МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов 20.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ФИЗИЧЕСКИЕ СВОЙСТВА МАТЕРИАЛОВ

Направление подготовки (специальность) 22.03.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛОВ

Направленность (профиль/специализация) программы Материаловедение и технологии материалов (в машиностроении)

Уровень высшего образования - бакалавриат Программа подготовки - академический бакалавриат

> Форма обучения очная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Литейных процессов и материаловедения

Kypc 4

Семестр 7

Магнитогорск 2020 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 22.03.01 Материаловедение и технологии материалов, утвержденного приказом МОиН РФ от 12.11.2015 № 1331.

Рабочая программа рассмотрена и одобрена на заседании кафедры технологии металлургии и литейных процессов протокол № 8 от 19.02.2020 г.; Зав. кафедрой / Н.А. Феоктистов/ Рабочая программа одобрена методической комиссией института металлургии, машиностроения и материалообработки протокол № 5 от 20.02.2020 г. Председатель ______/ А.С. Савинов/ Рабочую программу составил: д.т.н., проф. Рецензент: Мушу / М.И. Румянцев/ докт. техн. наук, проф. каф. ТОМ ФГБОУ ВО МГТУ

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 учебном году на заседании кафедры Литейных процессов и материаловедения				
	Протокол от	20 г. № Н.А. Феоктистов		
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2022 - 2023 учебном году на заседании кафедры Литейных процессов и материаловедения				
	Протокол от	20 г. № Н.А. Феоктистов		
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2023 - 2024 учебном году на заседании кафедры Литейных процессов и материаловедения				
	1 , 1	•		
	1 , 1	и материаловедения		
учебном году на заседании к Рабочая программа пересмот	афедры Литейных процессов и	и материаловедения 20 г. № Н.А. Феоктистов ия реализации в 2024 - 2025		

1 Цели освоения дисциплины (модуля)

Целью усвоения курса «Физические свойства материалов» является подготовка бакалавра по направлению 22.03.01 «Материаловедение и технологии материалов», профиль «Материаловедение и технологии материалов (в машиностроении)» в соответствие с Государственными требованиями к уровню подготовки выпускников, согласно которым выпускник должен быть способен выполнять следующие виды профессиональной деятельности: научно-исследовательская и расчетно-аналитическая; производственная и проектно-технологическая. При изучении данного курса студент получает основные представления о современной теории физических свойств и практике их экспериментального определения.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Физические свойства материалов входит в вариативную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Физика

Математика

Материаловедение

высокотехнологичных процессов

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Моделирование и оптимизация свойств материалов и технологических процессов

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Физические свойства материалов» обучающийся должен обладать следующими компетенциями:

Структурный	Планируемые результаты обучения				
элемент					
компетенции					
ПК-6 способностью	о использовать на практике современные представления о влиянии				
микро- и нано-стру	ктуры на свойства материалов, их взаимодействии с окружающей				
средой, полями, ча	стицами и излучениями				
Знать	Основные физические свойства материалов; связь между физическими				
	и эксплуатационными свойствами материалов.				
Уметь	Пользоваться методами исследований, основанными на физических				
	свойствах материалов определять; область их применения; применять				
	альтернативные методы исследования.				
Владеть	Навыками определения основных физических свойств материалов;				
	связывать физические свойства материалов с их эксплуатационными				
	свойствами; навыками определения основных физических свойств				
	определяющих необходимые эксплуатационные свойства материалов.				
ПК-11 способностью применять знания об основных типах современных неорганических и					
органических материалов, принципах выбора материалов для заданных условий					
эксплуатации с учетом требований технологичности, экономичности, надежности и					

долговечности, экологических последствий их применения при проектировании

Знать	Принцип выбора материалов для заданных условий эксплуатации с учетом требований технологичности экономичности, надежности и долговечности.
Уметь	Выбирать материал для заданных условий эксплуатации, с учетом требований технологичности, экономичности, надежности и долговечности.
Владеть	Навыками выбора материалов для заданных условий эксплуатации, с учетом требований технологичности, экономичности, надежности.

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 43,5 акад. часов:
- аудиторная 42 акад. часов;
- внеаудиторная 1,5 акад. часов
- самостоятельная работа 64,5 акад. часов;

Форма аттестации - зачет

Раздел/ тема	I 2 I /		Аудиторная гактная работа акад. часах)		Самостоятельная работа студента	работа студента работа студента работа студента работы ра	Форма текущего контроля успеваемости и	Код
дисциплины	Cer	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Семестр 7.								
1.1 Теплоемкость и теплосодержание. Удельная теплоемкость. Калориметрические и термические методы определения теплоемкости. Решеточная составляющая теплоемкости и ее температурная зависимость. Теория теплоемкости Дебая. Модель Дебая. Характеристическая температура как критерий величины энергии междуатомной связи. Тепловые эффекты при превращениях І-го и ІІ-го	7	6	4/2И		16	Проработка лекционного материала; подготовка к лабораторным занятиям.	Устный опрос.	ПК-6; ПК-11

1.2 M			I	1			1
1.2 Методы измерения							
электрического							
сопротивления.							
Физическая сущность							
электрической							
проводимости металла.							
Зависимость							
электрического							
сопротивления чистых							
металлов от температуры							
и давления.							
Сверхпроводимость, ее							
физическая сущность,							
практическое значение.							
Влияние наклепа и							
отжига металлов.					Проработка		
Электрическое					лекционного	Устный опрос,	шис
сопротивление твердых					материала;	первая	ПК-6;
растворов. Электрическое	8	4/2И		16	подготовка к	контрольная	ПК-11
сопротивление					лабораторным	работа.	
гетерогенных сплавов,					лаоораторным занятиям.	pa001a.	
химических соединений.					.МКИТКПЪС		
Электрические свойства							
проводников,							
сверхпроводников,							
полупроводников,							
диэлектриков. Измерение							
электрических свойств							
при изучении структуры							
металлов и сплавов.							
Термоэлектрические							
свойства металлов.							
Использование							
термоэлектрических							
свойств в технике.							
Методы определения							
термоэлектрических							
1.3 Классификация							
элементов и сплавов по							
магнитным свойствам.							
Физическая природа диа-							
и парамагнетизма.							
Ферромагнетизм.							
Условия возникновения							
ферромагнетизма. Кривая							
намагничивания и петля					Пиона С		
гистерезиса. Физическая					Проработка		
сущность					лекционного		ПК-6;
ферромагнетизма. Точка	6	4/1И		16	материала;	Устный опрос.	ПК-11
Кюри. Доменная	~			- 0	подготовка к	, opov.	111111
структура и ее					лабораторным		
параметры. Магнитная					занятиям.		
анизотропия и							
магнитострикция, их							
практическое назначение.							
Магнитные свойства							
металлов, металлических							
фаз и сплавов.							
Магнитные материалы.							
Принципы разработки							
магнитных материалов.							
маглитных материалов.							

1.4 Плотность металлов. Атомный и ионный объем. Изменение плотности при нагреве, наклепе, плавлении, фазовых превращениях. Сжимаемость металлов. Термическое расширение. Методы определения коэффициента термического рас-ширения. Дилатометрический анализ. Материалы с заданны-ми температурными коэффициентами модуля упругости и линейного расширения.	8	2/1И	16,5	Проработка лекционного материала; подготовка к лабораторным занятиям.	Устный опрос, вторая контрольная работа.	ПК-6; ПК-11
Итого по разделу	28	14/6И	64,5			
Итого за семестр	28	14/6И	64,5		зачёт	
Итого по дисциплине	28	14/6И	64,5		зачет	

5 Образовательные технологии

В ходе проведения лекционных занятий предусматривается:

- использование электронного демонстрационного материала по темам, требующим иллюстрации;
- активные и интерактивные формы обучения: вариативный опрос, дискуссии, устный опрос, семинарские занятия, и так далее.

Лекционный материал закрепляется в ходе лабораторных занятий, на которых выполняются групповые задания по пройденной теме. При проведении лабораторных занятий используется работа в команде и методы IT.

Самостоятельная работа стимулирует студентов к поиску информации в процессе под-готовки к занятиям и к сдаче зачета.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Столяров, В.Л. Фазовые превращения и структурообразование : учебник / В.Л. Столя-ров, Е.С. Малютина, В.Ю. Введенский. Москва : МИСИС, 2018. 266 с. ISBN 978-5-906846-85-3. Текст : электронный // Электронно-библиотечная система «Лань» : [сайт]. URL: https://e.lanbook.com/book/115294 (дата обращения: 01.09.2020). Режим доступа: для авториз. пользователей.
- 2. Портной, В.К. Дефекты кристаллического строения металлов и методы их анализа: учебник / В.К. Портной, А.И. Новиков, И.С. Головин. Москва: МИСИС, 2015. 508 с. ISBN 978-5-87623-856-6. Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. URL: https://e.lanbook.com/book/69739 (дата обращения: 01.09.2020). Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

1. Земсков, Ю.П. Материаловедение : учебное пособие / Ю.П. Земсков. — Санкт-Петербург : Лань, 2019. — 188 с. — ISBN 978-5-8114-3392-6. — Текст : электронный // Электронно-библиотечная система «Лань» : [сайт]. — URL: https://e.lanbook.com/book/113910 (дата обращения: 01.09.2020). — Режим доступа: для авториз. пользователей.

в) Методические указания:

- 1. Завалищин А.Н., Покачалов В.В., Харитонов В.А. Линейные дефекты кристалличе-ского строения металлов [Текст]. Учебное пособие. Магнитогорск, МГТУ, 2000.
- 2. Покачалов В.В. Описание элементарной ячейки кристаллической решетки. [Текст] Магнитогорск, МГМА, 1998.
- 3. Завалищин А.Н. Покачалов В.В. Стереографические проекции [Текст] Магнитогорск, МГМА, 2000.
 - 4. Завалищин А.Н. Диффузия в металлах. [Текст] Магнитогорск, МГТУ, 2008.
- 5. Завалищин А.Н. Фазовые превращения в твердом состоянии. [Текст] Магнитогорск, МГТУ, 2011.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

профессиональные опры данных и информацио	minbre empano imbre enerciana
Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
Поисковая система Академия Google (Google Scholar)	
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

- 1. Учебная аудитория для проведения занятий лекционного типа оснащена:
- техническими средствами обучения, служащими для представления учебной информации большой аудитории: мультимедийными средства хранения, передачи и представления учебной информации;
 - специализированной мебелью.
- 2. Учебная аудитория для проведения лабораторных занятий (лаборатория 210) оснащена лабораторным оборудованием:
 - установка измерения электросопротивления,
 - установка простого термического анализа,
 - магнитометр,
 - дилатометр Шевенара,
 - установка электоиндуктивного определения фазового превращения.
 - специализированной мебелью.
 - 3. Учебная аудитория для выполнения курсовых проектов (работ) оснащена:
- компьютерной техникой с пакетом MS Office, с подключением к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета;
 - специализированной мебелью.
- 4. Учебная аудитория для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации оснащена:
- компьютерной техникой с пакетом MS Office, с подключением к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета;
 - специализированной мебелью.
 - 5. Помещение для самостоятельной работы оснащено:
- компьютерной техникой с пакетом MS Office, с подключением к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета;
 - специализированной мебелью.
- 6. Помещение для хранения и профилактического обслуживания учебного оборудования оснащено:
 - специализированной мебелью: стеллажами для хранения учебного оборудования;
 - -инструментами для ремонта учебного оборудования;
 - шкафами для хранения учебно-методической документации и материалов.

6. Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Физические свойства материалов» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

6.1 Аудиторная самостоятельная работа студентов предполагает выполнение контрольных работ.

6.1.1 Перечень вопросов для подготовки к контрольным аудиторным работам

Вопросы к первой контрольной работе

- 1. Теплоемкость и теплосодержание.
- 2. Удельная теплоемкость.
- 3. Вывести формулу теплоемкости
- 4. Калориметрические и термические методы определения теплоемкости.
 - 5. Изобразить схему калориметра
- 6. Характеристическая температура как критерий величины энергии междуатомной связи.
 - 7. Тепловые эффекты при превращениях I-го и II-го рода.
- 8. Методы измерения электрического сопротивления. Физическая сущность электрической проводимости металла.
 - 9. Объяснить устройство двойного моста.
 - 10. Измерить сопротивление отпущенных образцов
- 11. Зависимость электрического сопротивления чистых металлов от температуры и давления.
 - 12. Влияние наклепа и отжига металлов.
 - 13. Электрическое сопротивление твердых растворов.
- 14. Электрическое сопротивление гетерогенных сплавов, химических соединений.
 - 15. Термоэлектрические свойства металлов.
- 16. Использование термоэлектрических свойств в технике. Методы определения термоэлектрических свойств.
 - 17. Измерить ТЭДС в нормальных термопарах.

Вопросы ко второй контрольной работе

- 1. Классификация элементов и сплавов по магнитным свойствам.
- 2. Физическая природа диа- и парамагнетизма.
- 3. Изобразить зависимость намагничивания от внешнего поля диа и парамагнетиков
- 4. Ферромагнетизм. Условия возникновения ферромагнетизма.
- 5. Изобразить кривую намагничивания
- 6. Кривая намагничивания и петля гистерезиса. Точка Кюри.
- 7. Магнитная анизотропия и магнитострикция, их практическое назначение.
- 8. Магнитные свойства металлов, металлических фаз и сплавов.
- 9. Методы магнитного анализа.
- 10. Отличия дифференциального и простого магнитометра
- 11. Изменение плотности при нагреве, наклепе, плавлении, фазовых. превращениях.
- 12. Методы определения коэффициента термического расширения.
- 13. Дилатометрический анализ.
- 14. Изобразить схему каткового дилатометра
- 15. Изобразить схему дилатометра Шевенера.

16. Ма линейного рас	териалы с задаі сширения	нными темпер	атурными коз	оффициентами	модуля уп	ругости и

7. Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный	Планируемые	Оценочные средства
элемент	результаты	-
компетенции	обучения	
ПК-6 - способно	сть использовать на г	ірактике современные представления о
влиянии микро-	и наноструктуры на с	войства материалов, их взаимодействии
с окружающей с	редой, полями, частиц	ами и излучениями
Знать	Основные	Перечень теоретических вопросов
	физические свойства	Теория теплоемкости Дебая. Модель
	материалов; связь	Дебая. Физическая сущность
	между физическими	электрической проводимости металла.
	И	Зависимость электрического
	эксплуатационными	сопротивления чистых металлов от
	свойствами	температуры и давления.
	материалов;	Сверхпроводимость, ее физическая
	изменение	сущность, практическое значение.
	физических свойств	Электрическое сопротивление твердых
	при различных	растворов. Электрическое сопротивление
	методах обработки	гетерогенных сплавов, химических
	материалов;	соединений Физическая природа диа- и
		парамагнетизма. Ферромагнетизм
		Кривая намагничивания и петля
		гистерезиса Атомный и ионный объем.
		Изменение плотности при нагреве,
		наклепе, плавлении, фазовых
		превращениях. Термическое
		расширение Материалы с заданными
		температурными коэффициентами модуля упругости и линейного
		модуля упругости и линейного расширения.
Уметь:	Пользоваться	Вывести формулу теплоемкости.
	методами	Изобразить схему калориметра.
	исследований,	Объяснить устройство двойного моста.
	основанными на	Измерить сопротивление отпущенных
	физических	образцов. Измерить ТЭДС в нормальных
	свойствах	термопарах. Исследовать
	материалов	электросопротивление свойства металлов
	определять; область	и сплавов в зависимости от состояния.
	их применения;	Пользоваться термопарами при
	применять	измерении температуры.
	альтернативные	Классифицировать элементы и сплавы по
	методы	магнитным свойствам.
	исследования.	Дилатометрический анализ, методы
D	11	магнитного анализа
Владеть:	Навыками	Измерить сопротивление отпущенных
	определения	образцов. Измерить ТЭДС в нормальных

Структурный	Планируемые	Оценочные средства	
элемент	результаты		
компетенции	обучения		
	основных	термопарах. Рассказать о методах	
	физических свойств	измерения физических свойств.	
	материалов;	Определить характеристики для	
	связывать	классификации магнитных материалов.	
	физические свойства	Измерить электрическое сопротивления,	
	материалов с их	плотность при нагреве и фазовых	
	эксплуатационными	превращениях, определить	
	свойствами;	термоэлектрические свойства.	
	навыками		
	определения		
	основных		
	физических свойств		
	определяющих		
	необходимые		
	эксплуатационные		
	свойства		
	материалов.		

ПК-11 - способностью применять знания об основных типах современных неорганических и органических материалов, принципах выбора материалов для заданных условий эксплуатации с учетом требований технологичности, экономичности, надежности и долговечности, экологических последствий их применения при проектировании высокотехнологичных процессов

Знать	Принцип выбора	Теплоемкость и
	материалов для	теплосодержание. Удельная
	заданных условий	теплоемкость. Калориметрические и
	эксплуатации с	термические методы определения
	учетом требований	теплоемкости. Характеристическая
	технологичности	температура как критерий величины
	экономичности,	энергии междуатомной связи.
	надежности и	r
	долговечности;	сопротивления чистых металлов от
		температуры и давления. Влияние
		наклепа и отжига металлов.
		Измерение электрических свойств при
		изучении структуры металлов и сплавов.
		Термоэлектрические свойства металлов.
		4. Использование термоэлектрических
		свойств в технике. Методы определения
		термоэлектрических свойств.
		Классификация элементов и сплавов по
		магнитным свойствам. Физическая
		природа диа- и
		парамагнетизма. Ферромагнетизм.
		Кривая намагничивания и петля
		гистерезиса. Точка Кюри. Магнитные
		свойства металлов, металлических фаз и
		сплавов.Методы магнитного
		анализа. Изменение плотности при
		нагреве, наклепе, плавлении, фазовых 9.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства превращениях. Методы определения коэффициента термического расширения Дилатометрический
		анализ.
Уметь	Выбирать материал для заданных условий эксплуатации, с учетом требований технологичности, экономичности, надежности и долговечности;	Измерять электросопротивление свойства при изучении структуры металлов и сплавов. Измерять термоэлектрические свойства металлов. Использовать термоэлектрических свойств в технике. Определить термоэлектрические свойства. Определять магнитные свойства металлов при поведении их в магнитном поле. Применять методы определения коэффициента термического расширения для исследования. Определить температуры фазовых превращений дилатометрическим и магнитным анализом
Владеть	Навыками выбора материалов для заданных условий эксплуатации, с учетом требований технологичности, экономичности, надежности.	Изобразить зависимость намагничивания от внешнего поля диа и парамагнетиков Изобразить кривую намагничивания ферромагнетика. Объяснить методы магнитного анализа. Объяснить отличие дифференциального и простого магнитометра. Изобразить схему каткового дилатометра. Изобразить схему дилатометра Шевенера

б) Порядок проведения аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Физические свойства материалов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, и проводится в форме зачета.

Зачет по данной дисциплине проводится в устной форме по вопросам, относящимся к лекционному материалу и практическим занятиям.

Показатели и критерии оценивания:

- на оценку «зачтено» обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«не зачтено»** обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.