МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов

03.03.2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ТЕОРИЯ И ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ АДДИТИВНЫХ ТЕХНОЛОГИЙ

Направление подготовки (специальность) 15.04.01 Машиностроение

Направленность (профиль/специализация) программы Аддитивные технологии в машиностроении

Уровень высшего образования - магистратура

Форма обучения очная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Машины и технологии обработки давлением и машиностроения

Kypc 1

Семестр 1

Магнитогорск 2021 год

Рабочая программа составлена на основе ФГОС ВО - магистратура по направлению подготовки 15.04.01 Машиностроение (приказ Минобрнауки России от 14.08.2020 г. № 1025)

Рабочая программа рассмотрена и одобрена на заседании кафедры Машины и технологии обработки давлением и машиностроения 25.02.2021, протокол № 6

Зав. кафедрой Рабочая программа одобрена методической комиссией ИММиМ 03.03.2021 г. Председатель Рабочая программа составлена: доцент кафедры МиТОДиМ, канд. техн. наук Р.Н. Амиров
Рецензент: профессор кафедры ЛПиМ, д-р техн. наук А.Б. Сычков

протокол № 4

Лист актуализации рабочей программы

 ±	брена для реализации в 2022 - 2023 кнологии обработки давлением и
Протокол от Зав. кафедрой	20 г. № С.И. Платов
 ±	брена для реализации в 2023 - 2024 кнологии обработки давлением и
Протокол от Зав. кафедрой	20 г. № С.И. Платов

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Теория и технология производства изделий с использованием аддитивных технологий» являются: изложение широкого круга вопросов, относящихся к теории процессов, происходящих при процессах аддитивного производства, обобщение их в стройную систему теоретических знаний, базирующихся на последних достижениях науки, техники и технологий, привитие студентам умений качественного и количественного анализа изучаемых процессов.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Теория и технология производства изделий с использованием аддитивных технологий входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин: по направлению машиностроение (бакалавр).

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Материалы и оборудование для аддитивных технологий

Производственная - преддипломная практика

Производственная - научно-исследовательская практика

Подготовка к процедуре защиты и защита выпускной квалификационной работы

Проектирование технологии послойного синтеза

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Теория и технология производства изделий с использованием аддитивных технологий» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции						
ПК-1 Способен обе	ПК-1 Способен обеспечивать производство изделий методами аддитивных технологий						
ПК-1.1	Подбирает параметры аддитивного технологического процесса и						
	определяет оптимальные режимы производства изделий на основе						
	технического задания (компьютерной/цифровой модели)						

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 5 зачетных единиц 180 акад. часов, в том числе:

- контактная работа 77,6 акад. часов:
- аудиторная 72 акад. часов;
- внеаудиторная 5,6 акад. часов;
- самостоятельная работа 66,7 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 35,7 акад. час

Форма аттестации - курсовой проект, экзамен

Раздел/ тема	Семестр	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код	
дисциплины	Cer	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Раздел 1								
1.1 Введение. Классификация аддитивных технологий		3		3	3	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов лекций, сдача практических работ	ПК-1.1
1.2 Физическое строение материалов		4		4	3	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов лекций, сдача практических работ	ПК-1.1
1.3 Источники энергии для аддитивных технологий	1	4		4	3	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов лекций, сдача практических работ	ПК-1.1
1.4 Основы тепловых процессов		4		4	3	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов лекций, сдача практических работ	ПК-1.1
1.5 Физико-химические процессы в материалах		3		3	3	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов лекций, сдача практических работ	ПК-1.1

1.6 Фазовые превращения в металлах и сплавах		3	3	3	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов лекций, сдача практических работ	
1.7 Области применения аддитивных технологий	-	3	3	3	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов лекций, сдача практических работ	ПК-1.1
1.8 Технологии и машины для создания металлических изделий	•	3	3	3	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов лекций, сдача практических работ	ПК-1.1
1.9 Аддитивные технологии и сварочное производство		3	3	2,7	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов лекций, сдача практических работ	ПК-1.1
1.10 Аддитивные технологии и порошковая металлургия	-	3	3	20	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов лекций, сдача практических работ	ПК-1.1
1.11 Аддитивные технологии и литейное производство	-	3	3	20	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов лекций, сдача практических работ	ПК-1.1
1.12 Экзамен	- 				Самостоятельное изучение учебной и справочной литературы	Экзамен по билетам	ПК-1.1
Итого по разделу		36	36	66,7			
Итого за семестр		36	36	66,7		экзамен,кп	
Итого по дисциплине		36	36	66,7		курсовой проект, экзамен	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Теория и технология производства изделий с использованием аддитивных технологий» используются:

1. Традиционные образовательные технологии ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция — последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

2. Информационно-коммуникационные образовательные технологии – организация образовательного процесса, основанная на применении специализированных программных сред и технических средств работы с информацией.

Формы учебных занятий с использованием информационно-коммуникационных технологий:

Лекция-визуализация — изложение содержания сопровождается презентацией (демонстрацией учебных материалов, представленных в различных знаковых системах, в т.ч. иллюстративных, графических, аудио- и видеоматериалов).

Практическое занятие в форме презентации — представление результатов проектной или исследовательской деятельности с использованием специализированных программных сред.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Кравченко, Е. Г. Аддитивные технологии в машиностроении : учебное пособие / Е. Г. Кравченко, А. С. Верещагина, В. Ю. Верещагин. Комсомольск-на-Амуре : КНАГУ, 2018. 140 с. ISBN 978-5-7765-1350-3. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/151709 (дата обращения: 20.05.2021). Режим доступа: для авториз. пользователей.
- 2. Трофимов, А. В. Компьютерные технологии в машиностроении. Аддитивные технологии : учебное пособие / А. В. Трофимов. Санкт-Петербург : СПбГЛТУ, 2019. 72 с. ISBN 978-5-9239-1114-5. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/120060 (дата обращения: 20.05.2021). Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

1. Кулик, В. И. Аддитивные технологии в производстве изделий авиационной и ракетно-космической техники : учебное пособие / В. И. Кулик, А. С. Нилов. — Санкт-Петербург : БГТУ "Военмех" им. Д.Ф. Устинова, 2018. — 160 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL:

https://e.lanbook.com/book/122070 (дата обращения: 20.05.2021). — Режим доступа: для авториз. пользователей.

- 2. Каменев С.В. Технологии аддитивного производства [Электронный ресурс]: Учебное пособие/ Каменев С.В., Романенко К.С.— Электрон. текстовые данные.— Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2017.— 145 с.— Режим доступа: http://www.bibliocomplectator.ru/book/?id=71339
- 3. Симонян Л.М. Современные методы и технологии специальной электрометаллургии и аддитивного производства. Теория и технология спецэлектрометаллургии [Электронный ресурс]: Курс лекций/ Симонян Л.М., Семин А.Е., Кочетов А.И.— Электрон. текстовые данные.— М.: Издательский Дом МИСиС, 2017.— 182 с.— Режим доступа: http://www.bibliocomplectator.ru/book/?id=71682.

в) Методические указания:

Блюменштейн В.Ю., Клепцов А.А., Ковальчук С.Н. Курсовое проектирование по технологии: учебное пособие [Электронный ресурс]. Кузбасский государственный технический университет имени Т.Ф.Горбачева, 2016. — 121 с. — Режим доступа: https://e.lanbook.com/book/105384 - Загл. с экрана. — ISBN 978-5-906888-38-9.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

	1
Название курса	Ссылка
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

322 (Лекционная аудитория) - видеопроектор, экран настенный, компьютер; тестовые задания для текущего контроля успеваемости;

Лаборатория сварки (лабораторный корпус с лабораторией резания) - комплект печатных и электронных версий методических рекомендаций, учебное пособие, плакаты по темам «Теория сварочных процессов». Сварочные аппараты. Образцы выполненных сварных швов. Сварочная оснастка;

048а (Лабораторный класс по сварочным дисциплинам) - комплект методических рекомендаций, учебное пособие, плакаты по темам «Теория сварочных процессов», оптические микроскопы, твердомер стационарный;

Компьютерные классы университета - рабочие места студентов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде.

Приложение 1

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Теория и технология производства изделий с использованием аддитивных технологий» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает решение контрольных задач на практических занятиях.

Для 1 семестра

Примерные аудиторные контрольные работы (АКР):

АКР №1 «Рассчитайте металлоемкость детали цилиндрической формы»

Примерные индивидуальные домашние задания (ИДЗ):

ИДЗ №1 «Рассчитать припуск на механическую обработку изделия полученного способом «дугового выращивания»

Примерная тема курсовых проектов (КП):

«Разработка технологического процесса изготовления деталей способом дугового выращивания»

Примерное задание на курсовой проект:

Рассчитать температурно-временные характеристики металла при многослойном выращивании. Определить металлоемкость детали «шестигранная труба». Расчитать припуск на механическую обработку изделия. Сформулировать выводы.

Оценочные средства для проведения промежуточной аттестации

Промежуточная аттестация имеет целью определить степень достижения запланированных результатов обучения по дисциплине «Теория и технология производства изделий с использованием аддитивных технологий» за один семестр и проводится в форме экзамена и защиты курсового проекта в конце первого семестра.

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатор а	Индикатор достижения компетенции	Оценочные средства
	го бен обеспечивать производ	ство изделий методами аддитивных технологий
ПК-1.1	Подбирает параметры аддитивного технологического процесса и определяет оптимальные режимы производства изделий на основе технического задания (компьютерной/цифрово й модели)	Дайте краткий ответ на вопрос: 1. Что такое термический цикл 2. Что такое степень ионизации газа 3. Поясните термин «автотермообработка» и как он применим к аддитивному производству 4. Каким строением обладают металлические материалы 5. Каким строением обладают полимеры 6. Какие основные технологии аддитивного производства вы знаете 7. Какие источники тепла служат в качестве инструмента для выращивания деталей 8. Какие материалы применяются в аддитивном производстве 9. Назовите основные этапы создания деталей с помощью аддитивных технологий Примерное практическое задание Поясните суть технологии EBDM — Electron beam Direct Мапиfаcturing

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Теория и технология производства изделий с использованием аддитивных технологий» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена.

Экзамен по данной дисциплине проводится в устной форме по билетам, каждый из которых включает 2 теоретических вопроса и один практический вопрос.

Показатели и критерии оценивания экзамена:

- на оценку *«отпично»* (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку *«хорошо»* (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку *«удовлетворительно»* (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку *«неудовлетворительно»* (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

Курсовой проект выполняется под руководством преподавателя, в процессе ее написания обучающийся развивает навыки к научной работе, закрепляя и одновременно расширяя знания, полученные при изучении курса «Теория и технология производства изделий с использованием аддитивных технологий». При выполнении курсового проекта обучающийся должен показать свое умение работать с литературными источниками, а также возможность систематизировать и анализировать фактический материал и самостоятельно творчески его осмысливать.

Показатели и критерии оценивания курсового проекта:

- на оценку *«отпично»* (5 баллов) проект выполнен в соответствии с заданием, обучающийся показывает высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку «*хорошо*» (4 балла) проект выполнен в соответствии с заданием, обучающийся показывает знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- на оценку *«удовлетворительно»* (3 балла) проект выполнен в соответствии с заданием, обучающийся показывает знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку «*неудовлетворительно*» (2 балла) задание преподавателя выполнено частично, в процессе защиты работы обучающийся допускает существенные ошибки, не может показать интеллектуальные навыки решения поставленной задачи.
- на оценку *«неудовлетворительно»* (1 балл) задание преподавателя выполнено частично, обучающийся не может воспроизвести и объяснить содержание, не может показать интеллектуальные навыки решения поставленной задачи.