МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЭиАС С.И. Лукьянов

26.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

Направление подготовки (специальность) 13.03.01 Теплоэнергетика и теплотехника

Направленность (профиль/специализация) программы Энергообеспечение предприятий

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт энергетия

Институт энергетики и автоматизированных систем

Кафедра

Теплотехнических и энергетических систем

Курс

3

Семестр

5

Магнитогорск 2020 год

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника (уровень бакалавриата) (приказ Минобрнауки России от 28.02.2018 г. № 143) заседании кафедры одобрена на Рабочая программа рассмотрена Теплотехнических и энергетических систем 11.02.2020, протокол № 4 Е.Б. Агапитов Зав. кафедрой Рабочая программа одобрена методической комиссией ИЭиАС 26.02.2020 г. протокол № 5 С.И. Лукьянов Председатель Рабочая программа составлена: **Е**.Б. Агапитов зав. кафедрой ТиЭС, д-р. техн. наук Рецензент: В.Н. Михайловский зам.начальника ЦЭСТ ПАО "ММК", к.т.н,

Лист актуализации рабочей программы

Рабочая программа пересі	иотрена, обсуждена и одо	обрена для реали	гзации в 2021 - 2022
учебном году па заседани	и кафедры - Теплотехнич	веских и энергет	ических систем
	Протокол от 19 жд Зав. кафедрой	Huming The 29th of	№ <u>Д</u> - В.Г. Нешпоренко
Рабочая программа перес-	мя рена, обсуждена и одс	обрена для реади	звации в 2022 - 2023 [†]
учебном году на заседани	и кафедры Теплотехнич	веких и энергет.	ических систем
	Протокол (уг	20 r.	№ Е.Г. Непторсико
Рабочая программа пересу	котрена, обсуждена и одн	брона для режи	изация в 2023 - 2024
учебном году на заседани	н кафедры — Теплотскими	еских и энсргет	ических систем
	Протикол от Зав. кафе,цкій	20 _ r.	№ Е.Г. Нешпоронко
Рабочая программа переск	опрена, обсуждена и одо	брена пля реали	вящи и в 2024 - 2025
учебном году на заседани	в кафедры Теплотскиия	еских и эперге п	ических систем
	Протокол от	20 r.	№ Е.Г. Иешпоренко (

Лист актуализации рабочей программы

Рабочая программа пересм 2021 — 2022 учебном го энергетических систем	отрена, обсуждена и одобрена для реализации в ду на заседании кафедры Теплотехнических и
	Протокол от 1 сентября 2021г. № 1 Зав. кафедрой Е.Г. Нешпоренко
Рабочая программа пересм 2022 - 2023 учебном год энергетических систем	отрена, обсуждена и одобрена для реализации в ку на заседании кафедры Теплотехнических и
	Протокол от 19 октября 2022г. № 3 Зав. кафедройЕ.Г. Нешпоренко
	отрена, обсуждена и одобрена для реализации в ду на заседании кафедры Теплотехнических и
	Протокол от2022г. № Зав. кафедройЕ.Г. Нешпоренко

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины «Материаловедение и технология конструкционных материалов» является приобретение обучающимися теоретических знаний о факторах, определяющих свойства материалов, а также практических навыков контроля и прогнозирования свойств и поведения материалов в различных условиях их обработки и эксплуатации, необходимых для плодотворной проектно-конструкторской, организационно-управленческой, экспертной, надзорной, инспекционно-аудиторской и научно-исследовательской деятельности.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Материаловедение и технология конструкционных материалов входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Физика

Химия

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Проектная деятельность

Производственная-преддипломная практика

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Материаловедение и технология конструкционных материалов» обучающийся должен обладать следующими компетенциями:

,						
Код индикатора	Индикатор достижения компетенции					
ОПК-5 Способен учитывать свойства конструкционных материалов в теплотехнических расчетах с учетом динамических и тепловых нагрузок						
	Использует знания для нахождения и определения основных свойств конструкционных материалов					
	Проводит теплотехнические расчеты с учетом свойств конструкционных материалов					
	Разрабатывает теплотехническое оборудование с учетом свойств конструкционных материалов					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 55 акад. часов:
- аудиторная 54 акад. часов;
- внеаудиторная 1 акад. часов;
- самостоятельная работа 89 акад. часов;
- в форме практической подготовки 0 акад. час;

Форма аттестации - зачет с оценкой

Раздел/ тема		Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	жиеленая Вид Вид самостоятельной	Форма текущего контроля успеваемости и	Код	
дисциплины	Cer	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Материаловедение технология конструкцион материалов	и нных							
1.1 Материаловедение. Классификация материалов. Основные свойства материалов. Связь между структурой и свойствами материалов. Методы исследования структуры		3		3	17	Самостоятельное изучение учебной и научной литературы. Приложение 1.	Собеседование	ОПК-5.1, ОПК-5.2, ОПК-5.3
1.2 Атомно-кристаллическое строение металлов. Основные типы связей. Виды кристаллов. Кристаллическая решетка. Полиморфизм. Анизотропия. Дефекты кристаллического строения. Механизмы диффузии		4		4/1И	18	Самостоятельное изучение учебной и научной литературы. Приложение 1. Подготовка к семинарскому занятию.	Собеседование, семинарское занятие.	ОПК-5.1, ОПК-5.2

·		,	,	1			•
1.3 Кристаллизация расплавов Термодинамическое условия кристаллизации. Механизм кристаллизации металлов. Самопроизвольная и несамопроизвольная кристаллизация. Модифицирование. Дендритная кристаллизация. Строение слитка. Деформация металлов. Механические свойства. Упругая и пластическая деформация. Изменение структуры и свойств поликристаллического металла при деформации. Изменение структуры и свойств при нагреве деформированного металла. Испытания механических свойств	4	8/4И	4/3И	18	Подготовка к лекционным и лабораторным занятиям. Приложение 1. Самостоятельная проработка материала по темам: Кристаллизация расплавов. Упругая и пластическая деформация. Механизм деформации. Изменение структуры и свойств поликристалличе ского металла при деформации. Изменение структуры и свойств при нагреве деформированно го металла. Испытания механических свойств.	Защита лабораторной работы, устный опрос, контрольная работа.	ОПК-5.1, ОПК-5.2, ОПК-5.3
1.4 Диаграммы состояния, типы структур материалов. Основные понятия теории сплавов. Диаграммы двойных систем. Железоуглеродистые сплавы. Формирование структуры сталей и чугунов в равновесном состоянии. Классификация, маркировка, свойства и применение легированных сталей. Формирование неравновесных структур. Фазовые превращения в железоуглеродистых сплавах при нагреве и охлаждении. Конструкционные стали. Инструментальные стали и сплавы. Стали и сплавы с особыми физическими и химическими свойствами	5	5/3И	3/3И	18	Самостоятельное изучение учебной и научно литературы. Приложение 1. Подготовка к практическому занятию.	Защита лабораторной работы, устный опрос, контрольная работа.	ОПК-5.1, ОПК-5.2
1.5 Маркировка, свойства и применение сплавов цветных металлов Алюминий и его сплавы. Медные сплавы. Сплавы титана. Неметаллические материалы	2	5/3И	4/3И	18	Самостоятельная проработка материала по темам. Приложение 1.	Защита лабораторной работы, устный опрос.	ОПК-5.1, ОПК-5.2, ОПК-5.3

Итого по разделу	18	18/10И	18/10И	89		
Итого за семестр	18	18/10И	18/10И	89	3a0	
Итого по дисциплине	18	18/10И	18/10И	89	зачет с оценкой	

5 Образовательные технологии

В процессе преподавания дисциплины «Материаловедение и технология конструкционных материалов» применяются традиционная и модульно-компетентностная технологии.

Лекции проходят как в традиционной форме, так и в форме лекций-консультаций, где теоретический материал заранее выдается студентам для самостоятельного изучения, для подготовки вопросов лектору, таким образом, лекция проходит по типу вопросыответы-дискуссия. Лекции читаются с использованием мультимедийного оборудования, презентационных материалов.

Лекционный материал закрепляется в ходе лабораторных работ и практических занятий, на которых выполняются групповые или индивидуальные задания по пройденной теме. При проведении лабораторных занятий используется метод контекстного обучения, который позволяет усвоить материал путем выявления связей между конкретным знанием и его применением.

При выполнении лабораторных работ используется технология коллективного взаимодействия. Занятия проводятся в виде лабораторного анализа и эксперимента, при этом студенты работают совместно с последующим групповым анализом полученных результатов. Например, структуру сплавов определяет каждый студент при изучении экспериментальных образцов, а анализ полученных результатов по единичным показателям, выполненных отдельными студентами, проводится групповым методом.

На практических занятиях студенты учатся решать задачи, связанные с выбором, перспективных и экономичных сталей и сплавов, наиболее прогрессивных технологий их термообработки, обеспечивающих уменьшение металлоемкости машин и сооружений, повышение долговечности и надежности, снижение энергетических и трудовых затрат.

В учебном процессе используются активные и интерактивные формы проведения занятий (компьютерные симуляции, разбор конкретных ситуаций) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Самостоятельная работа студентов стимулирует студентов к самостоятельной проработке тем, выполнения индивидуальных заданий, в процессе подготовки к контрольным работам и итоговой аттестации.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Материаловедение и технология материалов в 2 ч. Часть 1: учебник для академического бакалавриата / Г. П. Фетисов [и др.]; под редакцией Г. П. Фетисова. 8-е изд., перераб. и доп. Москва: Издательство Юрайт, 2019. 386 с. URL: https://www.biblio-online.ru/bcode/434496
- 2. Черепахин, А. А. Материаловедение : учебник / А. А. Черепахин, А. А. Смолькин. Москва : КУРС, НИЦ ИНФРА-М, 2018. 288 с. (Бакалавриат). 978-5-906818-56-0. ISBN 978-5-16-104678-4. URL: https://new.znanium.com/catalog/product/944309

б) Дополнительная литература:

- 1. Дмитренко, В. П. Материаловедение в машиностроении: учебное пособие / В. П. Дмитренко, Н. Б. Мануйлова. Москва: ИНФРА-М, 2019. 432 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-010712-7. URL: https://new.znanium.com/catalog/product/949728
- 2. Адаскин, А. М. Материаловедение в станкостроении: учебник / А. М. Адаскин. Москва: ИНФРА-М, 2019. 320 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-107415-2. URL: https://new.znanium.com/catalog/product/1010941
- 3. Земсков, Ю. П. Материаловедение: учебное пособие / Ю. П. Земсков. Санкт-Петербург: Лань, 2019. 188 с. ISBN 978-5-8114-3392-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/113910

в) Методические указания:

- 1. Материаловедение. Практикум. Емелюшин А.Н., Молочкова О.С., Петроченко Е.В. Магнитогорск. Изд. Центр ФГБОУ МГТУ им. Г.И. Носова. 2019. 64 с.
- 2. Материаловедение. Методы анализа структуры и свойств металлов и сплавов : учебное пособие / Т. А. Орелкина, Е. С. Лопатина, Г. А. Меркулова, Т. Н. Дроздова, А. С. Надолько; под ред. Т. А. Орелкиной. Красноярск: Сиб. федер. ун-т, 2018. 214 с. ISBN 978-5-7638-3936-4. URL: https://new.znanium.com/catalog/product/1032141

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно
MS Windows 10 Professional (для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
Linux Calculate	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Архив научных журналов «Национальный электронно-информационный концорциум» (НП НЭИКОН)	
Международная реферативная и полнотекстовая справочная база данных научных изданий «Springer Nature»	
I HICTOR RELIGINATION MATCHIALING ZOIM LIT	http://zbmath.org/
Международная база справочных изданий по всем отраслям знаний SpringerReference	http://www.springer.com/references
Международная база научных материалов в области физических наук и инжиниринга	http://materials.springer.com/

Международная коллекция научных протоколов по различным отраслям знаний	http://www.springerprotocols.com/
Международная база полнотекстовых журналов Springer Journals	http://link.springer.com/
Международная реферативная и полнотекстовая справочная база данных	http://scopus.com
Международная наукометрическая реферативная и полнотекстовая база данных научных изданий «Web of science»	http://webofscience.com
Университетская информационная система РОССИЯ	https://uisrussia.msu.ru
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	http://magtu.ru:8085/marcweb2/Default.asp
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalogues/
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
Национальная информационно-аналитическая система — Российский индекс научного цитирования	URL: https://elibrary.ru/project_risc.asp
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	URL: http://www1.fips.ru/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа:

-мультимедийные средства хранения, передачи и представления информации.

Аудитория для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации:

-специализированная мебель, мультимедийные средства хранения, передачи и представления информации.

Аудитории для самостоятельной работы: компьютерные классы; читальные залы библиотеки:

-персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета, читальные залы библиотеки.

Помещение для хранения и профилактического обслуживания учебного оборудования:

-специализированная мебель. Станочный парк оборудования и инструменты для профилактического обслуживания и ремонта учебного оборудования.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Материаловедение и технология конструкционных материалов» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Задания для практических работ

- 1. Измерить твердость образцов на приборе Роквелла.
- 2. Измерить твердость образцов на приборе Бринеля.
- 3. Описать структуру доэвтектоидной стали.
- 4. Описать структуру заэвтектоидной стали.
- 5. Рассмотреть структуры сплавов и найти белые чугуны.
- 6. Рассмотреть структуры сплавов и найти серые чугуны.
- 7. Расшифровать маркировки предложенных сталей.
- 8. Сделать шлифы предложенных сплавов.
- 9. Определить ударную вязкость образцов.
- 10. Выбрать методы испытаний износостойкости.

Вопросы для самостоятельной работы обучающихся

Тема 1.

- 1. Чем отличаются кристаллические тела от аморфных тел?
- 2. Какие материалы называют кристаллическими, а какие аморфными?
- 3. Какие типы кристаллических решеток вам известны? Охарактеризуйте их.
- 4. В чем сущность полиморфизма? Что такое полиморфное превращение?
- 5. Что такое анизотропия? Какова причина анизотропии?
- 6. Назовите основные свойства металлов.
- 7. Какова роль дислокаций в кристаллах?
- 8. Какую роль играют границы зерен в кристаллах?
- 9. Микроскопический и макроскопический методы исследования металлов.
- 10. Каков механизм кристаллизации?

Тема 2

- 1. Как влияет скорость охлаждения при кристаллизации на структуру?
- 2. Какими факторами определяется возможная степень переохлаждения жидкого металла ниже температуры кристаллизации?
- 3. Как можно получить аморфный металл?
- 4. Назовите параметры кристаллизации.
- 5. Что называют модифицированием при кристаллизации?
- 6. Какие меры можно предложить для того, чтобы обеспечить получение мелкого зерна при кристаллизации?
- 7. Какие кристаллические зоны могут формироваться в слитке?
- 8. Что называют усадочной раковиной? Почему она образуется?
- 9. В чем различие между упругой и пластической деформацией?
- 10. Каков механизм пластической деформации?

Тема 3

- 1. Какова причина механического наклепа?
- 2. Как меняются свойства металла при холодной пластической деформации?
- 3. Что такое текстура деформации?
- 4. Что такое температура рекристаллизации?
- 5. Какова роль рекристаллизационного отжига?
- 6. В чем различие между холодной и горячей пластической деформациями?
- 7. Чем отличаются хрупкое и вязкое разрушения?
- 8. Как определяются прочностные характеристики материала?
- 9. Как определяются пластические характеристики материала?
- 10. Какие характеристики определяются при динамических испытаниях?
- 11. Назовите методы определения твердости.
- 12. Типы фаз в металлических системах.
- 13. Что такое феррит, аустенит, цементит, графит?
- 14. Дайте характеристику основных фаз в стали.
- 15. Объясните структуру технического железа, доэвтектоидной, эвтектоидной, заэвтектоидной стали.
- 16. Опишите процесс графитизации в чугунах.
- 17. Укажите структурный признак стали, белого чугуна, серого чугуна.
- 18. Почему белый чугун не используют как конструкционный материал?

Тема 4

- 1. Как влияет рост зерна на свойства стали?
- 2. Назовите температурные области превращения переохлажденного аустенита.
- 3. При каком превращении есть и диффузия железа, и диффузия углерода?
- 4. Каков механизм перлитного превращения?
- 5. Что общего имеют структуры перлит, сорбит и троостит?
- 6. Каков механизм и особенности мартенситного превращения?
- 7. Что представляет собой мартенсит в углеродистой стали?
- 8. Что называют критической скоростью закалки?
- 9. Как легирующие элементы влияют на устойчивость переохлажденного аустенита?
- 10. Что называют закалкой? Как она осуществляется?
- 11. Каковы цели и задачи отжига 1-го рода? Назовите разновидности этого отжига?
- 12. Каковы цели и задачи отжига 2-го рода? Назовите разновидности этого отжига?
- 13. Как распределяются легирующие элементы в сталях?
- 14. Как легирующие элементы влияют на фазовые превращения в стали?
- 15. Что указывается в маркировке легированных сталей?
- 16. В чем особенности микролегирования стали.
- 17. Основные группы конструкционных сталей.
- 18. Стали для цементации, нитроцементации и азотирования.
- 19. Стали и сплавы для режущих инструментов.

Тема 5

- 1. Быстрорежущие стали.
- 2. Штамповые стали.
- 3. Валковые стали.
- 4. Стали для мерительного инструмента.
- 5. Основные сплавы на основе меди (бронзы и латуни), их маркировка и применение.

- 6. Основные сплавы на основе алюминия (деформируемые, термически не упрочняемые и упрочняемые), их маркировка и применение.
- 7. Свойства и применение сплавов на основе титана.
- 8. Какие сплавы называют баббитами? Каковы принципы их создания. Приведите примеры таких сплавов.
- 9. Какие материалы называют порошковые материалы? Как их получают?
- 10. Классификация, свойства и применение порошковых материалов.
- 11. Классификация, свойства и применение композиционных материалов.
- 12. Свойства и применение аморфных материалов?
- 13. Классификация, свойства и применение основных групп неметаллических материалов.

7 Оценочные средства проведения промежуточной аттестации (зачета с оценкой)

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатора	Индикатор достижения компетенции	Оценочные средства				
	собен учитывать свой	ства конструкционных материалов в теплотехнических расчетах с учетом динамических и тепловых				
нагрузок						
ОПК- 5.1	Использует знания для нахождения и	Примерные задания для зачета:				
	определения основных свойств конструкционных материалов	 Каковы размеры структурных элементов, которые можно увидеть (разрешить) с помощью оптического (светового) микроскопа? Как выбрать полезное увеличение микроскопа? Какова основная особенность приготовления объекта для микроскопического исследования? Объяснить, зачем необходимо исследовать макроструктуру? Какими методами это можно сделать? Что может служить объектом макроанализа? Каким методом можно установить тип кристаллической решетки металла и ее параметры? Какие типы решеток встречаются у металлов? Почему они называются плотноупакованными? Приведите пример влияния типа связи (типа кристаллической решетки) на свойства материала. Почему свойства кристаллического материала, измеренные в разных направлениях, могут отличаться? В каких материалах это явление не наблюдается и почему? Почему при холодной пластической деформации (штамповке или вытяжке) могут образоваться фестоны по кромке (краю) изделия? Объяснить, чем различаются α-железо, γжелезо и джелезо? Почему при холодной пластической деформации возрастают прочностные характеристики? Как это явление называется? В каких случаях это явление нежелательно? Пояснить графически физический смысл понятия «равновесная температура кристаллизации 				

Код индикатора	Индикатор достижения компетенции	Оценочные средства
ОПК-5.2	Проводит теплотехнические расчеты с учетом свойств конструкционных материалов	 (плавления)». Какое условие необходимо выполнить, чтобы начался процесс кристаллизации? 10. Объяснить, в чем отличие кривых охлаждения кристаллических и аморфных тел? Можно ли получить аморфный металл (металлическое стекло)? 11. Почему зерна закристаллизовавшегося металлического материала не имеют геометрически правильной формы? 12. Какую цель преследуют при введении в расплав (жидкий металл) модификаторов? Привести примеры действия модификаторов. 13. Объяснить, в какой отливке зерно закристаллизовавшегося металла будет больше: при разливке жидкого металла в песчаную форму или в металлическую? 14. Объяснить, при какой деформации можно необратимо изменить форму, размеры и свойства материала – упругой или пластической? Примерные задания для зачета 1. Как провести макроанализ? Каковы его цели, методы? Объяснить, как выбрать содержание углерода в стали для изготовления детали машин, конструкции или сооружения. 2. Как по структурному признаку можно определить сталь (белый чугун, серый чугун, половинчатый чугун, железо технической чистоты)? 3. Объяснить, можно ли использовать белый чугун в качестве конструкционного материала. 4. Объяснить, можно ли использовать белый чугун в качестве конструкционного материала? 6. Объяснить, какая форма графита в меньшей степени ослабляет металлическую основу чугуна? Как получить такую форму графита в тельке? 7. Как получить отливку со структурой ковкого чугуна? Каковы разновидности структуры такого чугуна и его свойства? 8. Почему не происходит упрочнения стали при горячей пластической деформации при 1050 €? 9. Почему деформация свинца (Тпл. = 327 °С) при комнатной температуре ввляется горячей деформацией? 10. При рекристаллизационном отжиге холоднокатаной ленты из стали 08кп охлаждение в интервале температур 680 – 370 °С ведут с малой скоростью. Почему это необходимо?

Код индикатора	Индикатор достижения компетенции	Оценочные средства
ОПК-5.3	Разрабатывает	 11. Назначить режим рекристаллизационного отжига для никоуглеродистой холоднокатаной листовой стали. 12. Как определяют склонность стали к росту зерна при нагреве? 13. Назначить режим полного отжига для стали марки 45. 14. Назначить режим нормализации для стали марки 45.
OHK-5.5	Разраоатывает теплотехническое оборудование с учетом свойств конструкционных материалов	 Примерные задания Объяснить, что происходит при формировании текстуры в деформированном материале? Зачем требуется восстанавливать пластичность холоднодеформированного листа (калиброванной заготовки, волоченой проволоки)? Какой обработкой это можно сделать? Объяснить какое свойство материала характеризует твердость. На чем основываются методы измерения твердости? В чем их отличие? Как проводят испытание на ударную вязкость? Какова его цель? С какой целью проводят усталостные испытания? Выбрать термическую обработку для исправления видманштеттовой структуры в стальной отливке. Выбрать термическую обработку для исправления крупнозернистой структуры горячекатаной стали. Выбрать закалочную среду, обеспечивающую наибольшую прокаливаемость углеродистой стали. Выбрать закалочную среду для закалки легированной углеродистой стали. Выбрать режим отпуска закаленной стали, обеспечивающий сохранение высокой твердости. Выбрать режим отпуска закаленной стали, обеспечивающий высокие упругие свойства

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания.

Критерии оценки (в соответствии с формируемыми компетенциями и планируемыми результатами обучения):

Показатели и критерии оценивания зачета с оценкой

Критерии оценки:

- на оценку «отлично» (5 баллов) обучающийся демонстрирует систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку «хорошо» (4 балла) обучающийся демонстрирует средний уровень обученности: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку «удовлетворительно» (3 балла) обучающийся демонстрирует пороговый уровень обученности: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку «неудовлетворительно» (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.