МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЭиАС ___ С.И. Лукьянов

26.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МЕТАЛЛУРГИЧЕСКАЯ ТЕПЛОТЕХНИКА

Направление подготовки (специальность) 22.03.02 МЕТАЛЛУРГИЯ

Направленность (профиль/специализация) программы Металлургия черных металлов

Уровень высшего образования - бакалавриат Программа подготовки - академический бакалавриат

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Теплотехнических и энергетических систем

 Курс
 3

 Семестр
 5

Магнитогорск 2019 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 22.03.02 Металлургия (уровень бакалавриата) (приказ Минобрнауки России от 04.12.2015 г. № 1427)

Рабочая программа рассмотрена и одобрена на з энергетических систем 11.02.2020, протокол № 4	аседании кафедры Теплотехнических и
11.02.2020, hporokon nº 4	
Зав. кафедрой	Е.Б. Агапитов
Рабочая программа одобрена методической ком $26.02.2020$ г. протокол № 5	иссией ИЭнАС
Председатель	С.И. Лукьянов
Согласовано: Зав. кафедрой Металлургии и химических техно	ологий Асс. Харченко
Рабочая программа составлена:	M.
ст. преподаватель кафедры ТиЭС	<u> Менгу</u> С.В. Осколков
Рецензент:	
зам.начальника ЦЭСТ ПАО "ММК", канд. техн.	наук В.Н. Михайловский

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2020 - 2021 чебном году на заседании кафедры Теплотехнических и энергетических систем					
	Протокол от <u>1 сентября 2020 г. № 1</u> Зав. кафедрой Е.Б. Агапитов				
Рабочая программа по учебном году на засед	ересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 дании кафедры Теплотехнических и энергетических систем				
	Протокол от				
Рабочая программа по учебном году на засе;	ересмотрена, обсуждена и одобрена для реализации в 2022 - 2023 дании кафедры Теплотехнических и энергетических систем				
Рабочая программа по учебном году на засед	ересмотрена, обсуждена и одобрена для реализации в 2022 - 2023				
учебном году на засед	дании кафедры Теплотехнических и энергетических систем				

1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины «Металлургическая теплотехника» является:

развитие у студентов устойчивых навыков применения фундаментальных законов теплообмена и механики газов, современной теории горения и рационального сжигания топлива;

формирование у студентов умения чтения схем, чертежей конструкций и элементов высокотемпературных металлургических печей и устройств;

изучение свойств и требований предъявляемых к материалам, применяемым при сооружении печей;

формирование у студентов на основе рациональной технологии нагрева металла, умений тепловых расчетов;

приобретение навыков тепловых расчетов печей, горелок, форсунок и горения газообразного, жидкого и твердого топлива.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Металлургическая теплотехника входит в базовую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Теплофизика

Химия

Физика

Математика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Моделирование процессов и объектов в металлургии

Подготовка к защите и защита выпускной квалификационной работы

Научно-исследовательская работа

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Металлургическая теплотехника» обучающийся должен обладать следующими компетенциями:

Структурный элемент компетенции	Планируемые результаты обучения
ОПК-4 готовн	остью сочетать теорию и практику для решения инженерных задач
Знать	 основные определения и понятия базовых знаний в области естественнонаучных дисциплин; фундаментальные основы естественнонаучных дисциплин, основные методы решения типовых задач по известным алгоритмам и правилам; основные закономерности процессов массопереноса применительно к технологическим процессам, агрегатам и оборудованию переработки (обогащения) минерального сырья, производства обработки черных и цветных металлов.

Уметь	- объяснять типичные модели задач в области металлургической теплотехники; - обсуждать способы эффективного решения проблем, возникающих в ходе профессиональной деятельности; - распознавать эффективное решение от неэффективного, при решении задач сложного теплообмена в рабочем пространстве печи.
Владеть	- практическими навыками использования элементов проектирования; - навыками и методиками обобщения результатов проектирования; - способами совершенствования профессиональных знаний и умений проектирования путем использования возможностей информационной среды.

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 5 зачетных единиц 180 акад. часов, в том числе:

- контактная работа 73,5 акад. часов:
- аудиторная 68 акад. часов;
- внеаудиторная 5,5 акад. часов
- самостоятельная работа 70,8 акад. часов;
- подготовка к экзамену 35,7 акад. часа

Форма аттестации - курсовой проект, экзамен

Раздел/ тема дисциплины	Семестр	конт	худиторі гактная р акад. ча лаб. зан.	оабота	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
1. Раздел 1. Металлургиче печи, теплогенерация в по основы теории горения.								
1.1 Введение. Назначение тепловых процессов и агрегатов. Общая схема металлургической печи.		4			7	Проработка лекционного материала (Тема 1.1, Приложение 1)	Наличие конспектов лекций.	ОПК-4
1.2 Теплогенерация в печах. Виды энергии, используемой в печах	5	4	2	2/2И	7	Проработка лекционного материала; подготовка отчета к лабораторной работе; решение задач (Тема 1.2, Приложение 1)	Наличие конспектов лекций; сдача отчета по лабораторной работе; сдача практических задач.	ОПК-4
1.3 Основы теории горения, устройства для сжигания топлива, утилизация теплоты продуктов сгорания		4	8/4И	4	6	Проработка лекционного материала; подготовка отчета к лабораторной работе; решение задач (Тема 1.3, Приложение 1)	Наличие конспектов лекций; сдача отчета по лабораторной работе; сдача практических задач.	ОПК-4
Итого по разделу		12	10/4И	6/2И	20			
2. Раздел 2. Внешний внутренний теплообмен	2. Раздел 2. Внешний и							
2.1 Внешний и внутренний теплообмен в рабочем пространстве печей	5	2	2	2	5	Проработка лекционного материала; подготовка отчета к лабораторной работе; решение задач (Тема 2.1, Приложение 1)	Наличие конспектов лекций; сдача отчета по лабораторной работе; сдача практических задач.	ОПК-4

2.2 Движение жидкости и газов в технологических агрегатах черной и цветной металлургии Итого по разделу		4	2/2И	2/2И	5	Проработка лекционного материала; подготовка отчета к лабораторной работе; решение задач (Тема 2.2, приложение 1)	Наличие конспектов лекций; сдача отчета по лабораторной работе; сдача практических задач.	ОПК-4
3. Раздел 3. Основные ти промышленных печей	ипы	<u> </u>						L
3.1 Материалы, используемые в конструкциях высокотемпературных агрегатов		4		4/2И	10	Проработка лекционного материала; решение задач (Тема 3.1, Приложение 1)	Наличие конспектов лекций; сдача практических задач.	ОПК-4
3.2 Основы технологии нагрева металла, выбор рациональных температурных и тепловых режимов	5	4	3	3	10	Проработка лекционного материала; подготовка отчета к лабораторной работе; решение задач (Тема 3.2, Приложение 1)	Наличие конспектов лекций; сдача отчета по лабораторной работе; сдача практических задач.	ОПК-4
3.3 Теплообменные аппараты и их сравнительная оценка		4			10	Проработка лекционного материала (Тема 3.3, Приложение 1)	Наличие конспектов лекций.	ОПК-4
3.4 Основные типы промышленных печей и важнейшие характеристики их тепловой работы		4			10,8	Проработка лекционного материала (Тема 3.4, Приложение 1)	Наличие конспектов лекций.	ОПК-4
Итого по разделу		16	3	7/2И	40,8			
Итого за семестр		34	17/6И	17/6И	70,8		экзамен,кп	
Итого по дисциплине		34	17/6И	17/6И	70,8		курсовой проект, экзамен	ОПК-4

5 Образовательные технологии

Для решения предусмотренных видов учебной работы при изучении дисциплины «Металлургическая теплотехника» в качестве образовательных технологий используются как традиционные, так и модульно-компетентностные технологии.

Целями образовательных и информационных технологий являются:

- активизирование мышления обучающихся;
- формирование интереса к изучаемому материалу;
- развитие интеллекта и творческих способностей обучающихся.

Лекционный материал закрепляется на лабораторных работах, где применяется совместная деятельность студентов в группе, направленная на решение общей задачи путем сложения результатов индивидуальной работы членов группы. Для развития и совершенствования коммуникативных способностей студентов организуются практические занятия в виде дискуссий, анализа реальных проблемных ситуаций и междисциплинарных связей из различных областей в контексте решаемой задачи. Передача необходимых теоретических знаний и формирование представлений по курсу происходит с применением мультимедийного оборудования. На занятиях внедряются такие информационные технологии, как использование электронных изданий (чтение лекций с использованием слайд-презентаций, электронного курса лекций, графических объектов, видео- аудио- материалов (через Интернет). Самостоятельная работа стимулирует студентов к самостоятельной проработке тем в процессе написания рефератов, подготовки к дискуссиям, к контрольным работам и тестированию. Этапы познавательной деятельности студентов предполагают последовательно постановку интересующей их проблемы, выдвижение гипотез при ее решении, выражение решения гипотезы научным языком, а также реализация продукта в виде публичного выступления, доклада или презентации. Корректировки образовательного процесса проходят с использованием обратной связи между преподавателем и обучающимися на консультациях, а также при текущем и промежуточном контроле.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

- 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Тинькова, С.М. Теплофизика и металлургическая теплотехника: учеб. пособие / С.М. Тинькова. Красноярск: Сиб. федер. ун-т, 2017. 168 с. ISBN 978-5-7638-3751-3. Текст: электронный. URL: https://znanium.com/catalog/product/1032123
- 2. Дзюзер, В.Я. Теплотехника и тепловая работа печей: учебное пособие / В.Я. Дзюзер. 3-е изд., стер. Санкт-Петербург: Лань, 2017. 384 с. ISBN 978-5-8114-1949-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/93750

б) Дополнительная литература:

1. Круглов, Г.А. Теплотехника: учебное пособие / Г.А. Круглов, Р.И. Булгакова, Е.С. Круглова. — 2-е изд., стер. — Санкт-Петербург: Лань, 2012. — 208 с. — ISBN 978-5-8114-1017-0. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/3900

- 2. Брюханов, О.Н. Тепломассообмен: Учебник / О.Н. Брюханов, С.Н. Шевченко. Москва: НИЦ Инфра-М, 2012. 464 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-004803-1. Текст: электронный. URL: https://znanium.com/catalog/product/258657
- 3. Матвеева, Г.Н. Экспериментальное исследование процессов теплообмена: учебное пособие / Г.Н. Матвеева, Ю.И. Тартаковский, Б. К. Сеничкин. 2-е изд., подгот. по печ. изд. 2008 г. Магнитогорск: МГТУ, 2011. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:

https://magtu.informsystema.ru/uploader/fileUpload?name=989.pdf&show=dcatalogues/1/11191 53/989.pdf&view=true

- 4. Макаров, А.Н. Теплообмен в электродуговых и факельных металлургических печах и энергетических установках: учебное пособие / А.Н. Макаров. Санкт-Петербург: Лань, 2014. 384 с. ISBN 978-5-8114-1653-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/50681 (дата обращения: 30.10.2020). Режим доступа: для авториз. пользователей.
- 6. Копцев, В.В. Тепловой расчет коксогазовой вагранки: учебное пособие / В.В. Копцев, А.В. Тихонов; МГТУ. Магнитогорск: МГТУ, 2015. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:

7. Матвеева, Г.Н. Экспериментальное исследование процессов теплообмена: учебное пособие / Г.Н. Матвеева, Ю.И. Тартаковский, Б.К. Сеничкин. - 2-е изд., подгот. по печ. изд. 2008 г. - Магнитогорск: МГТУ, 2011. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL:

https://magtu.informsystema.ru/uploader/fileUpload?name=989.pdf&show=dcatalogues/1/11191 53/989.pdf&view=true - Макрообъект. - Текст: электронный. - Сведения доступны также на CD-ROM.

в) Методические указания:

- 1. Злоказова, Н.Г., Иванов, Д.А. Лабораторный практикум по дисциплинам «Топливо и ТСУ», «Теория и практика теплогенерации». Магнитогорск: Изд-во Магниторск. гос. техн. ун-та им. Г.И.Носова, 2013. 53 с.
- 2. Свечникова, Н.Ю. Практикум по технической термодинамике и теплотехнике: практикум / Н.Ю. Свечникова, С.В. Юдина, А.В. Горохов; МГТУ. Магнитогорск: МГТУ, 2018. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3545.pdf&show=dcatalogues/1/1515 134/3545.pdf&view=true Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии	
7Zip	свободно распространяемое ПО	бессрочно	

MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
MS Windows 7 Professional (для классов)	Д-1227-18 от 08.10.2018	11.10.2021
Linux Calculate	свободно	бессрочно
FAR Manager	свободно	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Электронная база периодических изданий East View	
Information Services, OOO «ИВИС»	https://dlib.eastview.com/
Национальная информационно-аналитическая	URL:
система – Российский индекс научного цитирования	https://elibrary.ru/project_risc.asp
(РИНЦ)	- v - v
Поисковая система Академия Google (Google	URL: https://scholar.google.ru/
Scholar)	
Информационная система - Единое окно доступа к	URL: http://window.edu.ru/
информационным ресурсам	ore. intp://window.edu.ru/
Федеральное государственное бюджетное	
учреждение «Федеральный институт промышленной	URL: http://www1.fips.ru/
собственности»	
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalog
V 1	ues/
Электронные ресурсы библиотеки МГТУ им. Г.И.	
Носова	<u>ult.asp</u>
Университетская информационная система	https://uisrussia.msu.ru
РОССИЯ	
Международная наукометрическая реферативная и	
полнотекстовая база данных научных изданий «Web	nttp://weborscience.com
of science»	
Международная реферативная и полнотекстовая	http://scopus.com
справочная база данных научных изданий «Scopus»	
Международная база полнотекстовых журналов Springer Journals	http://link.springer.com/
Международная коллекция научных протоколов по	1 //
различным отраслям знаний Springer Protocols	http://www.springerprotocols.com/
Международная база справочных изданий по всем	http://www.comin.com.com/wafaran.com
отраслям знаний SpringerReference	http://www.springer.com/references
Международная база научных материалов в области	http://materials.springer.com/
физических наук и инжиниринга SpringerMaterials	mtp.//materiais.springer.com/
Международная реферативная и полнотекстовая	
справочная база данных научных изданий «Springer	https://www.nature.com/siteindex
Nature»	
Архив научных журналов «Национальный	
	https://archive.neicon.ru/xmlui/
НЭИКОН)	

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа. Мультимедийные средства хранения, передачи и представления информации.

Учебная аудитория для проведения лабораторных работ: лаборатория топлива и химводоподготовки. Автоматическая насосная станция OASIS; комплекс лабораторных установок по определению характеристик топлива; комплекс лабораторных установок по изучению свойств воды; дизельная электростанция ДХМ-30; лабораторная установка по изучению последовательной и параллельной работы насосов; комплекс лабораторных установок по изучению физических и химических свойств веществ; макет газотурбинной установки; вискозиметр, вытяжной шкаф, флотомашина; печь, центробежный вентилятор; весы электронные, микроскоп.

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Доска, мел.

Учебные аудитории для выполнения курсового проектирования, помещения для самостоятельной работы обучающихся. Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования. Стеллажи, сейфы для хранения учебного оборудования. Инструменты для ремонта лабораторного оборудования.

Тесты для самопроверки

	Текст вопроса	Варианты ответов	Отметка о выборе эталона	Рейтинг сложности вопросов (1-легкий, 2-средний, 3-сложный)	
	классификация по происхождению и агрегатному состоянию	Эталон			
		химический состав	Эталон		
1	К общей характеристике	теплота сгорания	Эталон	2	
-	топлива относятся:	коэффициент расхода воздуха при сжигании		_	
		количество необходимого для горения воздуха и выход продуктов сгорания			
	Важнейшие химические	углерод и кислород			
	элементы топлива	углерод и водород	Эталон		
2	органического	кислород и водород		1	
	происхождения:	углерод и азот			
		Al_2O_3	Эталон		
	D	SiO ₂	Эталон		
3	В состав негорючей минеральной части топлива - золы входят	CaO	Эталон	1	
		CO ₂		1	
		$oxed{SO_2} oxed{N_2}$			
		органическая			
	Какая сера, содержащаяся	колчеданная			
4	в топливе, не участвует в горении?	сульфатная	Эталон	2	
		органическая и колчеданная	0.1001011		
		для твердого топлива	Эталон		
		для жидкого топлива	Эталон		
5	Химический анализ топлива по элементному	для газообразного топлива искусственного происхождения		3	
	составу применяют	для газообразного топлива естественного происхождения			
		для смеси газообразных топлив			
		гигроскопическая			
6	Какая часть влаги, содержащейся в топливе,	внешняя, удерживаемая механически	Эталон	2	
	теряется при сушке?	химически связанная		2	
	терлетел при сушке:	гигроскопическая и химически связанная			
7	Какая теплота сгорания топлива соответствует	высшая теплота сгорания		2	

количеству теплоты, выделяемой при сгорании в печах и топках? В каком виде твердого топлива содержание углерода в составе органической массы количеству теплоты, воздуха воздуха при обогащении дутья кислородом при сжигании с избытком воздуха древесина торф бурые угли	
в печах и топках? при обогащении дутья кислородом при сжигании с избытком воздуха В каком виде твердого топлива содержание углерода в составе бурые угли	
В каком виде твердого топлива содержание 8 углерода в составе бурые угли	
В каком виде твердого топлива содержание 8 углерода в составе бурые угли	
В каком виде твердого топлива содержание углерода в составе бурые угли	
топлива содержание торф 8 углерода в составе бурые угли	
8 углерода в составе бурые угли	
oprawijackoŭ Macci i	
органицеской массы	2
может достигать 80-96%?	
Какому газообразному доменный (колошниковый) газ Эталон	
топливу с теплотой коксовый газ	
сгорания 3,5-4,0 коксодоменная смесь	
МДж/м ³ соответствует природный газ	_
9 примерный состав: 9-14% смесь доменного и природного	2
СО ₂ ; 25-30% СО;	
57-58% N ₂ ; остальное - смесь коксового и природного	
CH_4HH_2 . газов	
7000 кДж/кг	
Теплота сгорания 29,3 МДж/кг Эталон	
10 условного топлива: 29,3 ккал/кг	2
35,5 МДж/кг	
Интервал значений 0,55-0,65	
«пирометрического 0,65-0,85 Эталон	
коэффициента» для 0,85-0,95	
11 ориентировочного 0,95-1,05	3
определения 0.35-0.45	
действительной температуры в печах и 0 45-0 55	
температуры в печах и 0,45-0,55	
тепловой нагрузкой печи	
Наибольшее количество тепловой мощностью печи Эталон	
теплоты, которое печь может нормально (без	_
12 недожога топлива в коэффициентом использования	3
рабочем пространстве) тепла	
усвоить, называется: коэффициентом полезного	
действия	
интенсивность работы печи Эталон	
Vисли над	
Удельная печи производительность населей облем производительность	_
13 производительность (напряженность пода часовой объем производства	3
печи) характеризует: % выхода годного продукта	
размеры рабочего пространства	
агрегата	
Что учитывается в статье все химические реакции, идущие с	
«теплота экзотермических положительным тепловым эффектом	
14 реакции» приходной эффектом все химические реакции, идущие с	2
теплотехнических положительным тепловым Эталон	
агрегатов? эффектом, кроме реакций горения	

		топлива.			
		теплота, выделяемая при горении			
		топлива			
		теплота, вносимая исходными			
		технологическими материалами			
		теплота, вносимая нагретыми воздухом и топливом			
		печи постоянного действия,			
		температура в которых не	Эталон		
		меняется со временем			
		печи периодического действия, с			
	К какому типу печей	переменной во времени		_	
15	относятся методические	температурой		1	
	печи?	печи с одинаковой температурой			
		по длине рабочего пространства печи с максимальной			
		температурой при входе заготовок			
		в рабочее пространство			
		коэффициентом полезного	Эталон		
		теплоиспользования (к.п.т.)	Эталон		
	Качество работы печи, ее	коэффициентом полезного			
16	совершенство как	действия (к.п.д.)		2	
10	теплового агрегата характеризуется:	количеством теплоты, которое подают в печь		3	
		(МДж/ч)			
		удельным расходом топлива			
		(т.у.т./т продукции)			
	К огнеупорным относят	1580 °C	Эталон		
17	материалы, огнеупорность которых не ниже (по стандартам и	1780 °C		2	
17		1680 °C		3	
	терминологии России):	1880 °C			
		огнеупорные			
10	Изделия с огнеупорностью 1770-2000 °C относятся к	высокоогнеупорные	Эталон	2	
18	виду:	высшей огнеупорности		3	
	виду.	теплоизоляционные			
		шамотные			
	В каких огнеупорах в	динасовые	Эталон		
19	качестве основы	высокоглиноземистые		3	
	преобладает SiO ₂ ?	циркониевые			
	<u>-</u>	форстеритовые			
		кислые			
20	В каких огнеупорах	основные	Эталон	3	
20	основой является MgO?	вспомогательные		J	
		нейтральные			
	Какие из приведенных	магнезитовые			
21	огнеупоров имеют	динасовые		2	
<u></u>	меньший коэффициент	пеношамотные	Эталон	۷	
	теплопроводности?	шамотные			
22 Какие	Какие огнеупоры	шамотные		2	
22	выдерживают меньшее	динасовые	Эталон	3	

	количество теплосмен	магнезитовые				
	(термоударов)?	высокоглиноземистые				
		увеличение плотности набивки				
		ваты, асбеста и др.				
		увлажнение пористых				
	Факторы, улучшающие	теплоизоляторов				
	качество теплоизоляции	применение теплоизоляции	Эталон			
23	печей, топок,	большей пористости	31651011	1		
	паропроводов	применение теплоизоляции				
	парепреведев	большей плотности				
		применение	_			
		вакуумно-многослойной	Эталон			
		теплоизоляции				
	К какой группе относятся	без предварительного смешения	Эталон			
	нормализованные горелки	плоскопламенные				
24	типа «труба в трубе»	короткопламенные		2		
	конструкции	с предварительным смешением				
	Стальпроекта?	инжекционные				
	Укажите правильную	CO ₂ , H ₂ O, N ₂				
	последовательность убывания концентрации	N_2 , H_2O , CO_2				
25	компонентов продуктов	N_2 , CO_2 , H_2O	Эталон	3		
	горения топлива в печах и топках при сжигании в	H ₂ O, N ₂ , CO ₂				
		H_2O , CO_2 , N_2				
	атмосферном воздухе	CO_2 , N_2 , H_2O				
	Какие стали обладают	малоуглеродистые				
	меньшим коэффициентом	среднеуглеродистые				
26	теплопроводности и	высокоуглеродистые		1		
	требуют более медленного	низколегированные				
	нагрева?	высоколегированные	Эталон			
		изменения направления потока	Эталон			
	TC	изменения сечения канала	Эталон			
	Какие из перечисленных	вход потока в канал и выход из	Эталон			
	факторов приводят к	него	Taion			
37	потерям давления на	трение о стенки канала		2		
	местные сопротивления при движении газов по	слияние и разделение потоков	Эталон			
	трубам и каналам?	прохождение через плоскую	Эталон			
	ip journ ii kuitustum.	решетку или дроссельную шайбу	Tanon			
		шероховатость стен труб, каналов				

Перечень вопросов для самостоятельной работы

Тема 1 1

- 1. Назначение и классификация металлургических печей.
- 2. Назначение и общая схема промышленной печи.

Тема 1.2

- 1. Нагрев дуговой и плазменный. Назначение, области эффективного применения.
- 2. Нагрев индукционный. Назначение, области эффективного применения
- 3. Нагрев электросопротивлением и электроннолучевой. Назначение, области эффективного применения.

Тема 1.3

- 1. Виды топлива и их состав. Условное топливо.
- 2. Основные характеристики топлива.
- 3. Устройства для сжигания топлива.
- 4. Содержание и последовательность расчетов горения топлива.

Тема 2.1

- 1. Основные закономерности механики печных газов.
- 2. Составление и анализ тепловых балансов печей, основные теплотехнические показатели работы печей и пути энергосбережения.

Тема 2.2

- 1. Свободные и частично ограниченные струйные течения.
- 2. Ограниченные струйные течения. Инжектор и эжектор.
- 3. Виды движения газов в печах.
- 4. Потери энергии при движении газов.

Тема 3.1

- 1. Материалы, применяемые в печах.
- 2. Основные элементы конструкций печей.
- 3. Основные типы плавильных, нагревательных и термических печей.
- 4. Огнеупорные материалы, их основные свойства.
- 5. Теплоизоляционные материалы, их основные свойства.

Тема 3.2

- 1. Основы технологии нагрева металла. Типовые режимы нагрева «тонких» и «массивных» заготовок.
 - 2. Особенности нагрева качественных сталей.
 - 3. Основы расчета нагрева «тонких» и «массивных» заготовок.
 - 4. Влияние условий охлаждения металла на его свойства.
 - 5. Виды брака при нагреве металла и пути снижения потерь металла.
 - 6. Коэффициент теплопроводности сталей и факторы, влияющие на него.

Тема 3.3

- 1. Использование вторичных энергоресурсов. Типы теплообменников, их назначение и сравнительная оценка.
- 2. Основы теории подобия и моделирования теплотехнических и теплоэнергетических процессов и оборудования.
 - 3. Очистка дымовых газов.

Тема 3.4

- 1. Классификация промышленных печей.
- 2. Вспомогательное оборудование печей.

Курсовой проект

Цель выполнения проекта — приобретение студентами навыков выполнения теплотехнических расчетов процессов, совершаемых в промышленных печах, выбора конструктивных решений печей и их элементов, умений пользоваться справочной и нормативной литературой по теплотехнике, использовать различные диаграммы для расчета параметров и процессов.

Для студентов профиля «Металлургия черных металлов» предусмотрены следующие темы курсовых проектов: «Расчет воздухонагревателя доменной печи», «Тепловой расчет регенератора».

Курсовой проект включает полный тепловой и аэродинамический расчеты печи (регенеративного воздухонагревателя) и состоит из пояснительной записки и графической части. Графическая часть в виде 1-2 разрезов выполняется на одном листе формата A1.

Пояснительная записка должна быть изложена на 20-30 с. бумаги размера 210 х 297 на одной стороне листа, оформлена в обложке, снабжена оглавлением и списком использованной литературы. Пояснительная записка в целом или отдельные ее элементы могут быть представлены распечаткой программы и ее решения на компьютере.

Элементы печи (воздухонагревателя), дымового тракта, горелок и вентиляторов выполняются в пояснительной записке с соблюдением требований ЕСКД.

Курсовой проект выполняется в следующей последовательности (по этапам):

- 1. Характеристика регенератора.
- 2. Расчет горения топлива.
- 3. Определение калориметрической температуры горения топлива.
- 4. Расчет теплообмена в насадке.
- 5. Расчет поверхности нагрева насадки.
- 6. Определение размеров регенератора.
- 7. Аэродинамический расчет дымового тракта.
- 8. Расчет высоты дымовой трубы.

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации

Структур ный элемент компетен ции	Планируемые результаты обучения	Оценочные средства							
OHK-4 1010.		рактику для решения инженерных задач							
	- основные определения и понятия базовых знаний								
	в области								
	естественнонаучных	Список контрольных вопросов:							
	дисциплин;	1. Виды топлива и их состав. Условное топливо.							
	- фундаментальные основы	2. Основные характеристики топлива.							
	естественнонаучных	3. Устройства для сжигания топлива.							
	дисциплин, основные	4. Содержание и последовательность расчетов горения топлива.							
	методы решения типовых	5. Нагрев дуговой и плазменный. Назначение, области эффективного применения.							
	задач по известным	6. Нагрев индукционный. Назначение, области эффективного применения							
Знать	алгоритмам и правилам;	7. Нагрев электросопротивлением и электроннолучевой. Назначение, области эффективного применения							
Эпать	- основные закономерности	8. Основные закономерности механики печных газов.							
	процессов массопереноса	9. Свободные и частично ограниченные струйные течения.							
	применительно к	10. Ограниченные струйные течения. Инжектор и эжектор.							
	технологическим	11. Виды движения газов в печах.							
	процессам, агрегатам и	12. Потери энергии при движении газов.							
	оборудованию переработки	13. Коэффициент теплопроводности сталей и факторы, влияющие на него.							
	(обогащения)	14. Влияние условий охлаждения металла на его свойства.							
	минерального сырья,	15. Основы теории подобия и моделирования теплотехнических и теплоэнергетических процессов и оборудования.							
	производства обработки								
	черных и цветных металлов.								
	- объяснять типичные	Примеры задач:							
	модели задач в области	Пример 1. Определить температуру в центре сляба из малоуглеродистой стали толщиной б=0.3м, нагреваемого в методической							
	металлургической	зоне печи с шагающим подом с $t_{\text{пов}} = 0^{\circ}$ С до $t_{\text{пов}} = 600^{\circ}$ С, если температура продуктов сгорания в зоне печи меняется от 800° С до							
Уметь	теплотехники;	1300°С в конце зоны. Средний коэффициент теплоотдачи принять 100 Вт/м ² ·К							
	- обсуждать способы	Пример 2. Рассчитать рекуператор для подогрева воздуха для следующих условий: температура воздуха на входе – выходе							
	эффективного решения	рекуператора: 0-450°C, температура дыма на входе в рекуператор - 1050°C, расход газа на отопление печи B=5.46 м ³ /с,							
	проблем, возникающих в	количество дыма на входе в рекуператор $V=34.9 \text{ м}^3/\text{с}$. Состав дымовых газов: $N_2=72\%$, $CO_2=11\%$, H_2 O =17%							

Структур ный элемент компетен ции	Планируемые результаты обучения		Оценочные средства												
	ходе профессиональной деятельности; - распознавать эффективное решение от неэффективного, при решении задач сложного теплообмена в рабочем пространстве печи.														
		Вариа	нты зад	аний для	выполнен Тип	ия курсово Р Топливо	асчет воз	духонаг		ия доменн осодержай		Vandah	Тепло	Разме	Количест
	- практическими навыками использования элементов проектирования - навыками и методиками обобщения результатов проектирования - способами совершенствования профессиональных знаний и умений проектирования путем использования возможностей информационной среды.		ОД	-ратур	насадк	ТОПЛИВО	Темпе ра-тур	Давл ение	Благо	эсодержа	ние,17м	Коэфф и-циен	та	р	во
		-Ta	дуть	a	И		a	Дуть	Дом	Приро	Возду	Т	сгоран	ячейк	воздухона
		Номер вар-та	я, м ³ /м	подог			воздух	я, Мн/	енно	дного	xa	расход	ИЯ	И	-гревател ей в блоке
		мер	М*/М ИН	рева воздух			а на входе	M ²	го газа	газа		а воздух	смеси топли		еи в олоке
		Ho		a			в насадк у					a	в, МДж/ м ³		
Владеть		1	3500	1200	Блочн ая БНИ-1 2-2	Дом.газ +прир.г аз	115	0.32	32	19	15	1.23	5.2	Ø 41	3
		2	2600	1230	Блочн ая БНИ-1 2-2	Дом.газ +прир.г аз	140	0.34	25	40	25	1.2	8.0	Ø 41	4
		3	3100	1170	Прямо угольн	Дом.газ +прир.г аз	130	0.35	35	25	18	1.25	5.1	60x60	3
		4	3300	1150	Блочн ая БНИ-1 2-2	Дом.газ +прир.г аз	100	0.37	30	35	23	1.22	5.2	Ø 41	3

Структур ный элемент компетен ции	Планируемые результаты обучения	Оценочные средства													
		5	3500	1220	Фасон ная-Н К-2	Дом.газ +прир.г аз	110	0.39	35	35	19	1.2	5.0	55x55	4
		6	3600	1150	Фасон ная-Н К-2	Дом.газ +прир.г аз	125	0.36	28	32	25	1.24	5.1	65x65	3
		7	2900	1190	Ребри стая- К-2Н	Дом.газ +прир.г аз	120	0.32	25	30	20	1.24	5.3	65x65	3
		8	3000	1220	Прямо угольн	Дом.газ +прир.г аз	180	0.33	23	28	20	1.21	5.3	60x60	4
		9	5000	1200	Блочн ая БНИ-1 2-2	Дом.газ +прир.г аз	100	0.43	33.7	13.5	25	1.25	5.1	Ø 41	4
		10	3600	1150	Фасон ная-Н К-2	Дом.газ +прир.г аз	125	0.32	25.2	9.73	25	1.2	5.1	65x65	4
		11	2900	1180	Фасон ная-Н К-2	Дом.газ +прир.г аз	150	0.29	30	25	20	1.25	5.0	55x55	3
		12	2700	1250	Фасон ная-Н К-2	Дом.газ +прир.г аз	150	0.35	30	25	18	1.22	5.2	55x55	4
		13	2700	1000	Фасон ная-Н К-2	Дом.газ +прир.г аз	110	0.31	33.7	18.5	14	1.2	4.8	65x65	4
		14	3800	1230	Фасон ная-Н К-2	Дом.газ +прир.г аз	120	0.39	33.7	18.5	18	1.23	4.9	55x55	4
		15	2300	1170	Ребри стая- К-2Н	Дом.газ +прир.г аз	130	0.27	40	30	18	1.22	4.9	65x65	4

Структур ный элемент компетен ции	Планируемые результаты обучения	Оценочные средства												
		Тепловой расчет регенератора												
		Вариа	Температ	Средняя	Вид	Максималь	Температ	Средний	Тип	Разме	Продолжительн			
		HT	ypa	температ	топлива	ная	ypa	коэффици	насадки	p	ость периода,			
			воздуха	ypa		тепловая	продукто	ент		ячейк	мин.			
			на входе в	подогрев		нагрузка	В	расхода		и, мм				
			регенерат	а воздуха, С		печи, МВт	сгорания	воздуха в						
			op, C				на входе в регенерат	регенерат оре						
							op, C	орс						
		1	20	970	Прир.газ+1	46.9	1570	1.44	Каупер	160x1	9			
					5% мазута				a	60				
		2	25	1000	Прир.газ+2	44.4	1520	1.46	Петерсе	120x1	10			
		3	30	1050	0% мазута Прир.газ+2	46.0	1560	1.48	на Сименс	20 165x1	11			
			30	1030	11рир.1 аз+2 5% мазута	40.0	1300	1.40	а	65	11			
		4	35	1110	Прир.газ+3	48	1500	1.50	Брусков	140x1	12			
					0% мазута				ая	40				
		5	40	950	Прир.газ+1	50	1560	1.3	Каупер	100x1	9			
					5% мазута				a	00				
		6	45	1050	Прир.газ+2	48.1	1490	1.34	Петерсе	120x1 20	10			
		7	50	1100	0% мазута Прир.газ+2	53.1	1480	1.36	на Сименс	140x1	11			
			30	1100	5% мазута	33.1	1460	1.30	а	40	11			
		8	55	1000	Прир.газ+3	55.5	1530	1.38	Брусков	100x1	12			
					0% мазута				ая	00				
		9	20	1150	Прир.газ+1	58.2	1570	1.4	Каупер	120x1	9			
					5% мазута				a	20				
		10	25	950	Прир.газ+2	54.3	1520	1.44	Петерсе	140x1	10			
		11	30	1000	0% мазута Прир.газ+2	56.5	1560	1.46	на Сименс	40 100x1	11			
			30	1000	11рир.1 аз+2 5% мазута	30.3	1300	1.40	а	00	11			
		12	35	1050	Прир.газ+3	48.1	1500	1.48	Брусков	120x1	12			
					0% мазута				ая	20				

Структур ный элемент компетен ции	Планируемые результаты обучения	Оценочные средства											
		13	40	1100	Прир.газ+1 5% мазута	53.1	1560	1.50	Каупер а	140x1 40	9		
		14	45	980	Прир.газ+2 0% мазута	55.5	1490	1.3	Петерсе на	100x1 00	10		
		15	50	950	Прир.газ+2 5% мазута	58.2	1480	1.34	Сименс	120x1 20	11		
		16	20	1000	Прир.газ+3 0% мазута	54.3	1530	1.36	Брусков ая	140x1 40	12		
		17	25	1050	Прир.газ+1 5% мазута	56.5	1570	1.38	Каупер а	100x1 00	9		
		18	30	1100	Прир.газ+2 0% мазута	48.1	1520	1.4	Петерсе на	120x1 20	10		
		19	35	980	Прир.газ+2 5% мазута	53.1	1560	1.44	Сименс	140x1 40	11		
		20	40	1000	Прир.газ+3 0% мазута	55.5	1500	1.46	Брусков ая	100x1 00	12		
		21	45	1050	Прир.газ+1 5% мазута	58.2	1560	1.48	Каупер а	120x1 20	9		
		22	50	1100	Прир.газ+2 0% мазута	54.3	1490	1.50	Петерсе на	140x1 40	10		
		23	20	950	Прир.газ+2 5% мазута	56.5	1480	1.3	Сименс	100x1 00	11		
		24	25	1000	Прир.газ+3 0% мазута	44.4	1530	1.34	Брусков ая	120x1 20	12		
		25	30	1050	Прир.газ+1 5% мазута	46.0	1480	1.36	Каупер а	140x1 40	9		

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Металлургическая теплотехника» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое залание.

Показатели и критерии оценивания экзамена:

- на оценку «отлично» (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку «хорошо» (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку «удовлетворительно» (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку «неудовлетворительно» (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку «неудовлетворительно» (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

Показатели и критерии оценивания курсового проекта:

- на оценку «отлично» (5 баллов) работа выполнена в соответствии с заданием, обучающийся показывает высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку «хорошо» (4 балла) работа выполнена в соответствии с заданием, обучающийся показывает знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- на оценку «удовлетворительно» (3 балла) работа выполнена в соответствии с заданием, обучающийся показывает знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку «неудовлетворительно» (2 балла) задание преподавателя выполнено частично, в процессе защиты работы обучающийся допускает существенные ошибки, не может показать интеллектуальные навыки решения поставленной задачи.
- на оценку «неудовлетворительно» (1 балл) задание преподавателя выполнено частично, обучающийся не может воспроизвести и объяснить содержание, не может показать интеллектуальные навыки решения поставленной задачи.