МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИГДиТ И.А. Пыталев

14.02.2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ВОССТАНОВЛЕНИЕ РАБОТОСПОСОБНОСТИ ГОРНО-МЕТАЛЛУРГИЧЕСКИХ МАШИН

Направление подготовки (специальность) 15.04.02 Технологические машины и оборудование

Направленность (профиль/специализация) программы Транспортно-технологические машины, комплексы и оборудование горно-металлургического производства

Уровень высшего образования - магистратура

Форма обучения очная

Институт/ факультет Институт горного дела и транспорта

Кафедра Горных машин и транспортно-технологических комплексов

Kypc 2

Семестр 3

Магнитогорск 2022 год Рабочая программа составлена на основе ФГОС ВО - магистратура по направлению подготовки 15.04.02 Технологические машины и оборудование (приказ Минобрнауки России от 14.08.2020 г. № 1026)

Рабоч	ая программа рассм	отрена и одобр	ена на заседани	ии кафедрі	ы Горных ма	шин и
гранспортно-	технологических ко	мплексов		_ //	7	
11.02.	2022, протокол № 6					
	• •	Зав. ка	федрой	10-1	— A.M. Ma	житов
			1 1 1			
Рабоч	ая программа одобр	ена методичес	кой комиссией	ИГДиТ		
	2022 г. протокол №			, ,		
	1		седатель	Mak	У .А. Пы	лталев
		P				
Р абоч	ая программа состан	апена:				
A A COURT			ГМиТТК,	конп	TOVII	полис
	преподаватель	кафедры	т миттк,	канд.	техн.	наук
	С.В. П	Іодболотов				
"						
V				//		
Рецен	зент:	/		. //		
Замест	гитель генерально	го директора	и по/ <i>/дер</i> фие	стивному	развитию	OOO
"УралЭнерго]	Ресурс", канд. техн.	наук		√ И.С.	Туркин	
1 1	71 /	,	TIME	/	J 1	

Лист актуализации рабочей программы

Рабочая программа пересмотре учебном году на заседании каф		-	
	Тротокол от Зав. кафедрой	20 г.	№ А.М. Мажитов
Рабочая программа пересмотре учебном году на заседании каф			
	Тротокол от Вав. кафедрой	20 г.	

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины «Восстановление работоспособности горных машин»

являются: формирование у магистров знаний и умения в области восстановления работоспособности горных машин с учетом новейших отечественных и зарубежных достижений в технологии горного машиностроения; формирование у магистров знаний и навыков по теории и практике восстановления изношенных поверхностей деталей горных машин.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Восстановление работоспособности горно-металлургических машин входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Новые конструкционные материалы

Основы научных исследований, организация и планирование эксперимента

Математические методы в инженерии

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Производственная - технологическая (проектно-технологическая) практика

Производственная - преддипломная практика, в том числе научно-исследовательская работа

Подготовка к сдаче и сдача государственного экзамена

Выполнение, подготовка к процедуре защиты и защита выпускной квалификационной работы

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Восстановление работоспособности горно-металлургических машин» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции
экспериментальных повышению эфо	рганизовать и проводить исследования, связанные с разработкой к проектов и программ, проводить научно-технические работы по фективности машин, систем, процессов и оборудования
	еского производства
ПК-1.1	Обосновывает технологию и механизацию работ, методы
	профилактики аварий машин и оборудования, способы ликвидации их последствий
ПК-1.2	Использует цифровые информационные технологии при
	проектировании горно-металлургических машин и оборудования
ПК-1.3	Предлагает решения по повышению надежности
	горно-металлургических машин и комплексов оборудования

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 34,95 акад. часов:
- аудиторная 34 акад. часов;
- внеаудиторная 0,95 акад. часов;
- самостоятельная работа 109,05 акад. часов;
- в форме практической подготовки 0 акад. час;

Форма аттестации - зачет

Раздел/ тема дисциплины	Семестр	конт	Аудитор гактная акад. ча лаб. зан.	работа	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
1. Восстановл работоспособности год машин	ение рных							
1.1 Введение	3	4			14,05	Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационнокоммуникационные сети Интернет). Подготовка к лабораторным занятиям. Подготовка к практическому занятию и выполнение практических работ	Индивидуальное собеседование. Индивидуальное сообщение на занятии.	ПК-1.1, ПК-1.2, ПК-1.3

1.2 Способы восстановления деталей горных машин	2	4/2И	14	Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационнокоммуникационные сети Интернет). Подготовка к лабораторным занятиям. Подготовка к практическому занятию и выполнение практических работ	Индивидуальное собеседование. Индивидуальное сообщение на занятии.	ПК-1.1, ПК-1.2, ПК-1.3
1.3 Повышение износостойкости деталей при восстановлении	3	4/2И	14	Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационнокоммуникационные сети Интернет). Подготовка к лабораторным занятиям. Подготовка к практическому занятию и выполнение практических рабо	Индивидуальное собеседование. Индивидуальное сообщение на занятии.	ПК-1.1, ПК-1.2, ПК-1.3

T		1	1	1	1	1	-	
1.4 Особенности технологии восстановления типовых деталей горных машин		4		5	16	Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационнокоммуникационные сети Интернет). Подготовка к лабораторным занятиям. Подготовка к практическому занятию и выполнение практических рабо	Индивидуальное собеседование. Индивидуальное сообщение на занятии.	ПК-1.1, ПК-1.2, ПК-1.3
1.5 Восстановление горных машин в эксплуатации		4		4/2,8И	16,05	Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационно-коммуникационные сети Интернет). Подготовка к лабораторным занятиям. Подготовка к практическому занятию и выполнение практических рабо	Индивидуальное собеседование. Индивидуальное сообщение на занятии.	ПК-1.1, ПК-1.2, ПК-1.3
Итого по разделу		17		17/6,8И	74,1			
2. Контроль								
2.1 Экзамен	3					Подготовка к экзамену	Экзамен	ПК-1.1, ПК-1.2, ПК-1.3
Итого по разделу					34,95			

Итого за семестр	17	17/6,8И	74,1	зачёт	
Итого по дисциплине	17	17/6,8 И	109,0 5	зачет	

5 Образовательные технологии

Для достижения поставленных задач применяются методы аудиторной работы – лекционное изложение материала по тематике дисциплины, особенностям использования программных продуктов, по оформлению чертежей (с применением проектора), а также заявочные материалы студентов непосредственно на компьютерной технике в рамках практических работ. Для лучшего закрепления материала студенты получают задания, которые выполняются на протяжении всех практических работ в отрезки времени, отведенные для закрепления материала и получения навыков работы с заявочными материалами. Оформленные работы сдаются студентами преподавателю в конце изучения данной дисциплины.

Способы, применяемые для достижения цели:

- однотипное структурирование лекционного материала, практических работ и самостоятельных работ;
 - последовательное проведение практических занятий вслед за лекциями.

Передовые технологии, применяемые для достижения цели:

- проектный подход (группа студентов разбивается на пары, которым выдается комплексное задание);
- на лекциях используется компьютер с проектором для отображения и лучшего освоения патентного законодательства, заявочным материалов, приемов работы с ними.
- на практических изучаются и используется современное CAD/CAM/CAE системы и даются практические навыки использования компьютерной техники для выполнения работ.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

1. Николаев, А. К. Надежность горных машин и оборудования : учебное пособие для вузов / А. К. Николаев, С. Л. Иванов, В. В. Габов. — 2-е изд., стер. — Санкт-Петербург : Лань, 2022. — 100 с. — ISBN 978-5-8114-9150-6. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/187692 (дата обращения: 19.09.2022). — Режим доступа: для авториз. пользователей.» (Николаев, А. К. Надежность горных машин и оборудования : учебное пособие для вузов / А. К. Николаев, С. Л. Иванов, В. В. Габов. — 2-е изд., стер. — Санкт-Петербург : Лань, 2022. — ISBN 978-5-8114-9150-6. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/187692 (дата обращения: 19.09.2022). — Режим доступа: для авториз. пользователей. — С. 43.).

2 Управление надежностью и ресурсом металлургических машин и оборудования : учебное пособие / В. А. Карепов, В. Т. Чесноков, Т. А. Бровина, Т. А. Герасимова. — Красноярск : СФУ, 2020. — 112 с. — ISBN 978-5-7638-4278-4. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/181603 (дата обращения: 19.09.2022). — Режим доступа: для авториз. пользователей.» (Управление надежностью и ресурсом металлургических машин и оборудования : учебное пособие / В. А. Карепов, В. Т. Чесноков, Т. А. Бровина, Т. А. Герасимова. — Красноярск : СФУ, 2020. — ISBN 978-5-7638-4278-4. —

Текст: электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/181603 (дата обращения: 19.09.2022). — Режим доступа: для авториз. пользователей. — С. 13.).

3. Олизаренко В.В. Восстановление изношенных деталей горных машин и оборудования. – М.: МГТУ, 2014. - 88 с.

б) Дополнительная литература:

1. «Карепов, В. А. Надежность горных машин и оборудования : учебное пособие / В. А. Карепов, Е. В. Безверхая, В. Т. Чесноков. — Красноярск : СФУ, 2012. — 134 с. — ISBN 978-5-7638-2651-7. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/45700 (дата обращения: 19.09.2022). — Режим доступа: для авториз. пользователей.» (Карепов, В. А. Надежность горных машин и оборудования : учебное пособие / В. А. Карепов, Е. В. Безверхая, В. Т. Чесноков. — Красноярск : СФУ, 2012. — ISBN 978-5-7638-2651-7. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/45700 (дата обращения: 19.09.2022). — Режим доступа: для авториз. пользователей. — С. 11.).

в) Методические указания:

- 1. Ляшенко Ю.М.. Надежность горных машин и оборудования: методические указания к выполнению практических занятий и домашнего задания / Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова. Ново-черкасск: ЮРГПУ(НПИ), 2016. 61 с.
- 2. Олизаренко В.В., Шебаршов А.А. Износы и поломки деталей горных машин: Методическое указание для студентов специальности 170100. Магнитогорск: МГТУ, 2003.-12 с.
- 3. Техническое обслуживание и ремонт горных машин и оборудования [Электронный ресурс]: Учебно-методическое пособие по подготовке к

лекционным, практическим занятиям и организации самостоятельной работы по дисциплине «Техническое обслуживание и ремонт горных машин и

оборудования» для студентов, обучающихся по специальности 21.05.04 "Горное дело", специализации № 9: «Горные машины и оборудование», квалификация выпускника специалист. Форма обучения — очная / Сост.: В.В. Сергеев; А.К. Джиоева; Северо-Кавказский горно-металлургический институт

(государственный технологический университет). – Электрон. текст. дан. (0,496 МБ). – Владикавказ: Северо-Кавказский горно-металлургический институт (государственный технологический университет). 2021

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
Autodesk AutoCad 2011 Master Suite	К-526-11 от 22.11.2011	бессрочно

FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Senour)	URL: https://scholar.google.ru/
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Промышленные образцы элементов горных машин

Модели шахтных подъемных установок

Модели шахтных проходческих комбайнов и добычных комбайнов

Промышленная подъемная установка с электрическим и гидравлическим приводом

Учебно-методическое обеспечение самостоятельной работы

По дисциплине «Восстановление работоспособности горных машин» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Самостоятельная работа по освоению дисциплины необходима для углубленного изучения материала курса. Самостоятельная работа студентов регламентируется графиками учебного процесса и самостоятельной работы.

Самостоятельная работа студентов состоит из следующих взаимосвязанных частей:

- 1) Изучение теоретического материала в форме:
- Самостоятельное изучение учебной и научно литературы по теме
- Поиск дополнительной информации по теме (работа с библиографическим материалами, с электронными библиотеками и ЭОР, информационно-коммуникационные сети Интернет).

Самостоятельная работа выполняется студентами на основе учебно-методических материалов дисциплины.

- 2) Подготовка к лабораторным занятиям и выполнение лабораторных работ.
- 3) Подготовка к практическим занятиям по решению задач по восстановлению изношенных поверхностей деталей ГМиО шахт, карьеров и ОФ.
- 4) Выполнение тестовых заданий на укрепление теоретического лекционного материала.
- 5). Остаточные знания определяются результатами сдачи зачета.

Оценочные средства для проведения промежуточной аттестации

Промежуточная аттестация имеет целью определить степень достижения запланированных результатов обучения по дисциплине «Восстановление работоспособности горных машин» за период обучения и проводится в форме зачета.

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

iipomemy io iii	он интестиции.	
Код индикатора	Индикатор достижения компитенции	Оценочные средства
	бен организовать и проводить исследов ессов и оборудования горных машин и	ания, связанные с разработкой эксперим робототехнических комплексов
ПК-1.1	Обосновывает технологию и механизацию горных работ, методы профилактики аварий машин и оборудования, способы ликвидации их последствий.	Теоретические вопросы к зачету
ПК-1.2	Использует цифровые информационные технологии при проектировании горных машин и оборудования	Теоретические вопросы к зачету
ПК-1.3	Предлагает решения по повышению надежности горных машин и робототехнических комплексов	Теоретические вопросы к зачету

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Восстановление работоспособности горных машин» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и лабораторные работы, выявляющие степень сформированности умений и владений, проводится в форме защиты лабораторных работ и написании тестовых заданий.

Зачет по данной дисциплине проводится в устной или письменной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

Перечень вопросов для подготовки к зачетуу

по дисциплине «Восстановление работоспособности горных машин»

- 1. Объясните сущность и укажите область применения метода восстановления деталей ремонтными размерами.
- 2. Перечислите достоинства и недостатки восстановления сопряжений постановкой дополнительных деталей.
- 3. Перечислите технологические режимы и материалы, применяемые при восстановлении наплавкой.
- 4. Сущность метода ручной сварки при восстановлении деталей.
- 5. Оборудование и материалы при ручной сварке.
- 6. Сущность механизированной наплавки изношенных деталей под слоем флюса.

- 7. Режимы, материалы и оборудование вибродуговой наплавки.
- 8. Схема и достоинства наплавки деталей в среде углекислого газа.
- 9. Схема установки для плазменной наплавки деталей.
- 10. Сущность восстановления деталей нанесением металлизационных покрытий.
- 11. Возможности восстановления деталей методом хромирования.
- 12. Достоинства и недостатки осталивания деталей.
- 13. Область применения и способы получения полимерных покрытий деталей.
- 14. Сущность восстановления деталей пластическим деформированием.
- 15. Особенности восстановления корпусных деталей.
- 16. Основные требования к восстановлению шлицевых и гладких валов.
- 17. Принципы построения маршрутной технологии восстановления валов.
- 18. Способы восстановления зубчатых колес и звездочек зубчатых передач и технологические схемы их восстановления.
- 19. Схемы технологического процесса восстановления деталей ходовой части тракторов.
- 20. Характер повреждений резиновых и прорезиновых деталей и способы их восстановления.
- 21. Мероприятия по поддержанию надежности машин при эксплуатации.
- 22. Принципы совершенствования систем технического обслуживания.
- 23. Тенденции формирования структуры ремонтного производства за рубежом.
- 24. Виды стратегии технического обслуживания и ремонта.
- 25. Критерии выбора стратегии технического обслуживания и ремонта.
- 26. Съемные грузозахватные приспособления, применяемые при выполнении разборочно-сборочных, монтажно-демонтажных работ и работ по ремонту и восстановлению ГМиО шахт. карьеров и ОФ.

Задачи

по дисциплине по дисциплине «Восстановление работоспособности горных машин»

- 1. Рассчитать припуски на предварительную механическую обработку, автоматическую наплавку под слоем флюса и окончательную обработку рабочей поверхности детали диаметром 210 мм, длиной 350 мм, имеющей величину износа до 345 мм по диаметру
- 2. Определение дефектов и расчет параметров восстановление изношенных поверхностей деталей ГМиО шахт карьеров, ОФ различными способами. Архив каф. ГМиТТК. Контрольная работа №3.

Тесты по сбору статистических данных по восстановлению работоспособности горных машин в условиях эксплуатации

Основные понятия, цели и задачи эксперимента. Дать один правильный ответ.

- 1. Можно ли точно определить понятие эксперимент?
- 1) Существует несколько точных понятий.
- 2) Точного определения понятия не существует.
- 3) Любое наблюдение.
- 4) Никогда не определялось.
- 5) Качественное наблюдение.
- 2. Эксперимент это:
 - 1) чувственно-предметная деятельность в науке;
 - 2) опыт, наблюдение исследуемого явления;
 - 3) систематическое изменение условий;
 - 4) научно поставленный опыт, наблюдение;
 - 5) точного определения не существует.

- 3. Наблюдение это:
- 1) регистрация различных факторов;
- 2) регистрация качественных характеристик;
- 3) регистрация количественных характеристик;
- 4) точного определения не существует;
- 5) существует множество определений.
 - 4. Наблюдения подразделяются на:
 - 1) количественные изменения;
 - 2) количественный подсчет;
 - 3) качественные и количественные;
 - 4) измерения и подсчет;
 - 5) классификаций наблюдений нет.
 - 5. Подсчет используется
- 1) как средство регистрации величин непрерывного типа;
- 2) при сравнении с величиной, принимаемой за эталон;
- 3) при прямой регистрации величин нет;
- 4) как средство регистрации величин дискретного типа.
 - 6. Измерения и подсчет это классификация
 - 1) качественных измерений;
 - 2) количественных измерений;
 - 3) качественных и количественных измерений;
 - 4) дискретных измерений;
 - 5) непрерывных измерений.
 - 7. Измерения используются
 - 1) как средство регистрации величин непрерывного типа;
 - 2) при сравнении с величиной, принимаемой за эталон;
 - 3) при прямой регистрации величин;
 - 4) как средство регистрации величин дискретного типа.
 - 8. Измерения различают
 - 1) прямые (непосредственные);
 - 2) косвенные;
 - 3) прямые (непосредственные) и косвенные;
 - 4) количественные и качественные;
 - 5) качественные.
 - 9. Прямые (непосредственные) измерения измеряют
 - 1) интересующую величину;
 - 2) некоторую функцию;
 - 3) интересующую величину и некоторую функция;
 - 4) ничего не измеряют;
 - 5) только качественные измерения.
 - 10. Косвенные измерения измеряют
 - 1) интересующую величину;
 - 2) некоторую функцию;
 - 3) интересующую величину и некоторую функция;
 - 4) ничего не измеряют;
 - 5) только качественные измерения.

- 11. Ошибки по происхождению можно разделить на следующие виды:
- 1. Личные, инструментальные, внешние, методические, ошибки модели и классификации.
- 2. Личные, инструментальные, внешние, методические, ошибки модели, качественные ошибки.
- 3. Личные, инструментальные, внешние, методические, ошибки модели, количественные ошибки.
- 4. Личные, инструментальные, внешние, методические, ошибки модели, количественные и качественные ошибки.
 - 5. Классификаций ошибок по происхождению не существует.
 - 12. Эксперимент позволяет получить
 - 1) значения прямых и косвенных факторов;
 - 2) результат взаимодействия изучаемого фактора с посторонними;
 - 3) прямые и качественные измерения;
 - 4) прямые и косвенные измерения;
 - 5) интересующий фактор в чистом виде.
 - 13. Возможно ли полное и точное описание какого-либо процесса?
 - 1. Да, если известны все влияющие факторы.
 - 2. Да, даже если неизвестны все влияющие факторы.
 - 3. Да, если пренебречь некоторыми факторами.
 - 4. Нет.
 - 5. Не имеет смысла.
- 14. Увеличение точности измерения на 1 знак приводит к увеличению объемов расчетов
 - 1) в 2 раза;
 - 2) вообще не приводит;
 - 3) в 10 раз;
 - 4) Ha 50 70%;
 - 5) Ha 15 20%.
- 15. Применение теории вероятности к обработке больших совокупностей чисел называется
 - 1) математической вероятностью;
 - 2) теорией вероятностей;
 - 3) математической статистикой;
 - 4) теорией статистики;
 - 5) не имеет названия.
- 16. Могут ли аналитические весы с разрешающей способностью 0,1 мг различить весы 12,52 мг и 12,56 мг, если для вычислений используют абсолютно точную формулу.
 - 1. Да, вычисления производятся с высокой точностью.
 - 2. Нет, вычисления производятся с высокой точностью.
 - 3. Да, вычисления производятся с погрешностью.
 - 4. Нет.
- 17. Следует ли при изучении движения автомобиля учитывать тепловое движение молекул (молекулы получают одинаковое направление движения, а не колебательное, тогда автомобиль переместиться именно в эту сторону)?
 - 1. Да.
 - 2. Нет, если это возможно, то может произойти чрезвычайно редко.
 - 3. Нет, это никогда не произойдет.

- 4. Да, хотя это и никогда не произойдет.
- 5. Да, учитывается и земное притяжение.
- 18. Личными называются ошибки
- 1) зависящие от физических и психологических возможностей наблюдателя;
- 2) возникающие из-за ошибок приборов;
- 3) связанные с влиянием из внешней среды;
- 4) погрешности обработки измерения;
- 5) связанные с присутствием абстрактных понятий.
- 19. Инструментальными называются ошибки
- 1) зависящие от физических и психологических возможностей наблюдателя; 2) возникающие из-за ошибок приборов;
 - 3) связанные с влиянием из внешней среды;
 - 4) погрешности обработки измерения;
 - 5) связанные с присутствием абстрактных понятий.
 - 20. Внешние ошибки
 - 1) зависящие от физических и психологических возможностей наблюдателя;
 - 2) возникают из-за ошибки прибора;
 - 3) связанны с влиянием из внешней среды;
 - 4) зависят от погрешности измерения;
 - 5) выражают связи и появляется при определенных условий.
 - 21. Методические ошибки это ошибки
 - 1) зависящие от физических и психологических возможностей наблюдателя;
 - 2) возникающие из-за ошибок приборов;
 - 3) связанные с влиянием из внешней среды;
 - 4) погрешности обработки измерения;
 - 5) связанные с присутствием абстрактных понятий.
 - 22. Ошибки модели это ошибки
 - 1) зависящие от физических и психологических возможностей наблюдателя;
 - 2) возникающие из-за приборов;
 - 3) связанные с влиянием из внешней среды;
 - 4) погрешности обработки измерений;
 - 5) связанные с присутствием в объекте абстрактных понятий.
 - 23. Систематической называется такая ошибка, которая
 - 1) зависящие от физических и психологических возможностей наблюдателя;
 - 2) возникает из-за ошибки прибора;
 - 3) есть погрешность обработки измерения;
- 4) выражает связи, в процессе измерений или обработки и появляется в определенных

условиях.

- 24. Случайными называются такие ошибки, которые
- 1) зависящие от физических и психологических возможностей наблюдателя;
- 2) возникают из-за ошибки прибора;
- 3) связанны с влиянием из внешней среды;
- 4) есть погрешности обработки измерения;
- 5) отражают менее существенные связи.

- 25. Является ли данная схема схемой образования суммарной ошибки измерений?
- 1. Нет.
- 2. Да, но ошибки модели не могут быть случайными.
- 3. Да.
- 4. Да, но внешние ошибки не могут быть систематическими.
- 5. Да, но личные ошибки не могут быть случайными.
- 26. Является ли данная схема схемой образования суммарной ошибки измерений?
- 1. Да, но ошибки модели не могут быть случайными.
- 2. Нет.
- 3. Да.
- 4. Да, но внешние ошибки не могут быть систематическими.
- 5. Да, но личные ошибки являются случайными.
- 27. Для решения многофакторных задач используют
- 1) изучение процессов и математическое моделирование;
- 2) анализ данных средствами математической статистики;
- 3) измерение и подсчет;
- 4) количественные измерения.
- 28. Основными задачами экспериментальных данных являются
- 1) задачи математического анализа;
- 2) предварительная обработка данных;
- 3) кластерный, корреляционный и регрессионный анализы данных;
- 4) решение систем уравнений;
- 5) использование численных методов.

1.2. Программное обеспечение статистического анализа для обработки экспериментальных данных

- 1. Обработка экспериментальных данных не содержит модуль:
- 1) графической визуализации;
- 2) многомерной статистической группировки объектов;
- 3) одномерной оптимальной группировки;
- 4) расчета статистических характеристик групп;
- 5) анализа эффективности структурных изменений.
- 2. Обработка экспериментальных данных не содержит модуль:
- 1) программы прогнозирования структуры;
- 2) одномерной оптимальной группировки;
- 3) индексного анализа по мультипликативной схеме;
- 4) индексного анализа по агрегатной схеме;
- 5) модуля решения систем уравнений.
- 3. Обработка экспериментальных данных не содержит модуль:
- 1) индексного анализа по равновероятной агрегатной схеме;
- 2) графического модуль изображения данных;
- 3) программы обработки корреляционных таблиц и таблиц сопря-женности;
- 4) корреляционного анализа;
- 5) регрессионного анализа.
- 4. Исходными данными для многомерной статистической обработки являют-ся:
- 1) уравнение регрессии;
- 2) статистические таблицы;

- 3) таблица, строки, которой соответствуют объектам (наблюдения), а столбцы наблюдаемым признакам;
 - 4) матрица корреляции;
 - 5) выборочные характеристики.
- 5. Результатами работы модуля многомерной статистической группировки объектов является:
 - 1) матрица оптимальных классификационных уровней по несколь-ким признакам;
 - 2) выборочные характеристики для каждой группы;
 - 3) общие показатели эластичности для каждой группы;
 - 4) матрицы перехода.
 - 6. Исходными данными для расчета статистических характеристик групп является:
 - 1) уравнение регрессии;
 - 2) статистические таблицы;
- 3) массив исходных данных (строки соответствуют наблюдениям, столбцы-наблюдаемым признакам);
 - 4) матрица корреляции;
 - 5) выборочные характеристики.
 - 7. Результатами расчета статистических характеристик групп является:
 - 1) итоговые показатели признаков в каждой из групп;
 - 2) выборочные характеристики для каждой группы;
 - 3) прогноз структуры на очередные 6 точек;
 - 4) матрица корреляции;
 - 5) уравнение линейной регрессии.
 - 8. Основными результатами, какого программного модуля являются:
- матрица парных линейных коэффициентов корреляции по признакам, выбранным в диалоговом режиме из массива исходных данных;
 - матрица частных коэффициентов корреляции по этой же совокупности признаков;
- последовательность коэффициентов множественной линейной корреляции для каждого из выбранных признаков.
 - 1. Прогнозирования структуры.
 - 2. Одномерная оптимальная группировка.
 - 3. Корреляционный анализ.
 - 4. Программа обработки корреляционных таблиц и таблиц сопряженности.
 - 5. Регрессионный анализ.
 - 9. Какой программный модуль позволяет рассчитать параметры:
 - линейной парной или множественной регрессии со свободным членом;
 - линейной регрессии без свободного члена;
 - множественного уравнения неполного квадрата;
 - мультипликативного уравнения множественной регрессии;
- экспоненциального уравнения множественной регрессии с выбором формулы для показателя степени.
 - 10. Укажите классификацию статистических пакетов.
 - 1. Профессиональные.
 - 2. Универсальные.
 - 3. Специализированные.
 - 4. Зарубежные.
 - 5. Отечественные.