### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ



Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов

03.03.2021 г.

### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

### ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФИНИШНОЙ ОБРАБОТКИ ИЗДЕЛИЙ В АДДИТИВНОМ ПРОИЗВОДСТВЕ

Направление подготовки (специальность) 15.04.01 Машиностроение

Направленность (профиль/специализация) программы Аддитивные технологии в машиностроении

Уровень высшего образования - магистратура

Форма обучения очная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Машины и технологии обработки давлением и машиностроения

Kypc 1

Семестр 2

Магнитогорск 2021 год Рабочая программа составлена на основе ФГОС ВО - магистратура по направлению подготовки 15.04.01 Машиностроение (приказ Минобрнауки России от 14.08.2020 г. № 1025)

Рабочая программа рассмотрена и одобрена на заседании кафедры Машины и технологии обработки давлением и машиностроения 25.02.2021, протокол № 6

Зав. кафедрой 况 С.И. Платов

Рабочая программа одобрена методической комиссией ИММиМ 03.03.2021 г. протокол № 5

Председатель

А.С. Савинов

Рабочая программа составлена:

доцент кафедры МиТОДиМ, канд. техн. наук

Р.Н. Амиров

Рецензент:

доцент кафедры Механики, канд. техн. наук

М.В. Харченко

### Лист актуализации рабочей программы

| <br><u> </u>                 | брена для реализации в 2022 - 2023 кнологии обработки давлением и    |
|------------------------------|----------------------------------------------------------------------|
| Протокол от<br>Зав. кафедрой | 20 г. №<br>С.И. Платов                                               |
| <br><u> </u>                 | брена для реализации в 2023 - 2024<br>кнологии обработки давлением и |
| Протокол от<br>Зав. кафедрой | 20 г. №<br>С.И. Платов                                               |

### 1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины «Теоретические основы финишной обработки изделий в аддитивном производстве» является формирование научных представлений об основополагающих и сопутствующих процессах размерной обработки материалов, повышение исходного уровня знаний по применению различных физико-химических процессов.

### 2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Теоретические основы финишной обработки изделий в аддитивном производстве входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Математические методы в инженерии

Методология и методы научного исследования

Научно-методологический подход в разработке аддитивных технологических процессов

Основы научной коммуникации

Система менеджмента качества в машиностроительном производстве

Теория и технология производства изделий с использованием аддитивных технологий

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Производственная - преддипломная практика

Производственная - научно-исследовательская практика

Подготовка к процедуре защиты и защита выпускной квалификационной работы

Подготовка и сдача государственного экзамена

Физико-химическая размерная обработка материалов

### 3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Теоретические основы финишной обработки изделий в аддитивном производстве» обучающийся должен обладать следующими компетенциями:

| Код индикатора                                                                                                               | Индикатор достижения компетенции                                                                                                                                      |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ПК-3 Способен разрабатывать комплексные технологические процессы изготовления сложных изделий методами аддитивных технологий |                                                                                                                                                                       |  |  |  |  |
|                                                                                                                              | Использует при проектировании изделий программные комплексы инженерной графики и инженерных расчетов, а также разрабатывает устройства для автоматизации производства |  |  |  |  |

### 4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 37 акад. часов:
- аудиторная 36 акад. часов;
- внеаудиторная 1 акад. часов;
- самостоятельная работа 71 акад. часов;
- в форме практической подготовки 0 акад. час;

### Форма аттестации - зачет

| Раздел/ тема<br>дисциплины                                                                                                                                                                                                 | Семестр | Аудиторная контактная работа (в акад. часах) |              | Самостоятельная<br>работа студента | Вид<br>самостоятельной<br>работы | Форма текущего контроля успеваемости и промежуточной     | Код<br>компетенции             |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------|--------------|------------------------------------|----------------------------------|----------------------------------------------------------|--------------------------------|--------|
|                                                                                                                                                                                                                            |         | Лек.                                         | лаб.<br>зан. | практ.<br>зан.                     | Самос                            | раооты                                                   | аттестации                     |        |
| 1. Раздел 1                                                                                                                                                                                                                |         |                                              |              |                                    |                                  |                                                          |                                |        |
| 1.1 Общие сведения о процессе резания материалов                                                                                                                                                                           |         | 6                                            |              | 6/4И                               | 26                               | Самостоятельное изучение учебной и справочной литературы | Сдача<br>лабораторных<br>работ | ПК-3.1 |
| 1.2 Обработка на металлорежущих станках различных групп                                                                                                                                                                    |         | 6                                            |              | 6/3,2И                             | 25,6                             | Самостоятельное изучение учебной и справочной литературы | Сдача<br>лабораторных<br>работ | ПК-3.1 |
| 1.3 Автоматизация обработки материалов резанием. Отделочные методы обработки. Электрофизические и электрохимические методы обработки. Комбинированные методы обработки деталей высококонцентрированным и потоками энергии. | 2       | 6                                            |              | 6                                  | 15,5                             | Самостоятельное изучение учебной и справочной литературы | Сдача<br>лабораторных<br>работ | ПК-3.1 |
| 1.4 Зачет                                                                                                                                                                                                                  |         |                                              |              |                                    |                                  | Самостоятельное изучение учебной и справочной литературы | Зачет по билетам               | ПК-3.1 |
| Итого по разделу                                                                                                                                                                                                           |         | 18                                           |              | 18/7,2И                            | 71                               |                                                          |                                |        |
| Итого за семестр                                                                                                                                                                                                           |         | 18                                           |              | 18/7,2И                            | 67,1                             |                                                          | зачёт                          |        |
| Итого по дисциплине                                                                                                                                                                                                        |         | 18                                           |              | 18/7,2<br>И                        | 71                               |                                                          | зачет                          |        |

### 5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Теоретические основы финишной обработки изделий в аддитивном производстве» используются:

1. Традиционные образовательные технологии ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Лабораторная работа – организация учебной работы с реальными материальными и информационными объектами, экспериментальная работа с аналоговыми моделями реальных объектов.

2. Информационно-коммуникационные образовательные технологии — организация образовательного процесса, основанная на применении специализированных программных сред и технических средств работы с информацией.

Формы учебных занятий с использованием информационно-коммуникационных технологий:

Практическое занятие в форме презентации – представление результатов проектной или исследовательской деятельности с использованием специализированных программных сред

# **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.

**7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

### 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Тазетдинов, Р. Г. Физико-химические основы технологических процессов и обработки конструкционных материалов: Уч. пос./ Р.Г. Тазетдинов. 2-е изд., доп. и испр. Москва: НИЦ ИНФРА-М, 2014. 400 с. (ВО: Бакалавриат). ISBN 978-5-16-008967-6. Текст: электронный. URL: https://znanium.com/catalog/product/416469 (дата обращения: 03.10.2020). Режим доступа: по подписке.
- 2. Теория сварочных процессов: учебное пособие / С. И. Платов, Д. В. Терентьев, С. В. Михайлицын, М. А. Шекшеев; МГТУ. Магнитогорск: МГТУ, 2015. 82 с.: ил., табл., схемы URL: https://magtu.informsystema.ru/uploader/fileUpload?name=1139.pdf&show=dcatalogues/1/1120 711/1139.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст: электронный. ISBN 978-5-9967-0618-1. Имеется печатный аналог.
- 3. Баурова, Н. И. Применение полимерных композиционных материалов в машиностроении : учебное пособие / Н.И. Баурова, В.А. Зорин. Москва : ИНФРА-М, 2021. 301 с. + Доп. материалы [Электронный ресурс]. (Высшее образование: Бакалавриат). DOI 10.12737/textbook\_5a65d038520df1.41774771. ISBN 978-5-16-012938-9. Текст : электронный. URL: https://znanium.com/catalog/product/1171045 (дата обращения: 03.10.2020). Режим доступа: по подписке.

#### б) Дополнительная литература:

1. Загиров, Н.Н. Теория обработки металлов давлением: учеб. пособие / Н.Н. Загиров, С.Б. Сидельников, Е.В. Иванов. - 3-е изд., перераб. и доп. - Красноярск: Сиб.

федер. ун-т, 2018. - 148 с. - ISBN 978-5-7638-3894-7. - Текст : электронный. - URL: https://znanium.com/catalog/product/1032175 (дата обращения: 03.10.2020). – Режим доступа: по подписке.

2. Смирнов, И. В. Сварка специальных сталей и сплавов : учебное пособие / И. В. Смирнов. — 3-е изд., стер. — Санкт-Петербург : Лань, 2019. — 268 с. — ISBN 978-5-8114-4275-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/118607 (дата обращения: 03.10.2020). — Режим доступа: для авториз. пользователей.

### в) Методические указания:

1. Платов С.И., Кащенко Ф.Д., Беляев А.И., Терентьев Д.В. Лабораторный практикум по дисциплине «Теория сварочных процессов». Магнитогорск: МГТУ, 2011.

### г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

| iipoi punimio o ocene ieme                   |                           |                        |  |  |  |
|----------------------------------------------|---------------------------|------------------------|--|--|--|
| Наименование<br>ПО                           | № договора                | Срок действия лицензии |  |  |  |
| MS Windows 7<br>Professional(для<br>классов) | Д-1227-18 от 08.10.2018   | 11.10.2021             |  |  |  |
| MS Office 2007<br>Professional               | № 135 от 17.09.2007       | бессрочно              |  |  |  |
| 7Zip                                         | свободно распространяемое | бессрочно              |  |  |  |
| FAR Manager                                  | свободно распространяемое | бессрочно              |  |  |  |

Профессиональные базы данных и информационные справочные системы

|                                                    | 1                                         |  |  |
|----------------------------------------------------|-------------------------------------------|--|--|
| Название курса                                     | Ссылка                                    |  |  |
| Поисковая система Академия Google (Google Scholar) | IIDI · https://scholar.google.gu/         |  |  |
| Scholar)                                           | URL: https://scholar.google.ru/           |  |  |
| Федеральное государственное бюджетное              |                                           |  |  |
| учреждение «Федеральный институт                   | URL: http://www1.fips.ru/                 |  |  |
| промышленной собственности»                        |                                           |  |  |
| Национальная                                       |                                           |  |  |
| информационно-аналитическая система -              | URL: https://elibrary.ru/project_risc.asp |  |  |
| Российский индекс научного цитирования             |                                           |  |  |
| Электронные ресурсы библиотеки МГТУ им.            | http://magtu.ru:8085/marcweb2/Default.asp |  |  |
| Г.И. Носова                                        |                                           |  |  |
| Международная наукометрическая                     |                                           |  |  |
| реферативная и полнотекстовая база данных          | http://webofscience.com                   |  |  |
| научных изданий «Web of science»                   |                                           |  |  |
| Международная реферативная и                       | http://scopus.com                         |  |  |
| полнотекстовая справочная база данных              | анных                                     |  |  |
| OM                                                 | (                                         |  |  |

### 9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа - Мультимедийные средства хранения, передачи и представления информации; видеопроектор, экран настенный, компьютер; тестовые задания для текущего контроля успеваемости.

Учебная аудитория для проведения лабораторных работ. Комплект печатных и электронных версий методических рекомендаций, учебное пособие, плакаты по темам «Обработка металлов резанием».

Учебная аудитория для проведения механических испытаний:

- 1. Машины универсальные испытательные на растяжение, сжатие, скручивание.
- 2. Мерительный инструмент.
- 3. Приборы для измерения твердости по методам Бринелля и Роквелла.
- 4. Микротвердомер.
- 5. Печи термические.

Учебная аудитория для проведения металлографических исследований Микроскопы МИМ-6, МИМ-7;

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации - Доска, мультимедийный проектор, экран;

Учебные аудитории для выполнения курсового проектирования, помещения для самостоятельной работы обучающихся - Персональные компьютеры с пакетом MS Office и выходом в Интернет и с доступом в электронную информационно-образовательную среду университета;

Помещение для хранения и профилактического обслуживания учебного оборудования - Стеллажи, сейфы для хранения учебного оборудования

Инструменты для ремонта лабораторного оборудования.

Учебно-методическое обеспечение самостоятельной работы студентов.

#### Вопросы к зачету:

- 1. Перечислите методы обработки резанием, использующиеся в машиностроении.
- 2. Дайте характеристику точности обработки и качества обработанной поверхности.
- 3. Перечислите поверхности обрабатываемой детали. Назовите углы токарного резца, дайте их определения. Укажите виды работ, которые могут быть выполнены на токарных станках.
- 4. Перечислите элементы режима резания. Какие факторы влияют на: стойкость режущего инструмента; выбор скорости резания; величину силы резания?
- 5. На какие типы делятся металлорежущие станки токарной группы? Назовите основные узлы токарно-винторезного станка и укажите их назначение.
- 6. Перечислите режущий инструмент, который может быть использован на токарно-винторезном станке. Какие материалы применяются для изготовления резцов?
- 7. Расскажите об особенностях процесса резания при сверлении. Изобразите схемы процесса резания при сверлении.
- 8. Какие виды работ можно выполнять на сверлильных и расточных станках? С какой целью при обработке отверстия используют зенкер и развертку?
- 9. Изобразите схемы резания при фрезеровании и укажите основные движения и элементы резания.
- 10. Укажите достоинства и недостатки попутного и встречного фрезерования. Какие виды работ можно выполнять на фрезерных станках?
- 11. Назовите основные узлы универсально-фрезерного станка и укажите их назначение. Изобразите цилиндрическую фрезу и покажите ее основные углы.
- 12. Изобразите схемы резания при строгании и долблении, указав на них основные движения резания. Для какой цели строгальный резец имеет изогнутый стержень?
- 13. Изобразите протяжку, обозначьте ее части и главные углы. Какие существуют схемы резания при протягивании? Укажите их преимущества и недостатки.
- 14. Опишите наиболее распространенные типы строгальных, долбежных и протяжных станков. Перечислите работы, выполняемые на строгальных, долбежных и протяжных станках.
- 15. Изобразите схемы резания при шлифовании. Опишите наиболее распространенные типы шлифовальных станков. Перечислите работы, выполняемые на станках шлифовальной группы.
- 16. Объясните особенности резания при шлифовании. Дайте характеристику абразивного инструмента.
- 17. Какие методы нарезания зубчатых колес применяют в настоящее время? Изобразите их схемы. Укажите преимущества нарезания зубчатых колес по методу обкатки.
- 18. Дайте классификацию зубообрабатывающих станков по назначению, виду режущего инструмента и виду обработки. Объясните сущность операций чистовой обработки зубчатых колес.
- 19. Перечислите принципы автоматизации станков с числовым программным управлением.
- 20. Объясните сущность и укажите области применения методов отделки чистовым резцом и полировальными кругами, полированием, абразивно-жидкостной обработкой, притиркой, хонингованием, суперфинишной обработкой.

#### Модуль 1.

- 1. Точность обработки с повышением температуры резания ...
- а) не изменяется.
- b) увеличивается.
- с) уменьшается.

- 2. Основной фактор, влияющий на стойкость инструмента ...
- а) скорость резания.
- b) геометрия инструмента.
- с) материал инструмента.
- 3. Первая цифра в обозначении модели станка ...
- а) тип станка в группе.
- b) группа станков. с) основная техническая характеристика станка.
- 4. Главные углы резца ... .φ, α
- a)  $.\epsilon 1, \varphi, \varphi$
- b)  $.\delta, \beta, \gamma, \alpha$
- c) 26
- 5. Упрощенное графическое изображение механизмов станка ...
- а) кинематическая схема.
- b) кинематическая цепь.
- с) передача.

Самостоятельная работа студентов построена таким образом, что в процессе работы студенты закрепляют знания, полученные в процессе теоретического обучения, тем самым формируют профессиональные умения и навыки.

В процессе изучения дисциплины осуществляется текущий и периодический контроль над результатами освоения учебного курса.

Текущий контроль осуществляется непосредственно в процессе усвоения, закрепления, обобщения и систематизации знаний, умений, владения навыками и позволяет оперативно диагностировать и корректировать, совершенствовать знания, умения и владение навыками студентов, обеспечивает стимулирование и мотивацию их деятельности на каждом занятии. Текущий контроль осуществляется в форме устного опроса (собеседования).

Периодический контроль, цель которого обобщение и систематизация знаний, проверка эффективности усвоения студентами определенного, логически завершенного содержания учебного материала, осуществляется в форме защиты практических работ.

# Оценочные средства для проведения промежуточной аттестации а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

| Код                                                         | Индикатор достижения компетенции                                                                                                                                      | Оценочные средства                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| индикатора                                                  |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                             | собен разрабатывать комплекс                                                                                                                                          | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| изготовления сложных изделий методами аддитивных технологий |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| ПК-3.1                                                      | Использует при проектировании изделий программные комплексы инженерной графики и инженерных расчетов, а также разрабатывает устройства для автоматизации производства | <ol> <li>Перечислите методы обработки резанием, использующиеся в машиностроении.</li> <li>Дайте характеристику точности обработки и качества обработанной поверхности.</li> <li>Перечислите поверхности обрабатываемой детали. Назовите углы токарного резца, дайте их определения. Укажите виды работ, которые могут быть выполнены на токарных станках.</li> <li>Перечислите элементы режима резания. Какие факторы влияют на: стойкость режущего инструмента; выбор скорости резания; величину силы резания?</li> <li>На какие типы делятся металлорежущие станки токарной группы? Назовите основные узлы токарно-винторезного станка и укажите их назначение.</li> <li>Перечислите режущий инструмент, который может быть использован на токарно-винторезном станке. Какие материалы применяются для изготовления резцов?</li> <li>Расскажите об особенностях процесса резания при сверлении. Изобразите схемы процесса резания при сверлении.</li> <li>Какие виды работ можно выполнять на сверлильных и расточных станка? С какой целью при обработке отверстия используют зенкер и развертку?</li> <li>Изобразите схемы резания при фрезеровании и укажите основные движения и элементы резания.</li> <li>Укажите достоинства и недостатки попутного и встречного фрезерования. Какие виды работ можно выполнять на</li> </ol> |  |  |  |

- фрезерных станках?
- 11. Назовите основные узлы универсально-фрезерного станка и укажите их назначение. Изобразите цилиндрическую фрезу и покажите ее основные углы.
- 12. Изобразите схемы резания при строгании и долблении, указав на них основные движения резания. Для какой цели строгальный резец имеет изогнутый стержень?
- 13. Изобразите протяжку, обозначьте ее части и главные углы. Какие существуют схемы резания при протягивании? Укажите их преимущества и недостатки.
- наиболее 14. Опишите распространенные типы строгальных, долбежных И хынжктодп станков. Перечислите работы, выполняемые на строгальных, долбежных протяжных И станках.
- 15. Изобразите схемы резания при шлифовании. Опишите наиболее распространенные типы шлифовальных станков. Перечислите работы, выполняемые на станках шлифовальной группы.
- 16. Объясните особенности резания при шлифовании. Дайте характеристику абразивного инструмента.
- 17. Какие методы нарезания зубчатых колес применяют в настоящее время? Изобразите их схемы. Укажите преимущества нарезания зубчатых колес по методу обкатки.
- 18. Дайте классификацию зубообрабатывающих станков по назначению, виду режущего инструмента и виду обработки. Объясните сущность операций чистовой обработки зубчатых колес.
- 19. Перечислите принципы автоматизации станков с числовым программным управлением.
- 20. Объясните сущность и укажите области применения методов отделки чистовым резцом и

| полировальными кругами, полированием, абразивно-жидкостной обработкой, притиркой, хонингованием, суперфинишной обработкой.                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Модуль 1. 1. Точность обработки с повышением температуры резания а) не изменяется. b) увеличивается. c) уменьшается. 2. Основной фактор, влияющий на стойкость инструмента а) скорость резания. b) геометрия инструмента. c) материал инструмента. |
| 3. Первая цифра в обозначении модели станка а) тип станка в группе. b) группа станков. c) основная                                                                                                                                                 |
| техническая характеристика станка. 4. Главные углы резцаφ, α a) .ε1, φ, φ b) .δ, β, γ, α                                                                                                                                                           |
| с) 26 5. Упрощенное графическое изображение механизмов станка а) кинематическая схема.                                                                                                                                                             |
| b) кинематическая цепь. c) передача.                                                                                                                                                                                                               |

## б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Теоретические основы финишной обработки изделий в аддитивном производстве» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета.

Зачет по данной дисциплине проводится в виде собеседования в рамках теоретических вопросов, выносимых на зачет и/или решения тестовых заданий.

### Показатели и критерии оценивания зачета:

на оценку «зачтено» студент должен показать высокий уровень знания материала по дисциплине не только на уровне воспроизведения и объяснения информации, но и продемонстрировать интеллектуальные навыки решения проблем, нахождения уникальных ответов, вынесения критических суждений; продемонстрировать знание и понимание законов дисциплины, умение оперировать этими знаниями в профессиональной деятельности;

на оценку **«не зачтено»** студент не может показать знания на уровне воспроизведения и объяснения информации по дисциплине, не может показать интеллектуальные навыки решения простых задач, умение критически оценивать свои личностные качества, намечать пути и выбирать средства развития достоинств и устранения недостатков.