

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов

03.03.2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ИСТОРИЯ ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Направление подготовки (специальность) 18.03.01 Химическая технология

Направленность (профиль/специализация) программы Химическая технология высокотемпературных неметаллических материалов

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Металлургии и химических технологий

Курс

Магнитогорск 2021 год Программа практики/НИР составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 18.03.01 Химическая технология (приказ Минобрнауки России от 07.08.2020 г. № 922)

Программа практики/НИР рассмотрена и одобрена на заседании кафедры Металлургии и химических технологий 10.02.2021 протокол №5

А.С. Харченко

Программа практики/НИР одобрена методической комиссией ИММиМ 03.03.2021 г. Протокол № 4

Председатель

А.С. Савинов

Программа составлена:

профессор кафедры МиХТ, д-р физ.-мат. наук

_А.Н. Смирнов

Рецензент: ведущий спе

специалист НТЦ ГАДП ПАО "ММК" , канд. техн. наук Е.Н. Степанов

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) *ИСТОРИЯ ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИИ*

Направление подготовки (специальность) 18.03.01 Химическая технология

Направленность (профиль/специализация) программы Химическая технология высокотемпературных неметаллических материалов

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Металлургии и химических технологий

Kypc 2

Магнитогорск 2021 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 18.03.01 Химическая технология (приказ Минобрнауки России от 07.08.2020 г. № 922)

химич	еских технологий	и одобрена на заседании кафедры	Металлургии и
	10.02.2021, протокол № 5	Зав. кафедрой	А.С. Харченко
	Рабочая программа одобрена мет 03.03.2021 г. протокол № 4	годической комиссией ИММиМ	
	-	Председатель	_ А.С. Савинов
Смирн		р физмат. наук	A.H.
	Рецензент: ведущий специалист НТЦ Е.Н. Степа	ГАДП ПАО "ММК" , канд нов	. техн. наук

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2022 - 2023 учебном году на заседании кафедры Металлургии и химических технологий				
Про	токол от	_ 20 г. №		
Зав.	кафедрой	А.С. Харченко		
Рабочая программа пересмотрена, учебном году на заседании кафедр				
Про	токол от	_ 20 г. №		
Зав.	кафедрой	А.С. Харченко		
Рабочая программа пересмотрена, учебном году на заседании кафедр	-	-		
Про	токол от	20 г. №		
Зав.	кафедрой	А.С. Харченко		
Рабочая программа пересмотрена, учебном году на заседании кафедр				
Про	токол от	_20 г. №		
Зав.	кафедрой	А.С. Харченко		
Рабочая программа пересмотрена, учебном году на заседании кафедр				
Про	токол от	_ 20 г. №		
Зав.	кафедрой	А.С. Харченко		

1 Цели освоения дисциплины (модуля)

- расширение кругозора обучающихся в области естественно научной и гуманитарной подготовки;
- закрепление основных представлений химии и химической технологии в историческом аспекте;
 - знакомство с наиболее яркими представителями химической науки;
- познание диалектики развития основополагающих идей этой науки, связь науки с технологией, практической деятельностью общества;
 - создание картины миры в целом в ее химическом аспекте.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина История химии и химической технологии входит в обязательую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

- Химия. Курс средней школы;
- Физика. Курс средней школы;

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Физическая химия

Аналитическая химия и физико-химические методы анализа

Органическая химия

Общая химическая технология

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «История химии и химической технологии» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции							
ОПК-1 Способен и	ОПК-1 Способен изучать, анализировать, использовать механизмы химических реакций,							
происходящих в те	хнологических процессах и окружающем мире, основываясь на знаниях							
о строении веще	ства, природе химической связи и свойствах различных классов							
химических элемен	тов, соединений, веществ и материалов							
ОПК-1.1	Использует законы химии при изучении и анализе технологических							
	процессов и процессов в окружающем мире							
ОПК-1.2	Решает технологические задачи с использованием знаний о строении							
	веществ, природе химической связи и свойствах различных классов							
	химических элементов, веществ и материалов							
ОПК-1.3	Применяет знания о закономерностях химических процессов при							
	решении технологических задач							

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 зачетных единиц 72 акад. часов, в том числе:

- контактная работа 4,4 акад. часов:
- аудиторная 4 акад. часов;
- внеаудиторная 0,4 акад. часов;
- самостоятельная работа 63,7 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к зачёту 3,9 акад. час
 Форма аттестации зачет

Раздел/ тема дисциплины	Kypc	конт	худитор актная ј акад. ча лаб. зан.	работа	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
1. Предалхимический алхимический период	И							
1.1 Предалхимический период. Представление античный философов о первоэлементах		0,2			7	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию. Выполнение Домашнего задания	Собеседование, домашнее задание, зачет	ОПК-1.1, ОПК-1.2, ОПК-1.3
1.2 Алхимический период. Основные достижения алхимического периода	2	0,2			7	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию. Выполнение Домашнего задания	Собеседование, домашнее задание, зачет	ОПК-1.1, ОПК-1.2, ОПК-1.3
1.3 История систематики химических элементов		0,2		1/0,4И	7	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию. Выполнение Домашнего задания	Собеседование, домашнее задание, зачет	ОПК-1.2, ОПК-1.1, ОПК-1.3
Итого по разделу		0,6		1/0,4И	21			
2. Период становления химии, как самостоятельной науки								

					Самостоятельное		
2.1 Ятрохимики, учение о флогистоне, работы Лаувазье	2			7	изучение учебной и научной литературы. Подготовка к собеседованию. Выполнение Домашнего задания	Собеседование, домашнее задание, зачет	ОПК-1.1
2.2 Количественные законы химии Создание атомно-молекулярной теории	2	0,4	1/0,4И	7,7	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию. Выполнение Домашнего задания	Собеседование, домашнее задание, зачет	ОПК-1.1, ОПК-1.2, ОПК-1.3
Итого по разделу		0,4	1/0,4И	14,7			
3. Вклад ученых в разв химии и химиче технологии							
3.1 Работы Р. Бойля, И. Ньютона, М.В. Ломоносова в области корпускулярных представлений.				7	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию. Выполнение Домашнего задания	Собеседование, домашнее задание, зачет	ОПК-1.1
3.2 Открытие кислорода. Создание кислородной теории горения, её значение для химии.				7	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию. Выполнение Домашнего задания	Собеседование, домашнее задание, зачет	ОПК-1.1, ОПК-1.2, ОПК-1.3
3.3 Создание теории электролитической диссоциации.	2			7	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию. Выполнение Домашнего задания	Собеседование, домашнее задание, зачет	ОПК-1.1, ОПК-1.2, ОПК-1.3
3.4 Современное состояние химии и химической технологии		1		7	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию. Выполнение Домашнего задания	Собеседование, домашнее задание, зачет	ОПК-1.1, ОПК-1.2, ОПК-1.3
Итого по разделу		1		28			

Итого за семестр	2	2/0,8И	63,7	зачёт	
Итого по дисциплине	2	2/0,8И	63,7	зачет	

5 Образовательные технологии

Проектирование обучения строится на основе следующих принципов:

- Обучение на основе интеграции с наукой и производством.
- Профессионально-творческая направленность обучения.
- Ориентированность обучения на личность.
- Ориентированность обучения на развитие опыта самообразовательной деятельности будущего специалиста.

Для достижения планируемых результатов обучения, в дисциплине «История химии и химической технологии» используются различные образовательные технологии:

- 1. Традиционные образовательные технологии: информационная лекция практические занятия.
- 2. Информационно-коммуникационные образовательные технологии: лекция-визуализация. Практическое занятие в форме презентации представление результатов с использованием специализированных программных сред.
- 3. Информационно-развивающие технологии, направленные на формирование системы знаний, запоминание и свободное оперирование ими. При самостоятельном изучении литературы применение современных информационных технологий для самостоятельного пополнения знаний, включая использование технических и электронных средств информации.
- 4. Деятельностные практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений при разборе конкретных ситуаций, основанных на практических примерах, обеспечивающих возможность качественно выполнять профессиональную деятельность.
- 5. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие проблемного мышления, мыслительной активности, способности видеть и формулировать проблемы, выбирать способы и средства для их решения.
- 6. Интерактивные технологии: коллективное обсуждение какого-либо спорного вопроса, проблемы, выявление мнений в группе. Изложение проблем и их совместное решение.
- 7. Личностно-ориентированные технологии обучения, обеспечивающие в ходе учебного процесса учет различных способностей обучаемых, создание необходимых условий для развития их индивидуальных способностей, развитие активности личности в учебном процессе. Личностно-ориентированные технологии обучения реализуются в результате индивидуального общения преподавателя и студента.

Реализация такого подхода осуществляется путем распределение тем рефератов с учетом пожеланий студентов, тематики их научных интересов и т.п., обсуждения подготовленного домашнего задаия в режиме дискуссии с элементами коллективного решения творческих задач.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

1. Дюльдина, Э. В. История и методология химии: учебное пособие / Э.

- В. Дюльдина ; МГТУ. Магнитогорск : МГТУ, 2016. 1 электрон.опт. диск (CD-ROM). Загл. с титул.экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=2855.pdf&show=dcatalogues/1/1133 558/2855.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 2. История и философия науки : учебное пособие для вузов / Н. В. Бряник, О. Н. Томюк, Е. П. Стародубцева, Л. Д. Ламберов. Москва : Издательство Юрайт, 2020. 290 с. (Высшее образование). ISBN 978-5-534-07546-5. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://www.biblio-online.ru/bcode/455404 (дата обращения: 14.03.2020).

б) Дополнительная литература:

- 1. 1. Канке, В. А. История, философия и методология естественных наук: учебник для магистров / В. А. Канке. Москва: Издательство Юрайт, 2019. 505 с. (Магистр). ISBN 978-5-9916-3041-2. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://www.biblio-online.ru/bcode/426165 (дата обращения: 10.10.2019).
- 2. Дюльдина, Э. В. Концепции современного естествознания: конспект лекций: учебное пособие / Э. В. Дюльдина. Магнитогорск: МГТУ, 2011. 1 электрон.опт. диск (CD-ROM). Загл. с титул.экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=987.pdf&show=dcatalogues/1/11191 36/987.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.
- 3. Клочковский, С. П. Концепции современного естествознания : конспект лекций / С. П. Клочковский, Э. В. Дюльдина ; МГТУ, каф. ХТНМиФХ. Магнитогорск, 2009. 137 с. : ил., схемы, табл. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=287.pdf&show=dcatalogues/1/10620 99/287.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст : электронный. Имеется печатный аналог.
- 4. Миттова, И.Я. История химии с древнейших времен до конца XX века: учеб.в 2-х т. Т.1: История химии с древнейших времен до конца XX века / И. Я. Миттова, А. М. Самойлов Долгопрудный: Издательский Дом "Интеллект", 2009.- 437 с. ISBN 978-5-91559-077-8- Текст: непосредственный.
- 5. Дюльдина, Э.В. История химии и химической технологии : учебное пособие/ Э.В. Дюльдина Магнитогорск: МГТУ, 2006. 180 с. Текст :непосредственный.
- 6. Дюльдина, Э.В. Краткий курс истории химии : учебное пособие/ Э.В. Дюльдина, С.П. Клочковский Магнитогорск: МГТУ, 2004, 178 с. Текст :непосредственный.

Периодические издания:

- 1. 1. Журнал Известия высших учебных заведений. Химия и химическая технология. . ISSN 0579-2991. Текст : непосредственный.
 - 2. Журнал Кокс и химия. ISSN 0023-2815. Текст: непосредственный.
- 3. Journalofchemicaltecnologyandmetallurgy (журнал химической технологии и металлургии). ISSN 1314-7471. Текст: непосредственный.

в) Методические указания:

Дюльдина, Э.В. История химии и химической технологии : учебное пособие/ Э.В. Дюльдина – Магнитогорск: МГТУ, 2006. 180 с. – - Текст :непосредственный.

2. Дюльдина, Э.В. Краткий курс истории химии]: учебное пособие/ Э.В.

Дюльдина, С.П. Клочковский – Магнитогорск: МГТУ, 2004, 178 с. - Текст :непосредственный.

3. Клочковский, С.П. История химии и химической технологии : учебное пособие/ С.П. Клочковский, Э.В. Дюльдина - Магнитогорск: МГТУ, 2000. - 158с. - Текст :непосредственный.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Windows 7 Professional (для классов)	Д-757-17 от 27.06.2017	27.07.2018
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

	<u> </u>
Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
Поисковая система Академия Google (Google Scholar)	_
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа

Мультимедийные средства хранения, передачи и представления информации.

Учебная аудитория для проведения практических занятий, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Доска, учебные столы, стулья. Мультимедийные средства хранения, передачи и представления информации.

Учебные аудитории для самостоятельной работы обучающихся Персональные компьютеры с пакетом MSOffice, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Помещения для хранения и профилактического обслуживания учебного оборудования Шкафы для хранения учебно-методической документации, учебного оборудования и учебно-наглядных пособий.

Учебно-методическое обеспечение самостоятельной работы обучающихся

Перечень вопросов для проведения текущего контроля, промежуточной аттестации в форме тестирования и устного опроса (собеседования)

Пример задания по теме: «Алхимический период»

- 1. Основные представления, цели и методы работы алхимиков.
- 2. Практические достижения алхимического периода.
- 3. Историческая обусловленность алхимического периода.

Пример задания по теме: «Количественные законы»

- 1. Основные стехиометрические законы химии
- 2. Закон объемых отношений Гей-Люссака.
- 3. Первый Всемирный конгресс химиков, основные результаты

Пример задания по теме: «физическая химия»

- 1. История учения о растворах
- 2. История возникновения и развития химической термодинамики
- 3. Стереохимия. Работы Вант-Гоффа в области стереохимии

Вопросы к зачету

- 1. Периодизация истории химии.
- 2. Возникновение химии. Практические и химические знания древних народов.
- 3. Теоретические представления древних о природе и ее элементах.
- 4. Начало атомистики.
- 5. Основные представления, цели и методы работы алхимиков.
- 6. Практические достижения алхимического периода.
- 7. Критика алхимических взглядов.
- 8. Обусловленность алхимического периода в развитии химии. Основные причины крушения алхимических представлений. Воззрения ятрохимиков.
- 9. Работы Р. Бойля. Учение об элементе.
- 10. Теория флогистона. Достоинства и недостатки этой теории.
- 11. Пневмохимия. Открытие кислорода, значение этого открытия для химической теории и практики.
- 12. Основные стехиометрические законы химии.
- 13. Исторический Работы А. Лавуазье. Создание теории горения. Утверждение количественных методов исследования в химии.
- 14. Анализ атомистики Дальтона.
- 15. Закон объемных отношений Гей-Люссака.
- 16. История возникновения молекулярной теории. Работы Авогадро.
- 17. Утверждение атомно-молекулярных представлений в химии.
- 18. История систематизации химических элементов.
- 19. Основные предпосылки открытия периодического закона.
- 20. История открытия периодического закона. Проблема инертных газов, редкоземельных элементов.
- 21. Спор о приоритете открытия периодического закона.
- 22. Происхождение термина «Органическая химия». Взгляды виталистов на образование органических веществ.
- 23. Первые синтезы органических соединений, крушение «витализма».
- 24. Теория радикалов, ее место в истории развития органической химии.
- 25. Учение о гомологии.

- 26. Теория типов ее достоинства и недостатки.
- 27. Исторические предпосылки появления теории химического строения А.М. Бутлерова.
- 28. Основные положения теории Бутлерова, основные этапы ее развития.
- 29. Изомерия. Оптическая изомерия, работы Вёлера, Луи Пастера.
- 30. История возникновения и развития стереохимии.
- 31. Возникновение физической химии как теории химических процессов.
- 32. Оформление физической химии в самостоятельное направление в конце XIX столетия.
- 33. История развития основных направлений физической химии:
- 34. Работы отечественных учёных в области физической химии.
- 35. Древесно угольная металлургия в западной Европе и России.
- 36. Основы технологии. Кучное производство кокса.
- 37. Характерные черты печного производства кокса до середины XIX столетия.
- 38. Производство светильного газа и смолы в XVII XIX столетиях.
- 39. Возникновение современного коксового производства.
- 40. Особенности и перспективы современного развития коксохимического производства.

Примерный перечень тем рефератов для выполнения домашнего задания

- 1. Атомистика Демокрита-Эпикура.
- 2. Учение Аристотеля о первоэлементах.
- 3. Основные представления алхимиков о трансмутации элементов.
- 4. Исторические достижения алхимиков в области химии и химической технологии.
- 5. Жизнь и деятельность Р.Бойля и основы его учения о химических элементах. Учение о флогистоне Г.Шталя.
- 6. История открытия кислорода. Работы химиков-пневматиков. Антуан Лавуазье. Жизнь и научная деятельность. Вклад М.В. Ломоносова в развитие химии и физики XVIII столетия.
- 7. Жизнь и научная деятельность Д.Дальтона, основателя атомистической теории.
- 8. История возникновения молекулярной теории. (Работы А.Авогадро, А.Ампера, Ш.Жирара).
- 9. Возникновение органической химии. Ранние теории строения органических соединений.
- 10. Возникновение учения о валентности.
- 11. Жизнь и деятельность Я.Вант-Гоффа. Возникновение стереохимии.
- 12. А.М. Бутлеров и его учение о химическом строении вещества.
- 13. История открытия периодического закона.
- 14. Жизнь и научная деятельность Д.И. Менделеева.
- 15. Теория растворов Д.И. Менделеева.
- 16. Физическая теория разбавленных растворов Я.Вант-Гоффа.
- 17. Возникновение и развитие теории электролитической диссоциации.
- 18. Учения о химическом равновесии. Работы К. Гульберга и П. Вааге.
- 19. История возникновения учения о катализе.
- 20. Жизнь и научная деятельность академика В.Игнатьева.
- 21. История производства кокса для черной металлургии.
- 22. Химия и коксохимическое производство.
- 23. Основные этапы развития технологии производства серной кислоты начиная с XIX столетия.
- 24. Нефть как источник получения мономеров для изготовления синтетических каучуков.
- 25. Исторический обзор развития основных направлений нефтепереработки.

Методические рекомендации для подготовки к зачету

Подготовка к промежуточной аттестации по дисциплине заключается в изучении

теоретического материала по конспектам лекций, источникам основной и дополнительной литературы, включая темы самостоятельного изучения, ориентируясь на список контрольных вопросов по соответствующим темам.

При самостоятельном изучении материала рекомендуется заносить в тетрадь основные понятия, термины, формулировки законов, формулы и уравнения, выводы по изучаемой теме. Изучение любого вопроса необходимо проводить на уровне сущности, а не на уровне отдельных явлений. Это способствует более глубокому и прочному усвоению материала.

В случае затруднения при изучении дисциплины следует обращаться за консультацией к преподавателю.

Методические рекомендации для выполнения контрольной работы (написания реферата)

Реферат - письменная работа студента объемом 18-30 печатных страниц, 15 использованных источника. В реферате дается краткое изложение сущности какого-либо вопроса, темы на основе нескольких первоисточников.

Реферат должен содержать основные фактические сведения и выводы по рассматриваемому вопросу. Помимо реферирования прочитанной литературы, от студента требуется аргументированное изложение собственных мыслей по рассматриваемому вопросу.

Структура реферата:

- 1. Титульный лист
- 2. Оглавление
- 3. Введение. Объем введения составляет 1-2 страницы.
- 4. Основная часть. В ней логично излагаются главные положения и идеи, содержащихся в изученной литературе. В тексте обязательны ссылки на первоисточники.
- 5. Заключение. Содержит главные выводы и итоги из текста основной части. В нем отмечается, как выполнены задачи и достигнуты ли цели, сформулированные во введении.
 - 6. Приложение (необязательно). Может включать графики, таблицы, расчеты.
- 7. Список литературы. Здесь указывается реально использованная для написания реферата литература. Список составляется согласно правилам библиографического описания.

С общими правилами оформления можно ознакомиться по документу

<u>СМК-О-СМГТУ-42-09</u> Курсовые проекты (работы): структура, содержание, общие правила оформления и выполнения

Этапы работы над рефератом

Работу над рефератом можно условно подразделить на три этапа:

- 1. Подготовительный, включающий изучение предмета исследования.
- 2. Изложение результатов изучения в виде связного текста.
- 3. Доклад (устное сообщение) по теме реферата, проиллюстрированное презентацией.

Подготовительный этап

Включает в себя:

- Выбор (формулировку) темы.
- Поиск источников.
- Работа с источниками.

Работу с источниками надо начинать с ознакомительного чтения, т.е. просмотреть текст, выделяя его структурные единицы. При ознакомительном чтении закладками отмечаются те страницы, которые требуют более внимательного изучения. В зависимости от результатов ознакомительного чтения выбирается дальнейший способ работы с источником. Если для разрешения поставленной задачи требуется изучение некоторых фрагментов текста, то используется метод выборочного чтения. Если в книге нет подробного оглавления, следует обратить внимание на предметные и именные указатели. Избранные фрагменты или весь текст (если он целиком имеет отношение к теме) требуют

вдумчивого, неторопливого чтения с выделением 1) главного в тексте; 2) основных аргументов; 3) выводов.

Подготовительный этап работы завершается созданием конспекта, фиксирующего основные тезисы и аргументы. Если в конспекте приводятся цитаты, то обязательно должна быть указана ссылка на источник (автор, название, выходные данные, № страниц).

Создание текста реферата

Текст реферата должен подчиняться определенным требованиям: он должен раскрывать тему, обладать связностью и цельностью.

Раскрытие темы предполагает, что в тексте реферата излагается относящийся к теме материал и предлагаются пути решения содержащейся в теме проблемы.

Связность текста предполагает смысловую соотносительность отдельных компонентов, а цельность -смысловую законченность текста.

Изложение материала в тексте должно подчиняться определенному плану - мыслительной схеме, позволяющей контролировать порядок расположения частей текста. Универсальный план научного текста, помимо формулировки темы, предполагает изложение вводного материала, основного текста и заключения.

Требования к введению. Введение - начальная часть текста. Оно имеет своей целью сориентировать читателя в дальнейшем изложении. Во введении аргументируется актуальность исследования, т.е. выявляется практическое и теоретическое значение данного исследования. Далее констатируется, что сделано в данной области предшественниками; перечисляются положения, которые должны быть обоснованы. Введение может также содержать обзор источников или экспериментальных данных, уточнение исходных понятий и терминов, сведения о методах исследования. Во введении обязательно формулируются цель и задачи реферата. Объем введения составляет примерно 10 % от общего объема реферата.

Основная часть реферата. Основная часть реферата раскрывает содержание темы. Она наиболее значительна по объему, наиболее значима и ответственна. В ней обосновываются основные тезисы реферата, приводятся развернутые аргументы, предполагаются гипотезы, касающиеся существа обсуждаемого вопроса. Важно проследить, чтобы основная часть не имела форму монолога. Аргументируя собственную позицию, можно и должно, анализировать и оценивать позиции различных исследователей, с чем-то соглашаться, чему-то возражать, кого-то опровергать. Установка на диалог позволит избежать некритического заимствования материала из чужих трудов -компиляции. Изложение материала основной части подчиняется собственному плану, что отражается в разделении текста на главы, параграфы, пункты.

Заключение» (ориентировочный объем 1 страница). Формулируются краткие выводы, вытекающие из выполненной работы.

Подготовка презентации

Первый слайд презентации должен содержать тему работы, фамилию, имя и отчество исполнителя, номер учебной группы, учебное заведение.

На втором слайде целесообразно представить цель и краткое содержание презентации.

Последующие слайды необходимо разбить на разделы согласно пунктам плана работы.

На заключительный слайд выносится самое основное, главное из содержания презентации (выводы).

Требования к оформлению слайдов

Для визуального восприятия текст на слайдах презентации должен быть не менее 24 пт, а для заголовков – не менее 34 пт.

Макет презентации должен быть оформлен в строгой цветовой гамме. Фон не должен быть слишком ярким или пестрым. Текст должен хорошо читаться. Одни и те же элементы на разных слайдах должен быть одного цвета.

Каждый слайд должен содержать заголовок. В конце заголовков точка не ставится. В заголовках должен быть отражен вывод из представленной на слайде информации.

На слайде следует помещать не более 5-6 строк и не более 5-7 слов в предложении. Текст на слайдах должен хорошо читаться.

В большинстве случаев на слайде необходимо располагать 1 объект – так он запомнится лучше, чем в группе с другими. Может быть представлено и два объекта, которые докладчик открывает и поясняет по очереди, а затем проводит их сравнительную характеристику.

Пространство слайда (экрана) должно быть максимально использовано, за счет, например, увеличения масштаба рисунка.

Обязательно отредактируйте презентацию после предварительного просмотра (репетиции)!

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатора	Индикатор достижения компетенции	Оценочные средства					
происходящих в строении веще	ОПК-1 Способен изучать, анализировать, использовать механизмы химических реакций, происходящих в технологических процессах и окружающем мире, основываясь на знаниях о строении вещества, природе химической связи и свойствах различных классов химических элементов, соединений, веществ и материалов.						
ОПК-1.1	Использует законы химии при изучении и анализе технологических процессов и процессов в окружающем мире	Пневмохимия. Открытие кислорода, значение этого открытия для химической теории и практики. Основные стехиометрические законы химии. Исторический Работы А. Лавуазье. Создание теории горения. Утверждение количественных методов исследования в химии. Анализ атомистики Дальтона. Закон объемных отношений Гей-Люссака. История возникновения молекулярной теории. Работы Авогадро. Утверждение атомно-молекулярных представлений в химииИстория систематизации химических элементов. Основные предпосылки открытия периодического закона.					

ОПК 1.2	Решает технологические задачи с использованием знаний о строении веществ, природе химической связи и свойствах различных классов химических элементов, веществ и материалов	Возникновение физической химии как теории химических процессов. Оформление физической химии в самостоятельное направление в конце XIX столетия. История развития основных направлений физической химии: Работы отечественных учёных в
ОПК 1.3	Применяет знания о закономерностях химических процессов при решении технологических задач	области физической химии. Древесно - угольная металлургия в западной Европе и России. Основы технологии. Кучное производство кокса. Характерные черты печного производства кокса до середины XIX столетия. Производство светильного газа и смолы в XVII - XIX столетиях. Возникновение современного коксового производства. Особенности и перспективы современного развития коксохимического производства.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «История химии и химической технологии» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета.

Зачет по данной дисциплине проводится в виде теста или в устной форме по вопросам из списка, доведенного до сведения студентов.

Показатели и критерии оценивания зачета:

- оценку «зачтено» студент получает, если может показать знания на уровне воспроизведения и объяснения информации, может дать оценку предложенной ситуации.
- оценку **«не зачтено»** студент получает, если не может показать знания на уровне воспроизведения и объяснения информации и дать оценку предложенной ситуации.