МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

САЕ-СИСТЕМЫ В МАШИНОСТРОЕНИИ

Направление подготовки (специальность) 15.05.01 ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ МАШИН И КОМПЛЕКСОВ

Направленность (профиль/специализация) программы 15.05.01 специализация N 3 "Проектирование металлургических машин и комплексов":

Уровень высшего образования - специалитет

Форма обучения очная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Проектирования и эксплуатации металлургических машин и

оборудования

5

Курс

Семестр 10

Магнитогорск 2021 год Рабочая программа составлена на основе ФГОС ВО - магистратура по направлению подготовки 15.04.02 Технологические машины и оборудование (приказ Минобрпауки России от 14.08.2020 г. № 1026)

Рабочая программа рассмотрена и одобрена на заседании кафедры Проектирования и эксплуатации металлургических машин и оборудования 11.02.2021, протокол № 9 Зав. кафедрой Рабочая программа одобрена методической комиссией ИММиМ 03.03.2021 г. протокол № 4 Председатель Рабочая программа составлена: доцент кафедры ПиЭММиО, канд. техп. наук. Рецензент: ГЛ. механик 000 НПП "Гальва" канд. техн. наук

В.А. Русанов

Лист актуализации рабочей программы

Рабочая программа пересмотрена, об учебном году на заседании кафедры	-	_	
Протов Зав. ка	сол от федрой	_20 г. J	№ Г. Корчунов
Рабочая программа пересмотрена, об учебном году на заседании кафедры	-	_	
_	сол от федрой	_20 г. J	№ Г. Корчунов

1 Цели освоения дисциплины (модуля)

Целью преподавания дисциплины является:

- -овладение достаточным уровнем общепрофессиональных и профессиональных компетенций:
- овладение современными методами инженерных расчетов при помощи САЕ-систем.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина САЕ-системы в машиностроении входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Основы проектирования машин, агрегатов и процессов металлургического производства

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Представление научного доклада об основных результатах подготовленной НКР Научно-исследовательская деятельность и подготовка НКР

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «САЕ-системы в машиностроении» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции				
ПК-3 Способен осуществлять инжиниринговую деятельность в области металлургического					
машиностроения					
ПК-3.1	Разрабатывает предложения по совершенствованию				
	машиностроительного производства				
ПК-3.2	Применяет методы реверсивного инжиниринга для разработки				
	конструкторской документации				

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 6 зачетных единиц 216 акад. часов, в том числе:

- контактная работа 49,9 акад. часов:
- аудиторная 48 акад. часов;
- внеаудиторная 1,9 акад. часов;
- самостоятельная работа 166,1 акад. часов;
- в форме практической подготовки 2 акад. час;

Форма аттестации - курсовая работа, зачет

Раздел/ тема дисциплины		Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код	
Лек.	лаб. зан.	практ. зан.	Самосто	работы	промежуточной аттестации	компетенции		
1. САЕ-системы								
1.1 Области применения САЕ-систем		4				изучение материала	Устный опрос	ПК-3.1, ПК- 3.2
1.2 Моделирование процессов	3	4		12/12И	50	изучение материала	Устный опрос	ПК-3.1, ПК- 3.2
1.3 Постановка задачи на расчет МКЭ	3	4		10/0,8И	50	изучение материала	Устный опрос	ПК-3.1, ПК- 3.2
1.4 Интерпретация результатов		4		10	66,1	изучение материала	Устный опрос	ПК-3.1, ПК- 3.2
Итого по разделу		16		32/12,8И	166,1			
Итого за семестр		16		32/12,8И	166,1		зачёт,кр	
Итого по дисциплине		16		32/12,8 И	166,1		курсовая работа, зачет	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины используются традиционнаяи модульно-компетентностная технологии.

Передача необходимых теоретических знаний и формирование основных представлений по курсу происходит с использованием мультимедийного оборудования.

Лекции проходят в традиционной форме, в форме лекций-консультаций и проблемных лекций. Теоретический материал на проблемных лекциях является результатом усвоения полученной информации посредством постановки проблемного вопроса и поиска путей его решения. На лекциях-консультациях изложение нового материала сопровождается постановкой вопросов и дискуссией в поисках ответов на эти вопросы. При проведении лекций особое внимание уделяется взаимосвязи рассматриваемых тем и вопросов с действующими гостами. Полное овладение требованиями данных гостов необходимо будет студентам при их дальнейшей самостоятельной практической деятельности на самых разнообразных предприятиях машиностроительной и металлургической отрасли. При рассмотрении тем данной дисциплины необходимо проводить достаточное количество примеров из практической деятельности ведущих предприятий города, региона и России, а также использовать опыт известных мировых лидеров в области машиностроения и металлургии. Для этого необходимо рассмотрение материалов обновленной печати, информационных писем предприятий, а также информации Медиа изданий.

При проведении практических и лабораторных занятий используются работа в команде и методы IT, в достаточном объеме используются имеющиеся модели, образцы и элементы различного оборудования, плакаты, фотографии и раздаточные материалы.

Самостоятельная работа стимулирует студентов в процессе подготовки домашних заданий, при решении задач на практических занятиях, при подготовке к контрольным работам и итоговой аттестации.

Для изучения дисциплины предусмотрены практические занятия в интерактивной форме.

Практические занятия проводятся для закрепления и углубления знаний, полученных студентами на лекциях и должны способствовать выработке у них навыков постановки, формализации, построения блок-схем принятия решений, построение твердотельных моделей и реализации решений с помощью пакета Autodesk Fusion 360.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная консультационная работа.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

Гузненков, В.Н. Autodesk Inventor 2012. Трехмерное моделирование деталей и создание чертежей. [Электронный ресурс] / В.Н. Гузненков, П.А. Журбенко. — Элек-трон. дан. — М.: ДМК Пресс, 2012. — 120 с. — Режим доступа:

б) Дополнительная литература:

Горбатюк С.М., Каменев А.В., Глухов Л.М. Конструирование машин и оборудования металлургических производств. В 2 х томах [Электронный ресурс]: учебник. – Издательство «Лань» Электронно-библиотечная система, 2008. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=2077&login-failed=1

Загл. с экрана.

Громов, С. В. Машинная графика и основы САПР. Основные возможности AutoCAD 2000 : учебное пособие / С. В. Громов, Е. А. Калашников. — Москва : МИСИС, 2002. — 56 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/116728 (дата обращения: 08.11.2020). — Режим доступа: для авториз. пользователей.

Основы диагностики и надежности технических объектов: учебное пособие / В. П. Анцупов, А. Г. Корчунов, А. В. Анцупов (мл.), А. В. Анцупов; МГТУ, [каф. МОМЗ]. - Магнитогорск, 2012. - 114 с.: ил., схемы, табл. - URL: https://magtu.informsystema.ru/uploader/fileUpload?name=521.pdf&show=dcatalogues/1/1092 485/521.pdf&view=true (дата обращения: 23.10.2020). - Макрообъект. - Текст: электронный. - Имеется печатный аналог

в) Методические указания:

Пожидаев, Ю. А. Компьютерное моделирование и создание проектно-конструкторской документации в машиностроении средствами САПР. Инженерная и компьютерная графика в Autodesk Inventor, AutoCAD: учебное пособие. Ч. 1 / Ю. А. Пожидаев, Е. А. Свистунова, О. М. Веремей; МГТУ. - Магнитогорск: МГТУ, 2016. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL: https://magtu.informsystema.ru/uploader/fileUpload?name=2525.pdf&show=dcatalogues/1/113 0327/2525.pdf&view=true (дата обращения: 23.10.2020). - Макрообъект. - Текст: электронный. - Сведения доступны также на CD-ROM.

Анцупов, В. П. Изучение, расчет и исследование приводов прокатных станов : учебное пособие / В. П. Анцупов, А. В. Анцупов (мл.), А. В. Анцупов ; МГТУ. - Магнитогорск, 2009. - 86 с. : ил., схемы, табл. - URL: https://magtu.informsystema.ru/uploader/fileUpload?name=268.pdf&show=dcatalogues/1/1060 892/268.pdf&view=true (дата обращения: 23.10.2020). - Макрообъект. - Текст : электронный. - Имеется печатный аналог.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

iipoi pamminoe oocene ienne				
Наименование ПО	№ договора	Срок действия лицензии		
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021		
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно		
Autodesk AutoCAD 2020	учебная версия	бессрочно		
Autodesk 3ds Max Design 2019	учебная версия	бессрочно		

Autodesk		
Inventor	учебная версия	бессрочно
Professional		

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Национальная информационно- аналитическая система – Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	http://magtu.ru:8085/marcweb2/Default.asp
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Лекционная аудитория. Оснащение: Мультимедийные средства хранения, передачи и представления информации.

Компьютерный класс: с пакетом программ из перечня и выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Аудитории для самостоятельной работы: компьютерные классы; читальные залы библиотеки: Персональные компьютеры с пакетом программ из перечня, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельное изучение учебной и научной литературы по темам разделов читаемой дисциплины заключается в освоении соответствующих разделов основной литературы.

Подготовка к практическим занятиям заключается в изучении теоретических разделов источника 1 методических указаний, оформлении отчетов по выполненным работам и к подготовке их к защите.

Примерные задания для проработки материала и подготовки к зачету: Теоретические вопросы для самостоятельной подготовки к зачету:

- 1. Основные принципы моделирования
- 2. Постановка задачи определения прочности детали
- 3. Какие разновидности сетки используются при МКЭ
- 4. Интерпретация результатов расчетов
- 5. Постановка задачи на расчет МКЭ
- 6. Моделирование процессов
- 7. Области применения САЕ-систем

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства			
ПК-3: Способен	ПК-3: Способен осуществлять инжиниринговую деятельность в области металлургического машиностроения				
-	тывает предложения по совершенствованию ьного производства	Провести расчет на прочность смоделированной детали детали Какие разновидности сетки используются при МКЭ Области применения САЕ-систем Последовательность решения инженерных задач МКЭ			
ПК-3.2: Применяет методы реверсивного инжиниринга для разработки конструкторской документации		Основные принципы моделирования Постановка задачи определения прочности детали Постановка задачи определения течения жидкости Постановка задачи определения деформации детали			

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Итоговая аттестация по дисциплине «Основы работы в Autodesk Fusion 360» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета. Зачет по данной дисциплине проводится в устной форме, включает 2 вопроса.

Показатели и критерии оценивания зачета:

- «зачтено» ставится, если обучающийся показывает удовлетворительный уровень знаний основных понятий и определений, умений применять современные образовательные технологии, использовать новые знания и умения, корректно выражать и аргументированно обосновывать положения предметной области знания и владения профессиональным языком предметной области знания.
- *«незачтено»* ставится, если обучающийся показывает слабый уровень знаний основных понятий и определений, умений применять современные образовательные технологии, использовать новые знания и умения, корректно выражать и аргументированно обосновывать положения предметной области знания и владения профессиональным языком предметной области знания.