образования - магистратура Программа подготовки - академический магистратура

> Форма обучения очная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Проектирования и эксплуатации металлургических машин и

оборудования

Курс 1 Семестр 1

> Магнитогорск 2020 год

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 15.04.02 ТЕХНОЛОГИЧЕСКИЕ МАШИНЫ И ОБОРУДОВАНИЕ (уровень магистратуры) (приказ Минобрнауки России от 21.11.2014 г. № 1489)

Рабочая программа рассмотрена и одобрена на заседании кафедры Проектирования
и эксплуатации металлургических машин и оборудования
20.02.2020, протокол № 7
Зав. кафедройА.Г. Корчунов
Рабочая программа одобрена методической комиссией ИММиМ
20.02.2020 г. протокол№ 5
Председатель А.С. Савинов
Рабочая программа составлена: доцент кафедры ПиЭММиО, канд. техн. наук
Рецензент: гл. механик ООО НПЦ "Гальва" , канд. техн. наук

Лист актуализации рабочей программы

Рабочая программа пересмотрена учебном году на заседании кафед		_
	отокол от . кафедрой	
Рабочая программа пересмотрена учебном году на заседании кафед		
		_ 20 г. № А.Г. Корчунов

1 Цели освоения дисциплины (модуля)

Целью преподавания дисциплины «Моделирование в машиностроении» является:

-овладение достаточным уровнем общепрофессиональных и профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению 15.03.02 Технологические машины и оборудование;

-овладение современными методами моделирования и расчета на базе программных пакетов Компас-3D, Inventor.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Моделирование в машиностроении входит в вариативную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

учебного плана.

Для изучения дисциплины необходимы знания (умения, навыки), сформированные в результате изучения следующих дисциплин: Начертательная геометрия и компьютерная графика, Теоретическая механика, Сопротивление материалов, Теория машин и механиз-мов.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Моделирование в машиностроении» обучающийся должен обладать следующими компетенциями:

Структурный	Планируемые результаты обучения							
элемент								
компетенции								
ОПК-1 способностью выбирать аналитические и численные методы при разработке								
математических мо	оделей машин, приводов, оборудования, систем, технологических							
процессов в машин	остроении							
Знать	□ технические средства автоматизированного проектирования в							
	металлургическом машиностроении							
	□ основы трехмерного моделирования технических объектов							
	□ основы моделирования технологических процессов							
	металлургических машин							
	□ все способы обработки и анализа результатов моделирования							
Уметь	□ реализовывать моделирование технических объектов и							
	технологических процессов с использованием САПР							
	🗆 проводить эксперименты по заданным методикам с обработкой и							
	анализом результатов							
Владеть	□ навыками расчета и силовых, прочностных параметров							
	металлургических машин и оборудования							
	□ навыками проводить эксперименты по заданным методикам с							
	обработкой и анализом результатов							

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 1 зачетных единиц 36 акад. часов, в том числе:

- контактная работа 16,9 акад. часов:
- аудиторная 16 акад. часов;
- внеаудиторная 0,9 акад. часов
- самостоятельная работа 19,1 акад. часов;

Форма аттестации - зачет

Раздел/ тема		Аудиторная контактная работа (в акад. часах)			лятел студ	Вид самостоятельной	Форма текущего контроля успеваемости и	Код
дисциплины	Семестр	Лек.	лаб. зан.	практ. зан.	Самосто работа	работы	промежуточной аттестации	компетенции
1.								
1.1 Введение. Структура дисциплины, ее цель и зада-чи. Основные тенденции внедрения компьютерных технологий машиностроении. Автоматизация кон-структорской (КПП) и технологической подготовки производства (ТПП). Понятие единого информационного пространства предприятия.	1	2			2	изучение материала, подготовка к практическому занятию	Защиты практиче-ской работы, собе-седование	ОПК-1

1.2 Инженерный анализ и компьютерное модели-рование.						
Основные принципы и соотношение чис-ленных методов инженерного анализа. Сравнитель-ный анализ существующих методов расчета дета-лей машин и оборудования. Классификация и при-менимость конечных элементов. Общая схема ком-пьютерной реализации МКЭ. Учет нелинейности в процедурах МКЭ. Методы оптимизации в инже-нерном анализе: параметрическая оптимизация, структурная оптимизация, комплексные решения задач оптимального проектирования. Методы ви-зуализации в системах инженерного анализа. Ошибки идеализации. Погрешности моделирова-ния. Погрешности расчетов. Ошибки интерпрета-ции результатов. Принятие проектного решения	6		7,1	изучение материа-ла, подготовка к практическому за-нятию	Защиты практиче-ской работы, собе-седование	ОПК-1
1.3 Основы моделирования напряженно-деформированного состояния деталей и узлов в программе Inventor. Составные части пакета и их назначение. Предва-рительная подготовка и вход в программу. Основ-ные стадии решения задач. Предпроцессорная под-готовка; задание начальных и граничных условий; физических и механических свойств материалов; построение сетки конечных элементов; приложение поверхностных и объёмных нагрузок; выбор решателя. Решение задачи. Постпроцессорная обработка. Основные этапы твердотельного проектирования в Inventors: построение эскиза, создание объемной модели, создание сборок, генерация чертежей. Примеры расчётов деталей и оборудования	8		10	изучение материа-ла, подготовка к практическому за-нятию	Защиты практиче-ской работы, собе-седование	ОПК-1

Итого по разделу	16	19	9,1		
Итого за семестр	16	19	9,1	зачёт	
Итого по дисциплине	16	19	9,1	зачет	ОПК-1

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образователь-ных технологий в преподавании дисциплины «Моделирование в машиностроении» ис-пользуются традиционнаяи модульно-компетентностная технологии.

Передача необходимых теоретических знаний и формирование основных представ-лений по курсу «Моделирование процессов металлургических машин и оборудования» происходит с использованием мультимедийного оборудования.

Лекции проходят в традиционной форме, в форме лекций-консультаций и проблем-ных лекций. Теоретический материал на проблемных лекциях является результатом ус-воения полученной информации посредством постановки проблемного вопроса и поиска путей его решения. На лекциях-консультациях изложение нового материала сопровожда-ется постановкой вопросов и дискуссией в поисках ответов на эти При проведе-нии лекций особое внимание уделяется взаимосвязи вопросы. рассматриваемых тем и вопросов с действующими гостами. Полное овладение требованиями данных гостов необходимо бу-дет студентам при их дальнейшей самостоятельной практической деятельности на самых разнообразных предприятиях машиностроительной и металлургической отрасли. При рассмотрении тем данной дисциплины необходимо проводить достаточное количество примеров из практической деятельности ведущих предприятий города, региона и России, а также использовать опыт известных мировых лидеров в области машиностроения и ме-таллургии. Для этого необходимо рассмотрение материалов обновленной печати, инфор-мационных писем предприятий, а также информации Медиа изданий.

При проведении практических и лабораторных занятий используются работа в ко-манде и методы IT, в достаточном объеме используются имеющиеся модели, образцы и элементы различного оборудования, плакаты, фотографии и раздаточные материалы.

Самостоятельная работа стимулирует студентов в процессе подготовки домашних заданий, при решении задач на практических занятиях, при подготовке к контрольным работам и итоговой аттестации.

Для изучения дисциплины «Моделирование в машиностроении» предусмотрены практические занятия в интерактивной форме.

Практические занятия проводятся для закрепления и углубления знаний, получен-ных студентами на лекциях и должны способствовать выработке у них навыков постановки, формализации, построения блок-схем принятия решений, построение твердотельных моделей и реализации решений с помощью пакета INVENTOR.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная консультационная работа.

- **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
- **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
- 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Гузненков, В.Н. Autodesk Inventor 2012. Трехмерное моделирование деталей и создание чертежей. [Электронный ресурс] / В.Н. Гузненков, П.А. Журбенко.

- Электрон. дан. М. : ДМК Пресс, 2012. 120 с. Режим доступа: http://e.lanbook.com/book/40001 Загл. с экрана.
- 2. Мухутдинов, А.Р. Основы применения Autodesk Inventor для решения задач проек-тирования и моделирования [Электронный ресурс] : учебное пособие / А.Р. Мухут-динов, С.А. Яничев. Электрон. дан. Казань : КНИТУ, 2016. 140 с. Ре-жим доступа: https://e.lanbook.com/book/102079 . Загл. с экрана.

б) Дополнительная литература:

- 1. Горбатюк С.М., Каменев А.В., Глухов Л.М. Конструирование машин и оборудова-ния металлургических производств. В 2 х томах [Электронный ресурс]: учебник. Издательство «Лань» Электронно-библиотечная система, 2008. Режим доступа: https://e.lanbook.com/reader/book/2077/#1. Загл. с экрана
- 2. Ушаков, Д.М. Введение в математические основы САПР: курс лекций. [Электрон-ный ресурс] Электрон. дан. М. : ДМК Пресс, 2011. 208 с. Режим досту-па: http://e.lanbook.com/book/1311 Загл. с экрана.
- 3. Абросимов, С.Н. Основы компьютерной графики САПР изделий машиностроения (МСАD): учебное пособие для вузов. [Электронный ресурс] Электрон. дан. СПб. : БГТУ "Военмех" им. Д.Ф. Устинова, 2014. 206 с. Режим доступа: http://e.lanbook.com/book/63672 Загл. с экрана.
- 4. Алиева, Н.П. Построение моделей и создание чертежей деталей в системе Autodesk Inventor. Учебное пособие. [Электронный ресурс] / Н.П. Алиева, П.А. Журбенко, Л.С. Сенченкова. Электрон. дан. М. : ДМК Пресс, 2011. 112 с. Режим доступа: http://e.lanbook.com/book/1332 Загл. с экрана.

в) Методические указания:

1. Пожидаев Ю. А. Компьютерное моделирование и создание проектно-конструкторской документации в машиностроении средствами САПР. Инженерная и компьютерная графика в Autodesk Inventor, AutoCAD [Электронный ресурс]: учебное пособие. Ч. 1 / Ю. А. Пожидаев, Е. А. Свистунова, О. М. Веремей; МГТУ. - Магнито-горск: МГТУ, 2016. - 1 электрон. опт. диск (CD-ROM). - Режим доступа: https://magtu.informsystema.ru/uploader/fileUpload?name=2525.pdf&show=dcatalogues/1/1130 327/2525.pdf&view=true (дата обращения: 5.09.2020). - Макрообъект. - ISBN 978-5-9967-1498-8. - Текст: электронный. - Сведения доступны также на CD-ROM.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
	' ' 1	1 ''
	Наименование ПО	Наименование ПО № договора

MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно

Autodesk Inventor Professional 2021 Product Design	учебная версия	бессрочно
Autodesk 3ds Max Design 2020	учебная версия	бессрочно

Профессиональные базы данных и информационные справочные системы

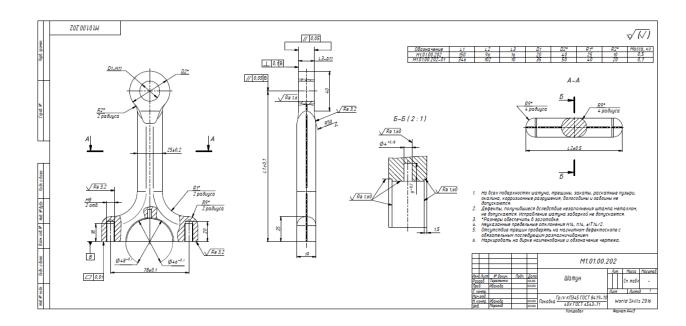
Название курса	Ссылка
Поисковая система Академия Google (Google Scholar)	LIDI - https://sobolor.google.gu/
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	http://magty.gu/9005/marayyah2/Dafaylt.aan
Г.И. Носова	http://magtu.ru.8085/marcwebz/Derauit.asp
Национальная	
информационно-аналитическая система -	URL: https://elibrary.ru/project_risc.asp
Российский индекс научного цитирования	

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Компьютерный класс, оснащение: Персональные компьютеры с пакетом MS Office, Компас, INVENTOR и выходом в Интернет

Приложение 1. Учебно-методическое обеспечение самостоятельной работы студентов


Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

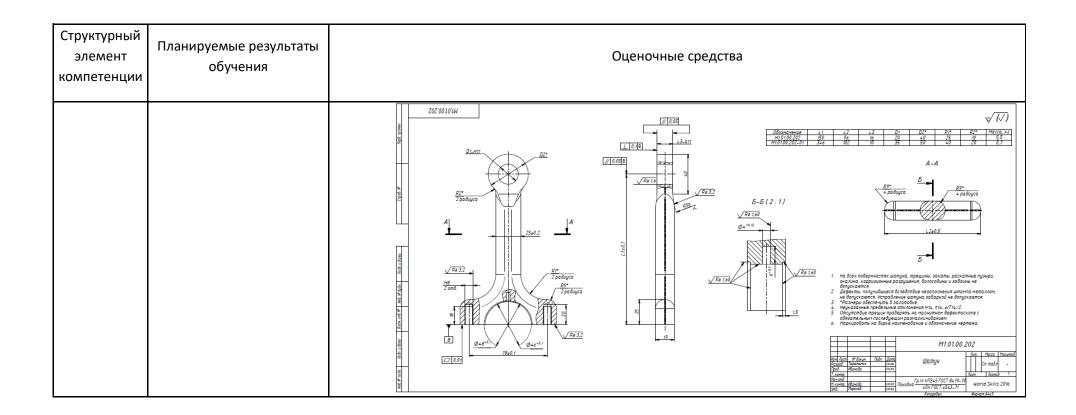
Для лиц с нарушениями зрения:

- в печатной форме (увеличенным шрифтом, шрифтом Брайля, рельефная печать)
- в форме электронного документа,
- в форме аудиофайла

Примерное задание на практическом занятии

Построить 3D модель детали, изображенной на чертеже. Произвести анализ напряженно- деформированного состояния детали при приложении разрывного усилия в 10000Н. Сделать отчет, проанализировать результаты моделирования, выдвинуть предложения по оптимизации изделия.

Приложение 2. Оценочные средства для проведения промежуточной аттестации


а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

При необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на задания.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства						
	ОПК-1способностью выбирать аналитические и численные методы при разработке математических моделей машин, приводов борудования, систем, технологических процессов в машиностроении							
Знать	- технические средства автоматизированного проектирования в металлургическом машиностроении - основы трехмерного моделирования технических объектов - основы моделирования технологических процессов металлургических машин	П. Численные методы. Сущность метода конечных элементов Какие результаты моделирования напряженно-деформированного состояния являются основными для определения работоспособности отдельных деталей? Зтапы проведения исследования напряженно -деформированного состояния объектов Классификация моделей, используемых в технике. Основные свойства моделей Погрешности моделирования. Погрешности расчетов						

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	– все способы обработки и анализа результатов моделирования	
Уметь	 реализовывать моделирование технических объектов и технологических процессов с использованием САПР проводить эксперименты по заданным методикам с обработкой и анализом результатов 	Практические задания: 1. Построить расчетную схему для выбранной детали 2. Объяснить смысл графического отображения напряженно-деформированного состояния рассчитанной детали 3. На что виляет увеличение размера элемента сетки при использовании МКЭ
Владеть	 навыками расчета и силовых, прочностных параметров металлургических машин и оборудования навыками проводить эксперименты по заданным методикам с обработкой и анализом результатов 	 Примерное задание на практическом занятии Построить 3D модель детали, изображенной на чертеже. Произвести анализ напряженно- деформированного состояния детали при приложении разрывного усилия в 10000H. Сделать отчет, проанализировать результаты моделирования, выдвинуть предложения по оптимизации изделия.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Моделирование в машиностроении» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета.

Зачет по данной дисциплине проводится в устной форме, включает 1 теоретический вопрос и защиту индивидуальной работы.

При проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине обеспечивается выполнение следующих дополнительных требований в зависимости от индивидуальных особенностей обучающихся:

- а) инструкция по порядку проведения процедуры оценивания предоставляется в доступной форме (устно, в письменной форме, в письменной форме шрифтом Брайля, устно с использованием услуг ассистента-помощника, сурдопереводчика);
- б) доступная форма предоставления заданий оценочных средств (в печатной форме, в печатной форме увеличенным шрифтом, в печатной форме шрифтом Брайля, в форме электронного документа, задания зачитываются ассистентом, задания предоставляются с использованием сурдоперевода);
- в) доступная форма предоставления ответов на задания (письменно на бумаге, набор ответов на компьютере, с использованием услуг ассистента, устно).

При необходимости для обучающихся инвалидов и обучающихся с ограниченными возможностями здоровья процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Проведение процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья допускается с использованием ЭИОС.

Показатели и критерии оценивания зачета:

- «Зачтено» ставится, если обучающийся показывает базовый уровень знаний основных понятий и определений, умений применять современные образовательные технологии, использовать новые знания и умения, корректно выражать и аргументированно обосновывать положения предметной области знания и владения профессиональным языком предметной области знания.
- «**Не зачтено**» ставится, если обучающийся показывает слабый уровень знаний основных понятий и определений, умений применять современные образовательные технологии, использовать новые знания и умения, корректно выражать и аргументированно обосновывать положения предметной области знания и владения профессиональным языком предметной области знания.