МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЭиАС __ С.И. Лукьянов

26.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ЭЛЕКТРОННЫЕ ПРОМЫШЛЕННЫЕ УСТРОЙСТВА

Направление подготовки (специальность) 11.03.04 Электроника и наноэлектроника

Направленность (профиль/специализация) программы Программирование и электроника информационных систем

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Электроники и микроэлектроники

Kypc 4

Семестр 7

Магнитогорск 2020 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 11.03.04 Электроника и наноэлектроника (уровень бакалавриата) (приказ Минобрнауки России от 19.09.2017 г. № 927)

	таоочая программа рассмотре	ена и одоорена на заседа	нии кафедрь	и Электроники и
микро	электроники			
	13.02.2020 г, протокол № 6			
		Зав. кафедрой	X	_ С.И. Лукьянов
			0	
	Рабочая программа одобрена № 26.02.2020 г. протокол № 5	методической комиссией	ИЭиАС	
		Председатель	W	_С.И. Лукьянов
	Рабочая программа составлена	a:		
	доцент кафедры ЭиМЭ, канд.			Е.Э. Бодров
	Рецензент:			
	директор СЦ, ООО "ТЕХНОА"	П Инжиниринг" канд те	WII HOUR	
	, 000 IB/III0/I	ттижиниринг, канд. ге		T = =
			-4	Е.С. Суспицын
			OTH MEAN	DU .

Лист актуализации рабочей программы

	отрена, обсуждена и одобрена для реализации в 2021 - 2 кафедры Электроники и микроэлектроники	2022
	Протокол от	
	отрена, обсуждена и одобрена для реализации в 2022 - 2 кафедры Электроники и микроэлектроники	2023
	Протокол от	
	отрена, обсуждена и одобрена для реализации в 2023 - 2 кафедры Электроники и микроэлектроники	2024
учебном году на заседании Рабочая программа пересмо	кафедры Электроники и микроэлектроники	

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Электронные промышленные устройства» является овладение студентами необходимым и достаточным уровнем профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению подготовки 11.03.04 «Электроника и наноэлектроника», профиль подготовки «Программирование и электроника информационных систем». Цель дисциплины — теоретическое и практическое изучение правил проектирования и построения современных электронных промышленных устройств управления объектами, а также изучения последовательности проведения работы по наладке, настройке, регулировке и испытанию электронных промышленных устройств.

Поставленная цель достигается с помощью решения следующих задач:

- изучение современных электронных систем управления объектами;
- выполнение анализа, моделирования, совершенствования и проектирование систем управления;
- разработка мероприятий по улучшению качества обслуживания электронных промышленных устройств;
- изучение режимов работы и условий эксплуатации электронных промышленных устройств;
- контроль параметров надежности работы электронных промышленных устройств;
- знакомство с методиками проведения тестовых проверок электронных промышленных устройств.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Электронные промышленные устройства входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Микропроцессоры

Программирование и электроника информационных систем

Схемотехника

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Схемотехнические средства сопряжения

Программированные технические средства

Подготовка к сдаче и сдача государственного экзамена

Выполнение и защита выпускной квалификационной работы

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Электронные промышленные устройства» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции					
-	ПК-3 Способен проводить работы по наладке, настройке, регулировке и испытанию электронных средств и оборудования					
ПК-3.1	Разрабатывает мероприятий по улучшению качества обслуживания электронных средств и электронных систем различного назначения.					
ПК-3.2	Изучает режимы работы и условия эксплуатации электронного оборудования					

ПК-3.3	Контролирует параметры надежности работы электронного
	оборудования, проводит тестовые проверки

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 81,2 акад. часов:
- аудиторная 76 акад. часов;
- внеаудиторная 5,2 акад. часов
- в форме практической подготовки 2 акад. часов;
- самостоятельная работа 27,1 акад. часов;
- подготовка к экзамену 35,7 акад. часа

Форма аттестации - курсовая работа, экзамен

Раздел/ тема	Семестр	конт	Аудиторн гактная р акад. ча	я работа часах) — — — — — — — — — — — — — — — — — — —		Форма текущего контроля успеваемости и	Код	
дисциплины	Cer	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. 1								
1.1 1. Информационные характеристики устройств управления	7	6	6/4И					ПК-3.1, ПК-3.2, ПК-3.3
Итого по разделу		6	6/4И					
2. 2								
2.1 2. Описание, анализ и синтез цифровых устройств комбинационного типа	7	6	6/3И					ПК-3.1, ПК-3.2, ПК-3.3
Итого по разделу		6	6/3И					
3. 3								
3.1 3. Описание, анализ и синтез устройств с памятью	7	6	6/3И		10	Самостоятельное изучение учебной и научной литературы	Защита лабораторных работ	ПК-3.1, ПК-3.2, ПК-3.3
Итого по разделу		6	6/3И		10			
4. 4								
4.1 4. Построение микропроцессорных устройств управления и обра¬ботки	7	6	6/4И		10	Самостоятельное изучение учебной и научной литературы	Защита лабораторных работ	ПК-3.1, ПК-3.2, ПК-3.3
Итого по разделу		6	6/4И		10			
5. 5								
5.1 5. Устройства преобразования аналоговой информации	7	6	6		7,1	Самостоятельное изучение учебной и научной литературы	Защита лабораторных работ	ПК-3.1, ПК-3.2, ПК-3.3
Итого по разделу		6	6		7,1			
6. 6								

6.1 б. Структурная надежность информационных 7 устройств и их диагностирование	8	8		Самостоятельное изучение учебной и научной литературы	Зашита	ПК-3.1, ПК-3.2, ПК-3.3
Итого по разделу	8	8				
Итого за семестр	38	38/14И	27,1		экзамен,кр	
Итого по дисциплине	38	38/14И	27,1		курсовая работа, экзамен	

5 Образовательные технологии

В процессе преподавания дисциплины «Электронные промышленные устройства» применяются традиционная и модульно-компетентностная технологии. Лекции проходят как в традиционной форме, так и в форме лекций-консультаций, где студентам заранее предлагается ознакомиться с информацией по теме лекционного занятия для подготовки вопросов лектору, таким образом лекция проходит по типу «вопросы—ответы—дискуссия». На всех лекционных занятиях также применяются элементы лекции-визуализации, за счет представления части лекционного материала с помощью заранее подготовленных презентаций, слайдов с помощью мультимедийного оборудования.

Лекционный материал закрепляется на лабораторных занятиях, на которых выполняются индивидуальные и групповые задания по пройденной теме. Для глубокого и полного усвоения лекционного материала на лабораторных занятиях студентам предлагается выполнять задания на специализированных учебных стендах. На лабораторных занятиях также применяются метод контекстного обучения, работы в команде и метод case-study, позволяющие усвоить учебный материал путём выявления связей между конкретным знанием и его применением, а также анализа конкретных ситуаций и поиска решений в группе студентов. Защита результатов лабораторных работ проходит в виде диалога преподавателя и студента, преподавателем задаются контрольные вопросы с целью выяснения глубины знаний студента по данному разделу, при этом студента восполняются дополнительными пробелы В знаниях пояснениями, комментариями преподавателя.

Лабораторные занятия проводятся в форме практической подготовки в условиях выполнения обучающимися видов работ, связанных с будущей профессиональной деятельностью и направленных на формирование, закрепление, развитие практических навыков и компетенций по профилю образовательной программы.

В ходе самостоятельной работы студенты получают более глубокие практические навыки по дисциплине при подготовке к выполнению и защите лабораторных работ и итоговой аттестации.

В качестве оценочных средств на протяжении семестра используются: устный опрос (собеседование), выполнение работ на специализированном лабораторном оборудовании и защита полученных результатов.

- **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
- **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
- 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Иванов, И. И. Электротехника и основы электроники : учебник / И. И. Иванов, Г. И. Соловьев, В. Я. Фролов. 10-е изд., стер. Санкт-Петербург : Лань, 2019. 736 с. ISBN 978-5-8114-0523-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/112073 (дата обращения: 27.03.2020). Режим доступа: для авториз. пользователей.
- 2. Строгонов, А. В. Цифровая обработка сигналов в базисе программируемых логических интегральных схем: учебное пособие / А. В. Строгонов. 3-е изд., стер. Санкт-Петербург: Лань, 2018. 312 с. ISBN 978-5-8114-1981-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/104960 (дата обращения: 09.10.2020). Режим доступа: для авториз. пользователей

б) Дополнительная литература:

- 1. Шапкарина, Г. Г. Преобразование и передача технологической информации в системах управления. Ч 1. Преобразование технологической информации в системах управления: учебное пособие / Г. Г. Шапкарина. Москва: МИСИС, 2004. 81 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/1859 (дата обращения: 27.03.2020). Режим доступа: для авториз. пользователей.
- 2. Маркарян, Л. В. Схемотехника цифровой электроники : учебное пособие / Л. В. Маркарян. Москва : МИСИС, 2018. 74 с. ISBN 978-5-907061-72-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/116941 (дата обращения: 09.10.2020). Режим доступа: для авториз. пользователей

в) Методические указания:

- 1. Ишметьев, Е.Н. Управление электротехническими комплексами на базе контроллеров В&R: работа с программным обеспечением Automation Studio и Automation Runtime: учеб. пособие / Е.Н. Ишметьев, Д.В.Чистяков, А.Н.Панов, Е.Э.Бодров, В.О. Михеева Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2016. 140 с.
- 2. Чистяков, Д.В. Автоматизированное управление электротехническими комплексами на базе контроллеров В&R: работа с визуализацией: учеб. Пособие / Е.Н. Ишметьев, Д.В.Чистяков, А.Н.Панов, Е.Э.Бодров, В.О. Михеева Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2019. 163 с.
- 3. Панов А.Н., Лукьянов С.И., Сидельникова Е.И., Васильев А.Е. Лабораторный практикум по курсу «Электронные промышленные устройства», Магнитогорск: МГТУ, 2004 г.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
Windows 7	Д-1227 от 8.10.2018 Д-757-17 от 27.06.2017	11.10.2021 27.07.2018
7 Zip	Свободно распространяемое	бессрочно
MS Office 2007	№ 135 от 17.09.2007	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно
NI Developer Suite	К-118-08 от 20.10.2008	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Лаборатория методов математического моделирования и компьютерных технологий в научных исследованиях: лабораторные стенды National Instruments.

Аудитории для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации: аудитории кафедры электроники и микроэлектроники (ауд. 457,458,459,460).

Компьютерный класс: персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Аудитории для самостоятельной работы: компьютерные классы; читальные залы библиотеки: персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Учебные аудитории для выполнения курсового проектирования, помещения для самостоятельной работы: Персональные компьютеры с пакетом MS Office, с выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования: Стеллажи, сейфы для хранения учебного оборудования. Инструменты для ремонта оборудования.

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Электронные промышленные устройства» предусмотрено самостоятельное изучение обучающимися основной и дополнительной литературы при подготовке к лекционным и лабораторным занятиям: по следующей тематике:

- 1. Информационные характеристики устройств управления
 - 1.1. Классификация автоматизированных систем управления
 - 1.2. Современная модель автоматизации промышленного предприятия
 - 1.3. Функции и компоненты типового обеспечения АСУТП
- 2. Описание, анализ и синтез цифровых устройств комбинационного типа
 - 2.1. Типовые КЦУ
 - 2.2. Шифраторы
 - 2.3. Дешифраторы
 - 2.4. Мультиплексоры
 - 2.5. Демультиплексоры
 - 2.6. Одноразрядный двоичный сумматор
 - 2.7. Многоразрядные двоичные сумматоры
 - 2.8. Быстродействие КЦУ
 - 2.9. Состязания в КЦУ
- 3. Описание, анализ и синтез устройств с памятью
 - 3.1. Триггеры
 - 3.2. Регистры
 - 3.3. Счетчики
- 4. Построение микропроцессорных устройств управления и обработки
- 5. Устройства преобразования аналоговой информации
- 6. Структурная надежность информационных устройств и их диагностирование
- 7. МП в системе управления объектом.
- 8. Обобщенная структура МПС. Проектирование МПС.
- 9. Подсистема аналогового ввода.
- 10. Устройства выборки-хранения.

Темы лабораторных работ:

- 1. Аппаратная и программная защита от дребезга контактов.
- 2. Подключение семисегментного индикатора к микропроцессорной системе. Динамическая индикация.

Примерный перечень контрольных вопросов к лабораторным работам:

- 1. Каким образом можно осуществить программную защиту от дребезга?
- 2. Какие есть способы реализации аппаратной защиты от дребезга?
- 3. Что такое динамическая индикация?
- 4. Какой должна быть частота переключения разрядов на семисегментных индикаторах для нормального восприятия глазом?

Внеаудиторная самостоятельная работа обучающихся осуществляется в виде изучения литературы по соответствующему разделу с проработкой материала и написания пояснительной записки курсовой работы.

Курсовая работа выполняется обучающимся самостоятельно под руководством преподавателя. При выполнении курсовой работы обучающийся должен показать свое умение работать с нормативным материалом и другими литературными источниками, а также возможность систематизировать и анализировать фактический материал и самостоятельно творчески его осмысливать.

В начале изучения дисциплины преподаватель предлагает обучающимся на выбор перечень тем курсовых работ. Обучающийся самостоятельно выбирает тему курсовой работы. Совпадение тем курсовых работ у студентов одной учебной группы не

допускается. Утверждение тем курсовых работ проводится ежегодно на заседании кафедры.

После выбора темы преподаватель формулирует задание по курсовой работе и рекомендует перечень литературы для ее выполнения. Исключительно важным является использование информационных источников, а именно системы «Интернет», что даст возможность обучающимся более полно изложить материал по выбранной им теме.

В процессе написания курсовой работы обучающийся должен разобраться в теоретических вопросах избранной темы, самостоятельно проанализировать практический материал, разобрать и обосновать практические предложения.

Преподаватель, проверив работу, может возвратить ее для доработки вместе с письменными замечаниями. Студент должен устранить полученные замечания в установленный срок, после чего работа окончательно оценивается.

Курсовая работа должна быть оформлена в соответствии с СМК-О-СМГТУ-42-09 «Курсовой проект (работа): структура, содержание, общие правила выполнения и оформления».

Примерный перечень тем курсовых работ и пример задания представлены в разделе 7 «Оценочные средства для проведения промежуточной аттестации».

Оценочные средства для проведения промежуточной аттестации а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатора	Индикатор достижения компетенции	Оценочные средства
	водить работы по наладке, настройке, р	регулировке и испытанию
электронных средст		
ПК-3.1	Разрабатывает мероприятий по	Теоретические вопросы для
	улучшению качества обслуживания	подготовки к экзамену:
	электронных средств и электронных	
	систем различного назначения.	1. Классификация
		мероприятий по улучшению
		качества обслуживания
		электронных средств и
		электронных систем
		различного назначения
		2. Способы и возможности
		улучшения качества
		обслуживания электронных
		систем
		3. Микропроцессор в системе
		управления объектом
		4. Статические ЗУ среднего
		быстродействия
		5. Обобщенная структура МПС
		6. Регенерация динамического
		ОЗУ
		7.Система сбора и обработки
		данных
		8. Увеличение емкости и
		разрядности блока ОЗУ.
		Блок-схемы
		9. Подсистема аналогового
		ввода
		10. Объединение БИС ЗУ по
		входам
		11. Устройства выборки -
		хранения
		12. Объединение БИС ЗУ по
		выходам
		13. Фильтры
		14. Потребляемая мощность
		блока ОЗУ
		15. Восстановление
		аналоговых сигналов
		16. Временные характеристики
		блока ОЗУ
		17 Подсистема цифрового
		ввода
		18. Передача данных при
		использовании ЗУ с
		раздельными и

Код индикатора	Индикатор достижения компетенции	Оценочные средства
тод підпкатора	тидикатор достижения компетенции	объединенными
		входами-выходами
ПК-3.2	Изучает режимы работы и условия	Теоретические вопросы для
	эксплуатации электронного	подготовки к экзамену:
	оборудования	19. Входные характеристики
		ТТЛ и КМОП микросхем
		20. Выходные характеристики
		ТТЛ и КМОП микросхем
		21. Классификация БИС ПЗУ.
		Структурная схема ПЗУ
		22. Сопряжение цифровой
		логики с ВУ. Механические
		ключи
		23. Масочные ПЗУ
		24. Распределение адресного
		пространства
		25. ППЗУ
		26. Сопряжение ТТЛ и КМОП
		микросхем
		27. РПЗУ
		28. Иерархия уровней обмена
		данными
		29 Структурная схема
		программатора. Блок
		специализации
		30. Временная синхронизация
		процессов в МПС
		31. Программирование ППЗУ.
		Формирователь сигналов
		данных 32. Формирование
		магистралей МПС с
		использованием системного
		контроллера
		33. Программирование ППЗУ.
		Формирователь сигналов
		программирования
		34. Формирование
		магистралей МПС с
		использованием слова
		состояния МП
		35. Передача данных из ПЗУ
		36. Организация магистралей МПС
		37. Преобразование
		интерфейса МП для
		сопряжения с ПЗУ
		38. Внутри и межплатные
		соединения
		39. Структурная схема

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		димического ОЗУ 40. Общие принципы организации интерфейса МП с УВВ 41. Организация блоков динамического ОЗУ 42. Адресуемый порт ввода - вывода 43. Динамические ЗУ. Мультиплексирование адреса 44. Коммутируемый порт ввода - вывода 45. Динамические ЗУ. Формирование сигналов RAS, MUX и CAS 46. Линейный выбор УВВ 47. Запись и считывание данных из ДОЗУ
ПК-3.3	Контролирует параметры надежности работы электронного оборудования, проводит тестовые проверки	Теоретические вопросы для подготовки к экзамену: 48. Контроль ОЗУ. Типы АФТ 49. Сопряжение цифровой логики с ВУ. 50. Компараторы и ОУ 51. Преобразование интерфейса МП для сопряжения с ЗУ Примерные темы курсовых работ:
		1. Разработать микропроцессорный частотомер прямоугольных импульсов от 1 Гц до 1 кГц. Точность 1%. Предусмотреть индикацию измеряемой частоты. 2. Разработать МПС измеритель сопротивления от 1 Ом до 1 кОм. Точность 0,01 Ом. 3. Разработать блок ЗУ заданного объёма для подключения к МПС. (ОЗУ 1Кх4, ПЗУ 2Кх8) 4. Разработать МПС вольтметр DC от 1в до 15в, точность 1%
L		5. Разработать МПС

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		тестер стаблитронов, с
		определением Ист с точностью
		1%. Диапазоны измерения 5,
		10 и 15 В. Питание от МПС.
		Предусмотреть
		автоматическое определение
		направления включения
		стабилитрона и индикации
		анода.
		6. Разработать
		микропроцессорный генератор
		низких частот с
		фиксированными
		амплитудами выходного
		сигнала 0,5 В; 1 В; 5В; и
		ограниченным набором частот
		сигналов 10 Гц, 100 Гц, 1000
		Гц. Предусмотреть органы
		управления генератором и
		индикацию. В качестве
		источника кода для ЦАП
		использовать ПЗУ.
		7. Разработать
		микропроцессорное
		устройство управления и
		индикации микроволновой
		печи. Установка таймера по 0,5
		мин (до 30 мин), Установка
		мощности 20, 40, 60, 80, 100 %,
		кнопки пуска, остановки,
		индикация на семисегментных
		индикаторах (таймер
		обратного отсчёта).
		Включение генератора и
		двигателя вращения блюда –
		реле. Регулировка мощности
		генератора – сигнал
		напряжения 0В – 100%, 1В –
		80%, 2B – 60%, 3B – 40%, 4B –
		20%.
		8. Разработать
		микропроцессорное
		устройство управления и
		индикации варочной
		поверхности на 4 конфорки.
		Установка мощности с шагом
		10%, кнопки
		включения/отключения
		конфорок (или поверхности в
		целом). Включение конфорок
		– реле, регулировка мощности
		– ШИМ с периодом 50 с.
<u> </u>	<u>I</u>	периодом 50 с.

Код индикатора	Индикатор достижения компетенции	Оценочные средства	
		9. Разработать тестер	
		микросхем ADG706. В	
		процессе тестирования	
		осуществлять измерение	
		омического сопротивления	
		каналов.	
		10. Разработать микропроцессорный вольтметр переменного напряжения, измеряющий действующее значение до 50В. Точность 1%. Частота от 10 до	
		50 Гц.	
		11. Разработать микропроцессорный тестер микросхемы SN74ALS245. При тестировании микросхем	
		осуществлять контроль	
		наличия Z-состояния.	
		Предусмотреть необходимую	
		индикацию и органы	
		1	
		управления. 12. Разработать	
		1	
		микропроцессорный тестер микросхемы SN74ALS373.	
		При тестировании микросхем	
		осуществлять контроль	
		наличия Z-состояния.	
		Предусмотреть необходимую	
		индикацию и органы	
		_	
		управления. 13. Разработать	
		<u> </u>	
		микропроцессорное устройство фазового	
		управления однофазным двигателем переменного тока 220 В. Мощность двигателя 1	
		1	
		человеком. Система	
		управления – разомкнутая.	

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Электронные промышленные устройства» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое залание.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

Курсовая работа выполняется под руководством преподавателя, в процессе ее написания обучающийся развивает навыки к научной работе, закрепляя и одновременно расширяя знания, полученные при изучении курса «Машинные языки». При выполнении курсовой работы обучающийся должен показать свое умение работать с нормативным материалом и другими литературными источниками, а также возможность систематизировать и анализировать фактический материал и самостоятельно творчески его осмысливать.

В процессе написания курсовой работы обучающийся должен разобраться в теоретических вопросах избранной темы, самостоятельно проанализировать практический материал, разобрать и обосновать практические предложения.

Показатели и критерии оценивания курсовой работы:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку «удовлетворительно» (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.