ULLA V5-19



# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»



## РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

### СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Направление подготовки (специальность)
15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

Направленность (профиль/специализация) программы Технология машиностроения

Уровень высшего образования - бакалавриат Программа подготовки - академический бакалавриат

Форма обучения очная

Институт/ факультет

Институт металлургии, машиностроения и материалообработки

Кафедра

Механики

Курс

2

Семестр

3

Магнитогорск 2019 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств (уровень бакалавриата) (приказ Минобрнауки России от 11.08.2016 г. № 1000)

| Рабочая программа рассмотрена 19.02.2020, протокол № 7      | а и одобрена на заседании кафедры | Механики                      |
|-------------------------------------------------------------|-----------------------------------|-------------------------------|
|                                                             | Зав. кафедрой                     | А.С. Савинов                  |
| Рабочая программа одобрена ме<br>20.02.2020 г. протокол № 5 | тодической комиссией ИММиМ        | <b>S</b> .                    |
|                                                             | Председатель                      | А.С. Савинов                  |
| Согласовано:<br>Зав. кафедрой Машины и технол               | логии обработки давлением и маши  | ностроения С.И. Платов        |
| Рабочая программа составлена: ассистент кафедры             | и Механики,                       | А.А.Ступак                    |
| Рецензент:                                                  |                                   | _                             |
|                                                             | Директор ЗАО ИПО "ПХТ",           | канд. техн. наук<br>В.П.Дзюба |

# Лист актуализации рабочей программы Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2020 - 202

|                                                 | ании кафедры Механики                                                                       |        |
|-------------------------------------------------|---------------------------------------------------------------------------------------------|--------|
|                                                 | Протокол от 05 Сомметы 2020 г. № 2<br>Зав. кафедрой — А.С. Савино                           | В      |
| Рабочая программа пе<br>учебном году на засед   | ресмотрена, обсуждена и одобрена для реализации в 2021 инии кафедры Механики                | - 2022 |
|                                                 | Протокол от                                                                                 | В      |
| Рабочая программа пер<br>учебном году на заседа | есмотрена, обсуждена и одобрена для реализации в 2022<br>нии кафедры Механики               | - 2023 |
|                                                 | Протокол от                                                                                 | 3      |
|                                                 |                                                                                             |        |
| аоочая программа пер<br>чебном году на заседа   | есмотрена, обсуждена и одобрена для реализации в 2023 -<br>нии кафедры Механики             | 2024   |
| чаочая программа перчебном году на заседа       | есмотрена, обсуждена и одобрена для реализации в 2023 -<br>нии кафедры Механики Протокол от |        |
| рабочая программа пер                           | или кафедры механики                                                                        |        |
| габочая программа пер                           | Протокол от                                                                                 | 2025   |
| абочая программа пер<br>чебном году на заседа   | Протокол от                                                                                 | 2025   |

#### 1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины «Сопротивление материалов» является подготовка будущего бакалавра к проведению самостоятельных расчетов конструкций и элементов конструкций.

Задачи дисциплины – дать обучающемуся:

- необходимые представления о работе конструкций, расчетных схемах, задачах расчета стержней и стержневых систем на прочность, жесткость и устойчивость;
- знания о механических процессах, необходимые для изучения специальных дисциплин.

Приобретенные знания способствуют формированию инженерного мышления.

#### 2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Сопротивление материалов входит в базовую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Математика

Физика

Теоретическая механика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Основы компьютерных технологий

Теория машин и механизмов

Детали машин

информационной безопасности

Основы теории пластичности

Основы технологии машиностроения

## 3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Сопротивление материалов» обучающийся должен обладать следующими компетенциями:

|                                                                                                                                                                                                                         | <del>,</del>                                                                                                                                          |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Структурный                                                                                                                                                                                                             | Планируемые результаты обучения                                                                                                                       |  |  |  |  |  |  |
| элемент                                                                                                                                                                                                                 |                                                                                                                                                       |  |  |  |  |  |  |
| компетенции                                                                                                                                                                                                             | компетенции                                                                                                                                           |  |  |  |  |  |  |
| ПК-2 способносты                                                                                                                                                                                                        | о использовать методы стандартных испытаний по определению                                                                                            |  |  |  |  |  |  |
| физико-механичест                                                                                                                                                                                                       | ких свойств и технологических показателей материалов и готовых                                                                                        |  |  |  |  |  |  |
| машиностроительн                                                                                                                                                                                                        | ных изделий, стандартные методы их проектирования, прогрессивные                                                                                      |  |  |  |  |  |  |
| методы эксплуатац                                                                                                                                                                                                       | ии изделий                                                                                                                                            |  |  |  |  |  |  |
| Знать                                                                                                                                                                                                                   | методы расчета статически определимых и статически неопределимых стержневых систем на силовые воздействия.                                            |  |  |  |  |  |  |
| Уметь                                                                                                                                                                                                                   | рассчитывать в статически определимых системах неизвестные реакции связей и строить эпюры внутренних силовых факторов при различных видах загружения. |  |  |  |  |  |  |
| Владеть                                                                                                                                                                                                                 | навыками в построении эпюр внутренних усилий в статически неопределимых рамах.                                                                        |  |  |  |  |  |  |
| ОПК-2 способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований |                                                                                                                                                       |  |  |  |  |  |  |

| Знать   | основные положения, гипотезы сопротивления материалов, аналитические и экспериментальные методы определения перемещений при изгибе; оценки прочности при простых и сложном сопротивлении, продольном изгибе.          |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Уметь   | определять линейные перемещения и углы поворота поперечных сечений в балках и рамах при изгибе, нормальные напряжения в случаях сложного сопротивления и при продольном изгибе.                                       |
| Владеть | навыками в построении эпюр внутренних усилий, перемещений в статически определимых балках и рамах при изгибе, в оценке прочности стержней в случае простых деформаций, сложного сопротивления, при продольном изгибе. |

#### 4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 73,9 акад. часов:
- аудиторная 72 акад. часов;
- внеаудиторная 1,9 акад. часов
- самостоятельная работа 34,1 акад. часов;

#### Форма аттестации - зачет

| Раздел/ тема                                                                                                                                                                                                                                                                        | Семестр | Аудиторная контактная работа (в акад. часах) |                                    | Самостоятельная<br>работа студента | Вид самостоятельной | Форма текущего контроля успеваемости и                                                                                                                                                                    | Код                                                                       |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------|------------------------------------|------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|
| дисциплины                                                                                                                                                                                                                                                                          | Cen     | Лек.                                         | Лек. зан. зан. обе д работы работы | промежуточной<br>аттестации        | компетенции         |                                                                                                                                                                                                           |                                                                           |             |
| 1. Раздел 1. Статика                                                                                                                                                                                                                                                                |         |                                              |                                    |                                    | •                   |                                                                                                                                                                                                           |                                                                           |             |
| 1.1 Статика.<br>Классификация сил.<br>Приведение сил к точке.<br>Моменты сил.                                                                                                                                                                                                       | 3       | 4                                            |                                    | 4/2И                               | 6                   | Самостоятельное изучение учебной и научной литературы                                                                                                                                                     | Самостоятельное изучение учебной и научной литературы Теоретический опрос | ПК-2, ОПК-2 |
| Итого по разделу                                                                                                                                                                                                                                                                    |         | 4                                            |                                    | 4/2И                               | 6                   |                                                                                                                                                                                                           |                                                                           | ПК-2, ОПК-2 |
| 2. Раздел 2.Основы расчета                                                                                                                                                                                                                                                          | а на і  | трочно                                       | сть                                |                                    |                     |                                                                                                                                                                                                           |                                                                           |             |
| 2.1 Общие положения. Деформация. Прочность. Жесткость. Устойчивость. Внешние и внутренние силы. Метод сечений. Напряжение. Основные гипотезы и допущения  2.2 Растяжение-сжатие. Геометрические характеристики. Напряжение и перемещения. Закон Гука. Механические характеристики и | 3       | 2                                            |                                    | 2/2И                               | 6                   | Выполнение РГР  1 «Построение эпюр ВСФ в статически определимых стержневых системах» и подготовка к теоретическому опросу.  Выполнение РГР  2 «Геометрические характеристики поперечных сечений стержней" | Теоретический опрос  Защита РГР 2 в виде теоретического опроса            | ПК-2, ОПК-2 |
| свойства материалов. Итого по разделу                                                                                                                                                                                                                                               |         | 6                                            |                                    | 6/4И                               | 8                   | oropamen                                                                                                                                                                                                  |                                                                           | ПК-2, ОПК-2 |
| 3. Раздел 3. Изгиб                                                                                                                                                                                                                                                                  |         | ~                                            |                                    |                                    |                     |                                                                                                                                                                                                           |                                                                           |             |
| 3.1 Понятие о чистом изгибе. Теорема Журавского. Напряжения при изгибе. Геометрические характеристики плоских сечений. Расчет на прочность. Изгибающий момент и попе-речная сила.                                                                                                   | 3       | 8                                            |                                    | 8/2И                               | 8                   | Выполнение РГР<br>3 "Подбор<br>сечений при<br>изгибе"                                                                                                                                                     | Защита РГР 3,<br>теоретический<br>опрос                                   | ПК-2, ОПК-2 |
| Итого по разделу                                                                                                                                                                                                                                                                    |         | 8                                            |                                    | 8/2И                               | 8                   |                                                                                                                                                                                                           |                                                                           | ПК-2, ОПК-2 |

| 4. Раздел 4. Сдвиг                                                                                                                                                                                                                                                                       |       |        |      |                                                       |                        |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------|-------------------------------------------------------|------------------------|-------------|
| 4.1 Чистый сдвиг. Абсолютный и относительный сдвиг. Закон Гука для деформации чистого сдвига. Модуль упругости второго рода. Условия прочности при 3 срезе. Кручение круглого стержня. Угол закручивания. Расчет на прочность и жесткость при кручении. Относительный угол закручивания. | 6     | 6/2И   | 3,1  | Самостоятельное изучение учебной и научной литературы | Теоретический<br>опрос | ПК-2, ОПК-2 |
| Итого по разделу                                                                                                                                                                                                                                                                         | 6     | 6/2И   | 3,1  |                                                       |                        | ПК-2, ОПК-2 |
| 5. Раздел 5. Сложное сопротив:                                                                                                                                                                                                                                                           | тение |        |      |                                                       |                        |             |
| 5.1 Сложное сопротивление. Понятие о теориях прочности. Косой изгиб. Из-иб с растяжением. Изгиб с кручением                                                                                                                                                                              | 6     | 6/2И   | 3    | Самостоятельное изучение учебной и научной литературы | Теоретический<br>опрос | ПК-2, ОПК-2 |
| Итого по разделу                                                                                                                                                                                                                                                                         | 6     | 6/2И   | 3    |                                                       |                        | ПК-2, ОПК-2 |
| 6. Раздел 6. Устойчивость                                                                                                                                                                                                                                                                |       |        |      |                                                       |                        |             |
| 6.1 Устойчивость сжатых стержней. Усталостная 3 прочность.                                                                                                                                                                                                                               | 6     | 6/2И   | 6    | Самостоятельное изучение учебной и научной литературы | Теоретический<br>опрос | ПК-2, ОПК-2 |
| Итого по разделу 6                                                                                                                                                                                                                                                                       |       | 6/2И   | 6    |                                                       |                        | ПК-2, ОПК-2 |
| Итого за семестр                                                                                                                                                                                                                                                                         | 36    | 36/14И | 34,1 |                                                       | зачёт                  | ПК-2, ОПК-2 |
| Итого по дисциплине                                                                                                                                                                                                                                                                      | 36    | 36/14И | 34,1 |                                                       | зачет                  | ПК-2,ОПК-2  |

#### 5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Сопротивление материалов» используются:

Традиционные образовательные технологии ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к обучающемуся (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность обучающегося носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция – последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

- **6** Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.
- **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
- 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Асадулина, Е. Ю. Сопротивление материалов. Конспект лекций: учебное пособие для вузов / Е. Ю. Асадулина. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 254 с. (Высшее образование). ISBN 978-5-534-02566-8. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453440
- 2. Ибрагимов, Ф. Г. Механика деформируемых стержней: учебное пособие [для вузов] / Ф. Г. Ибрагимов, А. С. Постникова; МГТУ. Магнитогорск: МГТУ, 2019. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: <a href="https://magtu.informsystema.ru/uploader/fileUpload?name=3877.pdf&show=dcatalogues/1/1530">https://magtu.informsystema.ru/uploader/fileUpload?name=3877.pdf&show=dcatalogues/1/1530</a> 012/3877.pdf&view

#### б) Дополнительная литература:

1. Статически неопределимые системы: учебное пособие / Д. Я. Дьяченко, О. С. Железков, С. В. Конев и др.; МГТУ. - Магнитогорск: МГТУ, 2017. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL:

 $\underline{https://magtu.informsystema.ru/uploader/fileUpload?name=3174.pdf\&show=dcatalogues/1/1136586/3174.pdf\&view$ 

2. Савинов, А. С. Практикум по сопротивлению материалов: практикум / А. С. Савинов, О. А. Осипова, А. С. Постникова; МГТУ. - Магнитогорск: МГТУ, 2017. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL:

 $\underline{https://magtu.informsystema.ru/uploader/fileUpload?name=3242.pdf\&show=dcatalogues/1/1137007/3242.pdf\&view=true}$ 

3. Дьяченко, Д. Я. Сопротивление материалов : практикум / Д. Я. Дьяченко ; МГТУ. - Магнитогорск, 2014. - 97 с. : ил., табл. - URL:

 $\underline{https://magtu.informsystema.ru/uploader/fileUpload?name=800.pdf\&show=dcatalogues/1/1116021/800.pdf\&view$ 

4. Статически неопределимые системы: учебное пособие / Д. Я. Дьяченко, О. С. Железков, С. В. Конев и др.; МГТУ. - Магнитогорск: МГТУ, 2017. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL:

<u>https://magtu.informsystema.ru/uploader/fileUpload?name=3174.pdf&show=dcatalogues/1/1136586/3174.pdf&view=true</u> - Макрообъект. - Текст : электронный. -

в) Методические указания:

- 1. Деформация. Кручение : методические указания к проведению практической и самостоятельной работы по дисциплине "Сопротивление материалов" для студентов очной и заочной формы обучения 150400.62, 150700.62, 151000.62, 140400.62 / сост. : Степанищев А. Е. ; МГТУ ; Белорецкий филиал. Магнитогорск : МГТУ, 2014. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:
- https://magtu.informsystema.ru/uploader/fileUpload?name=3103.pdf&show=dcatalogues/1/1135518/3103.pdf&view
- 2. Деформация, растяжение-сжатие : методические указания к проведению практи-ческой и самостоятельной работы по дисциплине "Сопротивление материалов" для студентов очной и заочной формы обучения 150400.62, 150700.62, 151000.62, 140400.62 / сост. : Степанищев А. Е. ; МГТУ ; Белорецкий филиал. Магнито-горск : МГТУ, 2014. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:

 $\underline{https://magtu.informsystema.ru/uploader/fileUpload?name=3104.pdf\&show=dcatalogues/1/1135522/3104.pdf\&view$ 

- 3. Дьяченко, Д. Я. Прямой поперечный изгиб : сборник заданий / Д. Я. Дьяченко ; МГТУ. Магнитогорск : МГТУ, 2010. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:
- $\frac{https://magtu.informsystema.ru/uploader/fileUpload?name=1257.pdf\&show=dcatalogues/1/1123}{435/1257.pdf\&view}$
- 4. А.С. Савинов, А.С. Тубольцева, К.А. Фролушкина, Б.Б. Зарицкий. Построение эпюр внутренних силовых факторов при деформациях растяжение-сжатие, кручение и изгиб: методические указания по дисциплине «Сопротивление материалов» для студентов всех технических специальностей и форм обучения.— Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 30с.
- 5. Ф.Г. Ибрагимов. Определение перемещений в стержневых системах: методиче-ские указания по дисциплине «Сопротивление материалов» для студентов всех технических специальностей и форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 10с.
- 6. В.Ф. Михайлец Расчёт статически неопределимых систем методом сил: методи-ческие указания к практическим занятиям по дисциплине «Сопротивление мате-риалов» для студентов всех технических специальностей и форм обучения.— Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 24с.
  - 7. Дьяченко Д.Я. Сопротивление материалов. Учебное пособие. МГТУ. 2014 г. С. 97.
- 8. Дьяченко Д.Я. Определение грузоподъёмности балок: Методические указания по дисциплине «Сопротивление материалов» для студентов строительных специальностей. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 17с. ун-та им. Г.И.Носова, 2015. 33с.
- 9. А.С. Савинов, С.В. Конев. Изгиб: сборник контрольных заданий по дисциплине «Сопротивление материалов» для обучающихся всех специальностей всех форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2015. 23с.
- 10. А.С. Савинов, С.В. Конев. Геометрические характеристики плоских сечений балок: сборник контрольных заданий по дисциплине «Сопротивление материалов» для обучающихся всех специальностей всех форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2015. 6с.

#### г) Программное обеспечение и Интернет-ресурсы:

#### Программное обеспечение

| Наименование ПО                              | № договора                   | Срок действия лицензии |
|----------------------------------------------|------------------------------|------------------------|
| MS Windows 7<br>Professional(для<br>классов) | Д-1227-18 от 08.10.2018      | 11.10.2021             |
| MS Office 2007<br>Professional               | № 135 от 17.09.2007          | бессрочно              |
| 7Zip                                         | свободно распространяемое ПО | бессрочно              |
| FAR Manager                                  | свободно распространяемое    | бессрочно              |

#### Профессиональные базы данных и информационные справочные системы

| Название курса                                                                                   | Ссылка                               |
|--------------------------------------------------------------------------------------------------|--------------------------------------|
| Электронная база периодических изданий East View Information Services, OOO «ИВИС»                | https://dlib.eastview.com/           |
| Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ) | https://elibrary.ru/project_risc.asp |
| Поисковая система Академия Google (Google Scholar)                                               | https://scholar.google.ru/           |
| Информационная система - Единое окно доступа к информационным ресурсам                           | http://window.edu.ru/                |

#### 9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

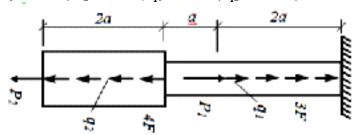
Учебные аудитории для проведения занятий лекционного типа. Оснащение: Мультимедийные средства хранения, передачи и представления информации.

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: Доска, мультимедийный проектор, экран.

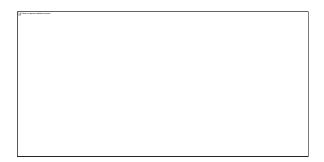
Помещения для самостоятельной работы обучающихся. Оснащение: Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования. Оснащение: Стеллажи для хранения учебно-методических пособий и учебно-методической документации.

#### Учебно-методическое обеспечение самостоятельной работы обучающихся

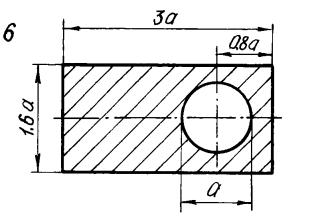

По дисциплине «Сопротивление материалов» предусмотрено выполнение расчетно-графических работ обучающихся.

#### Примерные расчетно графические работы (РГР):


 $P\Gamma P$  №1 «Построение эпюр  $BC\Phi$  в статически определимых стержневых системах» Задача 1. Для статически определимого стержня ступенчато постоянного сечения по схеме при заданных осевых нагрузках и геометрических размерах, требуется:

- 1. Определить опорную реакцию в месте закрепления стержня.
- 2. Вычислить значения продольных сил и нормальных напряжений в характерных сечениях и построить эпюры этих величин.
- 3. Найти величины абсолютных удлинений (укорочений) участков стержня и величину общего удлинения (укорочения) стержня в целом.
- 4. Определить значения осевых перемещений характерных сечений и построить эпюру осевых перемещений.

a=2M,  $P_1=15$  kH,  $P_2=10$  kH,  $q_1=2$  kH/M,  $q_2=4$  kH/M, F=10cm<sup>2</sup>

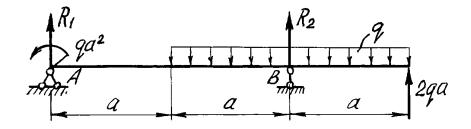



 $3adaчa\ 2$ . Построить эпюру крутящих моментов углов закручивания; найти наибольший относительный угол закручивания. a=2m, b=4m, c=5m,  $M_1=15$  kHm,  $M_2=10$  kHm,  $M_3=12$  kHm,  $M_4=17$  kHm.



 $P\Gamma P$  №2 «Геометрические характеристики поперечных сечений стержней» Для несимметричных сечений по схемам при заданных размерах, требуется:

- 1. определить положение центра тяжести;
- 2. вычислить осевые и центробежные моменты инерции относительно центральных осей;
- 3. определить положение главных центральных осей инерции и величины главных моментов инерции;
- 4. построить круг инерции и определить графически величины главных моментов инерции и направления главных центральных осей. а=10см




РГР №3 «Прямой поперечный изгиб. Расчеты на прочность»

Рассчитать на прочность по методу предельных состояний двутавровую прокатную балку. Материал балки сталь ВСт 3. Предел текучести  $\sigma \tau = 240$  МПа, расчетное сопротивление по пределу текучести R=210 МПа, расчетное сопротивление при сдвиге  $R_{\rm S}=130$  МПа. Коэффициент условий работы  $\gamma c=0.9$ . Коэффициент надежности по нагрузке  $\gamma f=1.2$ .

- 1. Подобрать сечение балки из двутавра, используя условие прочности по первой группе предельных состояний.
- 2. Для сечения балки, в котором действует наибольший изгибающий момент, построить эпюру нормальных напряжений и проверить выполнение условия прочности по нормальным напряжениям.

a=2M, q=5 kH/M/



#### Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Промежуточная аттестация имеет целью определить степень достижения запланированных результатов обучения по дисциплине «Сопротивление материалов» за 3 семестра проводится в форме зачета.

|                 | Планируемые результаты обучения<br>остью использовать методы стандартных ис                                | Оценочные средства пытаний по определению физико-механических свойств и технологических показателей                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| материалов и го | отовых машиностроительных изделий, станда                                                                  | ртные методы их проектирования, прогрессивные методы эксплуатации изделий                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Знать           | методы расчета статически определимых и статически неопределимых стержневых систем на силовые воздействия. | <ol> <li>Перечень теоретических вопросов к зачету:</li> <li>Цель и задачи курса "Сопротивление материалов" и его связь с другими дисциплинами.</li> <li>Свойства, которыми наделяется основная модель твердого деформируемого тела в механике.</li> <li>Характерные формы элементов конструкций. Виды основных деформаций стержня.</li> <li>Внешние силы. Отличие во взгляде на внешние силы в сопротивлении материалов и в теоретической механике. Внутренние силы. Метод сечений. Понятие о напряжении, его компоненты.</li> <li>Закон Гука для материала. Принцип Сен-Венана. Принцип независимости действия сил. Условия его применимости.</li> <li>Внутреннее усилие при осевом растяжении (сжатии) прямоосного призматического стержня. Эпюра продольной силы и характерные особенности ее очертания.</li> <li>Вывод формулы для нормального напряжения в поперечных сечениях стержня при растяжении (сжатии). Основная гипотеза.</li> <li>Условие прочности при растяжении (сжатии) и задачи, решаемые с его помощью. Допускаемое напряжение, коэффициент запаса по прочности.</li> <li>Продольная и поперечная деформации при растяжении (сжатии). Упругие постоянные материала. Закон Гука для осевой деформации стержня.</li> <li>Формула для определения абсолютной деформации при осевом растяжении (сжатии)</li> </ol> |
| Уметь           | рассчитывать в статически определимых системах неизвестные реакции связей и                                | <b>Примерное практическое задания для зачета:</b><br>Для схемы балки требуется :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Структур ный элемент компетенции | Планируемые результаты обучения                                                | Оценочные средства                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | строить эпюры внутренних силовых факторов при различных видах загружения.      | 1. Составить аналитические выражения изменения изгибающего момента М₂ и поперечной силы Q₂ на всех участков балки ; 2. Построить эпюры изгибающих моментов М₂ и поперечных сил Q₂, указав значения ординат во всех характерных сечениях участков балки ; 3. Руководствуясь эпюрами изгибающих моментов, вычертить приблизительный вид изогнутой оси балки ; 4. Определить положения опасных сечений и из условия прочности подобрать поперечный размер балки (круг диаметром d при допускаемом напряжении [σ]=280 МПа (сталь))  P=39.6 кН  m=35.2 кН/м  m=35.2 кН/м                                                                                                                                        |
| Владеть                          | навыками в построении эпюр внутренних усилий в статически неопределимых рамах. | Примерное практическое задания для зачета: Для схемы балки требуется:  1. Вычислить опорные реакции и проверить их; 2. Составить аналитические выражения изменения изгибающего момента Мх и поперечной силы Qу на всех участков балки; 3. Построить эпюры изгибающих моментов Мх и поперечных сил Qу, указав значения ординат во всех характерных сечениях участков балки; 4. Руководствуясь эпюрами изгибающих моментов, вычертить приблизительный вид изогнутой оси балки; 5. Определить положения опасных сечений и из условия прочности подобрать поперечный размер балки (двутавровое (ГОСТ 8239-72) при допускаемом напряжении [σ]=200 МПа (сталь)) 6. Определить значение прогиба в середине балки. |

| Структур<br>ный элемент<br>компетенции | Планируемые результаты обучения                                                                                                                                                                              | Оценочные средства                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                                                                                                                                                                                              | а=2 м — 2a=4 м — 2c=7.2 м — c=3.6 м — P=39.6 кН — м=35.2 кН·м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ОПК-2                                  | -                                                                                                                                                                                                            | ачи профессиональной деятельности на основе информационной и библиографической                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • • • •                                |                                                                                                                                                                                                              | их технологий и с учетом основных требований информационной безопасности                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Знать                                  | основные положения, гипотезы сопротивления материалов, аналитические и экспериментальные методы определения перемещений при изгибе; оценки прочности при простых и сложном сопротивлении, продольном изгибе. | <ol> <li>Перечень теоретических вопросов к зачету:</li> <li>Вывод формулы для определения угла закручивания вала. Условие жесткости при кручении и подбор сечения вала по условию жесткости.</li> <li>Понятие об изгибе балки. Условия возникновения плоского изгиба. Плоский поперечный и чистый изгибы. Внутренние усилия в балках, правило знаков. Эпюры внутренних усилий и характерные закономерности их очертания.</li> <li>Дифференциальные зависимости между изгибающим моментом, поперечной силой и интенсивностью распределенной нагрузки при плоском изгибе.</li> <li>Вывод формулы для нормального напряжения в поперечных сечениях балки при чистом изгибе. Условие прочности при чистом изгибе. Осевой момент сопротивления.</li> <li>Формула Д.И.Журавского для касательных напряжений в поперечном сечении балки при плоском поперечном изгибе. Эпюра касательного напряжения в балке прямоугольного поперечного сечения.</li> <li>Понятие о рациональной форме поперечных сечений балок, изготовленных из материала одинаково (или по-разному) сопротивляющегося растяжению и сжатию.</li> <li>Деформации при плоском изгибе. Дифференциальное уравнение изогнутой оси балки (точное и приближенное) второго порядка.</li> <li>Общий интеграл приближенного дифференциального уравнения изогнутой оси балки с одним участком. Граничные условия. Начальные параметры.</li> <li>Определение перемещений в балках с двумя и более участками. Метод начальных параметров сечения.</li> </ol> |

Примерное практическое задания для зачета: Для заданной двухопорной балки при указанных на схеме нагрузках и размерах требуется:

Уметь

определять линейные перемещения и углы поворота поперечных сечений в балках и

| Структур ный элемент компетенции | Планируемые результаты обучения                                                                                                                                                                                       | Оценочные средства                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | рамах при изгибе, нормальные напряжения в случаях сложного сопротивления и при продольном изгибе.                                                                                                                     | <ol> <li>Определить опорные реакции.</li> <li>Построить аналитически эпюры поперечных сил и изгибающих моментов.</li> <li>Установить опасные сечения для нормальных и для касательных напряжений.</li> <li>Подобрать двутавровое сечение, приняв [σ] = 160 МПа, и выполнить его проверку по нормальным напряжениям.</li> <li>Выполнить проверку по касательным напряжениям, приняв [τ] = 96 МПа.</li> <li>Построить для соответствующих опасных сечений эпюры нормальных и касательных напряжений.</li> <li>М, кН 20</li></ol> |
| Владеть                          | навыками в построении эпюр внутренних усилий, перемещений в статически определимых балках и рамах при изгибе, в оценке прочности стержней в случае простых деформаций, сложного сопротивления, при продольном изгибе. | Примерное практическое задания для зачета: Для балки, поперечное сечение которой составлено из двух швеллеров, требуется выбрать из рациональное расположение поперечного сечения и определить допустимое значение параметра нагрузки $F$ . Дано: материал − Сталь 5; $\sigma_T$ =280 Мпа; $l$ =50 см; $[n]$ =2, № швеллера − 20, $l_I/l$ = 1, $M/Fl$ = 2                                                                                                                                                                      |

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Сопротивление материалов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета в 3 семестре.

Зачет по данной дисциплине проводится в устной форме. Критерии оценки (в соответствии с формируемыми компетенциями и планируемыми результатами обучения):

При сдаче зачета:

- на оценку **«зачтено»** обучающийся показывает пороговый уровень сформированности компетенций ОПК-2, ПК-2, то есть должен показать знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку **«не зачтено»** результат обучения не достигнут, обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.