•

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

АНИЯ

учреждение

им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов

03.03.2021 г.

УТВЕРЖДАЮ ректор ИММиМ А.С. Савинов

03.03.2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ФИЗИКО-ХИМИЧЕСКАЯ РАЗМЕРНАЯ ОБРАБОТКА МАТЕРИАЛОВ

Направление подготовки (специальность) 15.04.01 Машиностроение

Направленность (профиль/специализация) программы Аддитивные технологии в машиностроении

Уровень высшего образования - магистратура

ГЕРИАЛОВ

Форма обучения очная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Машины и технологии обработки давлением и машиностроения

Курс 2 Семестр 3

> Магнитогорск 2021 год

Кафедра Машины и технологии обработки давлением и машиностроения

Kypc 2

Семестр 3

Магнитогорск 2021 год Рабочая программа составлена на основе ФГОС ВО - магистратура по направлению подготовки 15.04.01 Машиностроение (приказ Минобрнауки России от 14.08.2020 г. № 1025)

Рабочая программа рассмотрена и одобрена на заседании кафедры Машины и технологии обработки давлением и машиностроения 25.02.2021, протокол № 6

Зав. кафедрой С.И. Платов

Рабочая программа одобрена методической комиссией ИММиМ 03.03.2021 г. протокол № 4

Председатель

А.С. Савинов

Рабочая программа составлена:

доцент кафедры МиТОДиМ, канд. техн. наук __

Е.Ю.Звягина

Рецензент:

доцент кафедры МиХТ, канд. техн. наук

И.В.Макарова

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2022 - 2023 учебном году на заседании кафедры Машины и технологии обработки давлением и					
	Протокол от Зав. кафедрой				
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2023 - 2024 учебном году на заседании кафедры Машины и технологии обработки давлением и					
	Протокол от Зав. кафедрой	20 г. № С.И. Платов			

1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины «Физико-химическая размерная обработка материалов» является формирование научных представлений об основополагающих и сопутствующих процессах размерной обработки материалов, повышение исходного уровня знаний по применению различных физико-химических процессов.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Физико-химическая размерная обработка материалов входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Модульно-комбинированные способы формоизменения материалов

Инновационное предпринимательство

Геометрическое и физическое моделирование изделий в машиностроении

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Подготовка и сдача государственного экзамена

Подготовка к процедуре защиты и защита выпускной квалификационной работы

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Физико-химическая размерная обработка материалов» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции		
ПК-3 Способен разрабатывать комплексные технологические процессы изготовления			
сложных изделий методами аддитивных технологий			
ПК-3.1	Использует при проектировании изделий программные комплексы		
	инженерной графики и инженерных расчетов, а также разрабатывает		
	устройства для автоматизации производства		

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 зачетных единиц 72 акад. часов, в том числе:

- контактная работа 32,9 акад. часов:
- аудиторная 32 акад. часов;
- внеаудиторная 0,9 акад. часов;
- самостоятельная работа 39,1 акад. часов;
- в форме практической подготовки 0 акад. час;

Форма аттестации - зачет

Раздел/ тема дисциплины	Семестр	кон	Аудиторь гактная р акад. ча лаб. зан.	абота	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
1. Раздел 1								
1.1 Применение высококонцентрированных потоков энергии в машиностроительных технологиях	3	6	6		10	Самостоятельное изучение учебной и справочной литературы	Сдача лабораторных работ	ПК-3.1
1.2 Сущность и технологические возможности сжатой электрической дуги		6	6/3,4И		10	Самостоятельное изучение учебной и справочной литературы	Сдача лабораторных работ	ПК-3.1
1.3 Комбинированные методы обработки деталей высококонцентрированным и потоками энергии		4	4/3И		10	Самостоятельное изучение учебной и справочной литературы	Сдача лабораторных работ	ПК-3.1
1.4 Зачет					5,2	Самостоятельное изучение учебной и справочной литературы	Зачетное занятие	ПК-3.1
Итого по разделу		16	16/6,4И		39,1			
Итого за семестр		16	16/6,4И		35,2		зачёт	
Итого по дисциплине		16	16/6,4 И		39,1		зачет	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Физико-химическая размерная обработка материалов» используются:

1. Традиционные образовательные технологии ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Лабораторная работа – организация учебной работы с реальными материальными и информационными объектами, экспериментальная работа с аналоговыми моделями реальных объектов.

2. Информационно-коммуникационные образовательные технологии – организация образовательного процесса, основанная на применении специализированных программных сред и технических средств работы с информацией.

Формы учебных занятий с использованием информационно-коммуникационных технологий:

Практическое занятие в форме презентации – представление результатов проектной или исследовательской деятельности с использованием специализированных программных сред

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Тазетдинов, Р. Г. Физико-химические основы технологических процессов и обработки конструкционных материалов: Уч. пос./ Р.Г. Тазетдинов. 2-е изд., доп. и испр. Москва: НИЦ ИНФРА-М, 2014. 400 с. (ВО: Бакалавриат). ISBN 978-5-16-008967-6. Текст: электронный. URL: https://znanium.com/catalog/product/416469 (дата обращения: 03.10.2020). Режим доступа: по подписке.
- 2. Теория сварочных процессов: учебное пособие / С. И. Платов, Д. В. Терентьев, С. В. Михайлицын, М. А. Шекшеев; МГТУ. Магнитогорск: МГТУ, 2015. 82 с.: ил., табл., схемы URL: https://magtu.informsystema.ru/uploader/fileUpload?name=1139.pdf&show=dcatalogues/1/1120 711/1139.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст: электронный. ISBN 978-5-9967-0618-1. Имеется печатный аналог.
- 3. Баурова, Н. И. Применение полимерных композиционных материалов в машиностроении : учебное пособие / Н.И. Баурова, В.А. Зорин. Москва : ИНФРА-М, 2021. 301 с. + Доп. материалы [Электронный ресурс]. (Высшее образование: Бакалавриат). DOI 10.12737/textbook_5a65d038520df1.41774771. ISBN 978-5-16-012938-9. Текст : электронный. URL: https://znanium.com/catalog/product/1171045 (дата обращения: 03.10.2020). Режим доступа: по подписке.

б) Дополнительная литература:

1. Загиров, Н.Н. Теория обработки металлов давлением: учеб. пособие / Н.Н. Загиров, С.Б. Сидельников, Е.В. Иванов. - 3-е изд., перераб. и доп. - Красноярск: Сиб.

федер. ун-т, 2018. - 148 с. - ISBN 978-5-7638-3894-7. - Текст : электронный. - URL: https://znanium.com/catalog/product/1032175 (дата обращения: 03.10.2020). – Режим доступа: по подписке.

2. Смирнов, И. В. Сварка специальных сталей и сплавов : учебное пособие / И. В. Смирнов. — 3-е изд., стер. — Санкт-Петербург : Лань, 2019. — 268 с. — ISBN 978-5-8114-4275-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/118607 (дата обращения: 03.10.2020). — Режим доступа: для авториз. пользователей.

в) Методические указания:

1. Платов С.И., Кащенко Ф.Д., Беляев А.И., Терентьев Д.В. Лабораторный практикум по дисциплине «Теория сварочных процессов». Магнитогорск: МГТУ, 2011.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии				
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021				
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно				
7Zip	свободно распространяемое	бессрочно				
FAR Manager	свободно распространяемое	бессрочно				

Профессиональные базы данных и информационные справочные системы

профессиональные базы данных и информационные справочные системы					
Название курса	Ссылка				
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/				
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	URL: http://www1.fips.ru/				
Национальная информационно-аналитическая система — Российский индекс научного цитирования	URL: https://elibrary.ru/project_risc.asp				
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	http://magtu.ru:8085/marcweb2/Default.asp				
Международная наукометрическая реферативная и полнотекстовая база данных научных изданий «Web of science»					
Международная реферативная и полнотекстовая справочная база данных	http://scopus.com				

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа - Мультимедийные средства хранения, передачи и представления информации; видеопроектор, экран настенный, компьютер; тестовые задания для текущего контроля успеваемости.

Учебная аудитория для проведения лабораторных работ. Комплект печатных и электронных версий методических рекомендаций, учебное пособие, плакаты по темам «Обработка металлов давлением».

Учебная аудитория для проведения механических испытаний:

- 1. Машины универсальные испытательные на растяжение, сжатие, скручивание.
 - 2. Мерительный инструмент.
 - 3. Приборы для измерения твердости по методам Бринелля и Роквелла.
 - 4. Микротвердомер.
 - 5. Печи термические.

Учебная аудитория для проведения металлографических исследований - Микроскопы МИМ-6, МИМ-7;

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации - Доска, мультимедийный проектор, экран;

Учебные аудитории для выполнения курсового проектирования, помещения для самостоятельной работы обучающихся - Персональные компьютеры с пакетом MS Office и выходом в Интернет и с доступом в электронную информационно-образовательную среду университета;

Помещение для хранения и профилактического обслуживания учебного оборудования - Стеллажи, сейфы для хранения учебного оборудования

Инструменты для ремонта лабораторного оборудования.

Приложение 1

- 6 Учебно-методическое обеспечение самостоятельной работы обучающихся Перечень теоретических вопросов к зачету:
- 1. Классификация методов физико-химической обработки.
- 2. Значение физико-химических методов обработки среди других методов формообразования деталей.
- 3. Классификация видов энергии, подводимой к технологическим системам.
- 4. Использование различных видов энергии для заготовительных, формообразующих и отделочных операций.
 - 5. Электроэрозионная обработка материалов.
 - 6. Особенности электроимпульсной и электроискровой обработки.
 - 7. Оборудование и инструмент для электроэрозионной обработки.
 - 8. Электрохимические методы обработки.
 - 9. Инструмент для электрохимической обработки.
 - 10. Анодно-механическая обработка.
 - 11. Анодно-гидравлическая обработка.
 - 12. Анодно-абразивная обработка.
 - 13. Электроэрозионно-химическая обработка.
 - 14. Виды электрохимической обработки.
 - 15. Ультразвуковая обработка материалов.
- 16. Методы и технологические характеристики ультразвуковой размерной обработки.
 - 17. Инструмент для обработки ультразвуком.
 - 18. Оборудование для осуществления ультразвуковой обработки.
 - 19. Лучевая обработка материалов.
 - 20. Светолучевая обработка и ее особенности.

Приложение 2

- 7 Оценочные средства для проведения промежуточной аттестации
- а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатора	Индикатор достиж компетенции	Оценочные средства		
ПК-3 Способен разрабатывать комплексные технологические процессы изготовления сложных изделий методами аддитивных технологий				
ПК-3.1	Использует при проектировании изделий программные комплексы инженерной графики и инженерных расчетов, а также разрабатывает устройства для автоматизации производства	геометрических размеров его рабочего элемента под действием: А – гравитации; В – переменного электрического поля; С – магнитного поля. 6. Возникновение элементарного канала разряда при ЭЭО происходит между ближайшими местными неровностями противолежащих		

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Физико-химическая размерная обработка материалов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, умений и владений, и проводится в форме опроса с учетом выполнения заданий по практическим работам.

Показатели и критерии оценивания:

- на оценку «зачтено» - обучающийся демонстрирует высокий уровень

сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно отвечает по теме реферата.

— на оценку «не зачтено» — обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать знание учебного материала и отвечать по теме реферата.