3717 PS -24

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

> **УТВЕРЖДАЮ** Директор ИММиМ ДА.С. Савинов 20.02.2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ОСНОВЫ ТЕОРИИ РАСЧЕТОВ НА ПРОЧНОСТЬ

Направление подготовки (специальность) 12.03.01 Приборостроение

Направленность (профиль/специализация) программы Интеллектуальные системы неразрушающего контроля

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт/ факультет

Институт металлургии, машиностроения и материалообработки

Кафедра

Механики

Курс

3

Магнитогорск 2024 год

Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 12.03.01 Приборостроение (приказ Минобрнауки России от 19.09.2017 г. № 945)

т аоочая программа рассмотрена и одобрена на заседании кафедры Механики 15.02.2024, протокол № 6
Зав. кафедрой А.С. Савинов
Рабочая программа одобрена методической комиссией ИММиМ 20.02.2024 г. протокол № 4
Председатель А.С. Сави нов
Согласовано:
Зав. кафедрой Физики Д.М. Долгуппин
Рабочая программа составлена: зав. кафедрой Механики, д-р техн. наук
Рецензент: Директор ЗАО НПО "ЦХТ" , канд. техн. наукВ.П. Дзюба

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2025 - 2026 учебном году на заседании кафедры Механики				
	Протокол от	_ 20 г.	№ А.С. Савинов	
Рабочая программа пересмот учебном году на заседании ка		ля реали	зации в 2026 - 2027	
	Протокол от	_ 20 г.	№ А.С. Савинов	
Рабочая программа пересмот учебном году на заседании ка	= = =	ля реали	зации в 2027 - 2028	
	Протокол от	_ 20 г.	№ А.С. Савинов	
Рабочая программа пересмот учебном году на заседании ка		ля реали	зации в 2028 - 2029	
	Протокол от Зав. кафедрой	_ 20 г.	№ А.С. Савинов	
Рабочая программа пересмот учебном году на заседании ка		ля реали	зации в 2029 - 2030	
	Протокол от	_20 г.	№ А.С. <u>С</u> авинов	

1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины «Основы теории расчетов на прочность» является получение навыков количественной оценки напряженного состояния литой заготовки под влиянием температурных градиентов и силового взаимодействия отливки с формой.

Задачи дисциплины – дать обучающемуся:

- освоение навыков расчета теплового состояния системы отливка-форма;
- освоение расчета напряженного состояния отливки при ее взаимодействии с формой.

Приобретенные знания способствуют формированию навыков направленных на оценку технологии изготовления литой детали в части ее силового взаимодействия с формой и предупреждения возможного возникновения брака связанного с нарушением сплошности стенки излелия.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Основы теории расчетов на прочность входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Физика

Математика

Информатика и основы программирования

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Обработка экспериментальных данных на ЭВМ

Учебная – эксплуатационная практика

Физика конденсированного состояния

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Основы теории расчетов на прочность» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции					
УК-1 Способен осу	УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять					
системный подход	для решения поставленных задач					
УК-1.1	Анализирует задачу, выделяя ее базовые составляющие, рассматривает					
	и предлагает возможные варианты решения поставленной задачи,					
	оценивая их достоинства и недостатки					
УК-1.2	Определяет, интерпретирует и ранжирует информацию, требуемую для					
	решения поставленной задачи; осуществляет поиск информации по					
	различным типам запросов					
УК-1.3	При обработке информации отличает факты от мнений,					
	интерпретаций, оценок, формирует собственные мнения и суждения,					
	аргументирует свои выводы и точку зрения					
ОПК-1 Способен	применять естественнонаучные и общеинженерные знания, методы					
математического а	математического анализа и моделирования в инженерной деятельности, связанной с					
проектированием и конструированием, технологиями производства приборов и						
комплексов широкого назначения						
ОПК-1.1	Применяет знания математики в инженерной практике при					
	моделировании					

ОПК-1.2	Применяет знания естественных наук в инженерной практике
ОПК-1.3	Применяет общеинженерные знания, в инженерной деятельности

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 12,7 акад. часов:
- аудиторная 12 акад. часов;
- внеаудиторная 0,7 акад. часов;
- самостоятельная работа 127,4 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к зачёту 3,9 акад. час
 Форма аттестации зачет

Раздел/ тема лисциплины	Kypc	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетениии	
дисциплины		Лек.	лаб. зан.	практ. зан.	Самост	работы	промежуточной аттестации	Компотонции
1. Раздел 1								
1.1 Внешние, внутренние силы, напряжение, видимые напряжения.		2		2	30	Самостоятельное изучение учебной и научно литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3, УК-1.1, УК-1.2, УК-1.3
1.2 Связь напряжений с деформациями. Классификация сил.		2		2	30	Поиск дополнительной информации по заданной теме	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3, УК-1.1, УК-1.2, УК-1.3
1.3 Геометрические характеристики поперечных сечений стержней.	3			2	17,4	Самостоятельное изучение учебной и научно литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3, УК-1.1, УК-1.2, УК-1.3
1.4 Кручение стержней круглого поперечного сечения. Напряжения и деформации.				2	25	Самостоятельное изучение учебной и научно литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3, УК-1.1, УК-1.2, УК-1.3
1.5 Испытание материалов на растяжение, сжатие. Механические характеристики материалов.					25	Самостоятельное изучение учебной и научно литературы	Теоретический опрос, собеседование	ОПК-1.1, ОПК-1.2, ОПК-1.3, УК-1.1, УК-1.2, УК-1.3
Итого по разделу		4		8	127,4			
Итого за семестр		4		8	127,4		зачёт	
Итого по дисциплине		4		8	127,4		зачет	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Основы теории расчетов на прочность» используются традиционные образовательные технологии. Они ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к обучающемуся (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность обучающегося носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция — последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Макаров, Е. Г. Сопротивление материалов с использованием вычислительных комплек-сов : учебное пособие для среднего профессионального образования / Е. Г. Макаров. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2024. 413 с. (Профессиональное образование). ISBN 978-5-534-01773-1. Текст : электронный // Образовательная плат-форма Юрайт [сайт]. URL: https://urait.ru/bcode/539104.
- 2. Александров, А. В. Сопротивление материалов в 2 ч. Часть 2 : учебник и практикум для вузов / А. В. Александров, В. Д. Потапов, Б. П. Державин. 9-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 273 с. (Высшее образование). ISBN 978-5-534-02162-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/538187.

б) Дополнительная литература:

- 1. Валишвили, Н. В. Сопротивление материалов и конструкций: учебник для вузов / Н. В. Валишвили, С. С. Гаврюшин. Москва: Издательство Юрайт, 2024. 429 с. (Высшее образование). ISBN 978-5-9916-8247-3. Текст: электронный // Образова-тельная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/536795.
- 2. Шилов, М. А. Физика прочности и механика разрушения : учебное пособие для вузов / М. А. Шилов. Москва : Издательство Юрайт, 2024. 175 с. (Высшее образова-ние). ISBN 978-5-534-15598-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/544300
- 3. Малинин, Н. Н. Прикладная теория пластичности и ползучести : учебник для вузов / Н. Н. Малинин. 3-е изд., испр. и доп. Москва : Издательство Юрайт, 2024. 402 с. (Высшее образование). ISBN 978-5-534-05330-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/53968.

в) Методические указания:

- 1. Асадулина, Е. Ю. Сопротивление материалов: построение эпюр внутренних силовых факторов, изгиб: учебное пособие для вузов / Е. Ю. Асадулина. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 115 с. (Высшее образование). ISBN 978-5-534-09944-7. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453439 .
- 2. Кривошапко, С. Н. Сопротивление материалов. Практикум: учебное пособие для вузов / С. Н. Кривошапко, В. А. Копнов. 4-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 353 с. (Высшее образование). ISBN 978-5-9916-7117-0. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/450811.
- 3. А.С. Савинов, А.А. Ступак, О.А.Осипова, О.С. Железков, Б.Б. Зарицкий, К.И. Рудь,
- 4. К.С. Элиджарова Задачник по сопротивлению материалов. Построение эпюр ВСФ.: задачник / А.С. Савинов, А.А. Ступак, О.А.Осипова. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им.Г.И.Носова, 2023. 38 с.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии			
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно			
7Zip	свободно распространяемое	бессрочно			
FAR Manager	свободно распространяемое	бессрочно			

Профессиональные базы данных и информационные справочные системы

профессиональные оазы данных и инфо	pmuquomining empuno mining emeremini
Название курса	Ссылка
Электронная база периодических изданий East	https://dlib.aastviaw.com/
View Information Services, ООО «ИВИС»	https://dno.eastview.com/
Национальная информационно-аналитическая	
система – Российский индекс научного	URL: https://elibrary.ru/project_risc.asp
цитирования (РИНЦ)	
Поисковая система Академия Google (Google Scholar)	URI: https://scholar.google.ru/
Scholar)	
Российская Государственная библиотека.	https://www.rsl.ru/ru/4readers/catalogues/
Каталоги	intps.// w w w.isi.iu/iu/-icadeis/eataiogues/
Электронные ресурсы библиотеки МГТУ им.	https://host.megaprolib.net/MP0109/Web
Г.И. Носова	inteps://nost.megaprono.net/wn/0109/web
Международная база полнотекстовых	http://link.springer.com/
журналов Springer Journals	inttp://inik.springer.com/
Архив научных журналов «Национальный	
электронно-информационный концорциум»	https://arch.neicon.ru/xmlui/
(НП НЭИКОН)	
0.34	

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа. Оснащение: Мультимедийные средства хранения, передачи и представления информации.

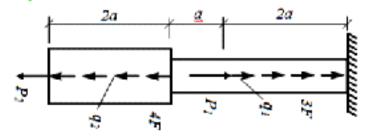
Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: Доска, мультимедийный проектор, экран.

Помещения для самостоятельной работы обучающихся. Оснащение: Персональные компьютеры с пакетом MS Office, вы-ходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования. Оснащение: Стеллажи для хранения учебно-методических пособий и учебно-методической документации

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Основы теории расчетов на прочность» предусмотрено решение задач.


Примерные задачи:

№1 «Построение эпюр $BC\Phi$ в статически определимых стержневых системах»

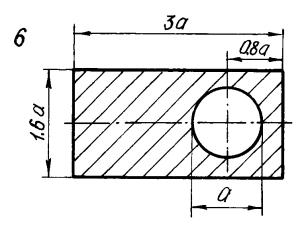
Задача 1. Для статически определимого стержня ступенчато постоянного сечения по схеме при заданных осевых нагрузках и геометрических размерах, требуется:

- 1. Определить опорную реакцию в месте закрепления стержня.
- 2. Вычислить значения продольных сил и нормальных напряжений в характерных сечениях и построить эпюры этих величин.
- 3. Найти величины абсолютных удлинений (укорочений) участков стержня и величину общего удлинения (укорочения) стержня в целом.
- 4. Определить значения осевых перемещений характерных сечений и построить эпюру осевых перемещений.

$$a=2M$$
, $P_1=15$ kH, $P_2=10$ kH, $q_1=2$ kH/M, $q_2=4$ kH/M, $F=10$ cm²

Задача 2. Построить эпюру крутящих моментов углов закручивания; найти наибольший относительный угол закручивания.

a=2M, b=4M, c=5M, $M_1=15$ kHM, $M_2=10$ kHM, $M_3=12$ kHM, $M_4=17$ kHM.

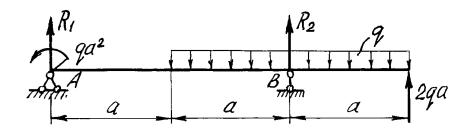

№2 «Геометрические характеристики поперечных сечений стержней»

Для несимметричных сечений по схемам при заданных размерах, требуется:

- 1. определить положение центра тяжести;
- 2. вычислить осевые и центробежные моменты инерции относительно центральных осей;
 - 3. определить положение главных центральных осей инерции и величины

главных моментов инерции;

4. построить круг инерции и определить графически величины главных моментов инерции и направления главных центральных осей. а=10см

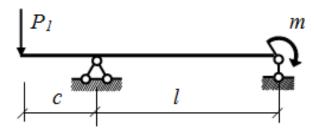


№3 «Прямой поперечный изгиб. Расчеты на прочность»

Рассчитать на прочность по методу предельных состояний двугавровую прокатную балку. Материал балки сталь ВСт 3. Предел текучести $\sigma = 240$ МПа, расчетное сопротивление по пределу текучести R = 210 МПа, расчетное сопротивление при сдвиге R = 130 МПа. Коэффициент условий работы $\gamma c = 0.9$. Коэффициент надежности по нагрузке $\gamma f = 1.2$.

- 1. Подобрать сечение балки из двугавра, используя условие прочности по первой группе предельных состояний.
- 2. Для сечения балки, в котором действует наибольший изгибающий момент, построить эпюру нормальных напряжений и проверить выполнение условия прочности по нормальным напряжениям.

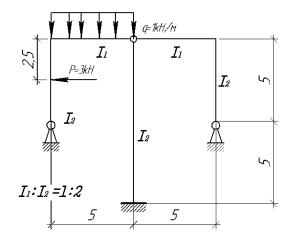
a=2M, q=5 kH/M/


№4. «Определение перемещений в балках и рамах»

Для балки с заданной нагрузкой в пролете и при числовых значениях размеров, требуется:

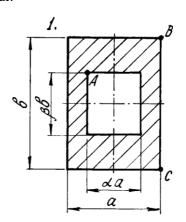
- 1. Построить эпюры изгибающих моментов и поперечных сил от заданных нормативных нагрузок.
- 2. Подобрать сечение балки в виде стального прокатного двугавра по методу предельных состояний, приняв коэффициент надежности по нагрузке равным $\gamma f=1,2$. Расчетное сопротивление стали по пределу текучести $R=210~\text{M}\Pi a$, коэффициент условий работы $\gamma c=1$.
 - 3. Определить с помощью метода начальных параметров значения прогибов v и углов

поворота ϕ поперечных сечений в характерных сечениях балки от нормативных нагрузок. По полученным значениям построить эпюры v и ϕ , указав их особенности (экстремумы, скачки, изломы и точки перегиба). Определить числовые значения прогибов в сантиметрах и углов поворота сечений в радианах, приняв модуль упругости стали $E=2,1\cdot105$ МПа.


4. Определить с помощью метода Мора величины прогибов и углов поворота в характерных сечениях балки. Сравнить результаты расчета, полученные двумя методами.

№5. «Расчет статически неопределимых систем методом сил»

Расчет статически неопределимой системы методом сил


- 1. выявить степень статической неопределимости заданной системы
- 2. предложить три варианта основной системы и выбрать наиболее рациональную (учитывать известные способы упрощения расчета (неединичные неизвестные; группировка неизвестных и т.д);
- 3. показать эквивалентную систему;
- 4. составить систему канонических уравнений метода сил для предложенного варианта;
- 5. для выбранной основной системы построить эпюры изгибающих моментов от единичных сил, приложенных по направлениям неизвестных усилий Xi (эп. Мі):вычислить единичные коэффициенты канонических уравнений;
- 6. выполнить проверку единичных коэффициентов;
- 7. для выбранной основной системы построить эпюры изгибающих моментов от заданной нагрузки (эп. MF); вычислить грузовые коэффициенты канонических уравнений;
- 8. произвести проверку правильности грузовых коэффициентов;
- 9. решить систему канонических уравнений (проверка обязательна!);
- 10. построить окончательную эпюру моментов;
- 11. произвести проверки (статическую и деформационную) правильности окончательной эпюры моментов;
- 12. построить эпюру Q по эпюре М;
- 13. построить эпюру N по эпюре Q;
- 14. вычертить заданную схему, показать полученные усилия и произвести статическую проверку.

№6. «Сложное сопротивление. Продольный изгиб. Динамические задачи»

Для внецентренно сжатого короткого стержня с заданным поперечным сечением и точкой приложения силы требуется:

- 1. Определить площадь поперечного сечения и положение центра тяжести;
- 2. Определить моменты инерции и радиусы инерции относительно главных центральных осей;
 - 3. Определить положение нулевой линии;
- 4. Определить грузоподъемность колонны (величину наибольшей сжимающей силы) из условия прочности по методу предельных состояний, приняв расчетные сопротивления материала при растяжении Rp = 1 МПа, при сжатии Rc = 5 МПа, коэффициент условий работы γc = 1;
- 5. Построить эпюру нормальных напряжений в поперечном сечении от действия найденной расчетной силы.

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Промежуточная аттестация имеет цель определить степень достижения запланированных результатов обучения проводится в форме зачета на 3-м курсе

Код	Индикатор достижения	Оценочные средства			
индикатора	компетенции				
	ПК-1: Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с				
		и производства приборов и комплексов широкого назначения			
ОПК-1.1	Применяет знания математики в	Перечень теоретических вопросов к зачету:			
	инженерной практике при	1. Цель и задачи курса "Основы прочностного расчета в литейном производстве" и его связь с другими дисциплинами.			
	моделировании	2. Свойства, которыми наделяется основная модель твердого деформируемого тела в механике.			
		3. Характерные формы элементов конструкций. Виды основных деформаций стержня.			
		4. Внешние силы. Отличие во взгляде на внешние силы в сопротивлении материалов и в теоретической механике.			
		Внутренние силы. Метод сечений. Понятие о напряжении, его компоненты.			
		5. Закон Гука для материала. Принцип Сен-Венана. Принцип независимости действия сил. Условия его применимости.			
		6. Внутреннее усилие при осевом растяжении (сжатии) прямоосного призматического стержня. Эпюра продольной силы и			
		характерные особенности ее очертания.			
		7. Вывод формулы для нормального напряжения в поперечных сечениях стержня при растяжении (сжатии). Основная			
		гипотеза.			
		8. Условие прочности при растяжении (сжатии) и задачи, решаемые с его помощью. Допускаемое напряжение,			
		коэффициент запаса по прочности.			
		9. Продольная и поперечная деформации при растяжении (сжатии). Упругие постоянные материала. Закон Гука для осевой			
		деформации стержня.			
		10. Формула для определения абсолютной деформации при осевом растяжении (сжатии)			
		Примерное практическое задания для зачета: Для схемы балки требуется:			
		для схемы балки требуется.			
		← a=2 m ← + c=3.6 m ← →			
		P=39.6 кH			
		ı			
		<u>↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ </u>			
		q=11 kH/m			
		q - 11 кн/м 1. Составить аналитические выражения изменения изгибающего момента M_x и поперечной силы Q_v на всех участков			
		балки;			
		2. Построить эпюры изгибающих моментов M_x и поперечных сил Q_y , указав значения ординат во всех характерных			
		сечениях участков балки;			
		3. Руководствуясь эпюрами изгибающих моментов, вычертить приблизительный вид изогнутой оси балки;			
		4. Определить положения опасных сечений и из условия прочности подобрать поперечный размер балки (круг			
		по определить положения описных се тении и из условия про пости подоорать попере ный размер ошлки (друг			

		диаметром d при допускаемом напряжении [σ]=280 МПа (сталь))
ОПК-1.2	Применяет знания естественных наук в инженерной практике	Перечень теоретических вопросов к зачету: 1. Анализ напряженно-деформированного состояния в окрестности точки тела. 2. Понятие главных напряжений. Экстремальность главных напряжений. Экстремальные значения касательных напряжений. 3. Закон парности касательных напряжений. 4. Обобщенный закон Гука для изотропного материала. 5. Понятие о хрупком и вязком разрушении материала. Теории прочности для хрупкого состояния материала (I и II теории). Основные гипотезы. Эквивалентные напряжения по первой и второй теориям прочности. 6. Теории пластического деформирования (III и IV теории). Основные гипотезы. Эквивалентные напряжения по третьей и четвертой теориям прочности. 7. Сдвиг. Чистый сдвиг. Закон Гука при чистом сдвиге. Связь между упругими постоянными изотропного материала. 8. Кручение. Понятие о кручении вала. Внутренние усилия при кручении. Построение эшоры крутящего момента. 9. Вывод формулы для касательного напряжения в поперечном сечении вала крутового сечения. Основные гипотезы. 10. Условие прочности при кручении. Полярный момент сопротивления. Подбор сечения вала по условию прочности. Примерное практическое задания для зачета: 2. указать положение опасного сечения (сечение балки с максимальным моментом); 3. определить прогиб Ду балки в точке приложения силы P. 10. Р. т. ф. кН кНм кН/м кН/м кН/м кН/м кН/м кН/м кН
ОПК-1.3	Применяет общеинженерные знания, в инженерной деятельности	Примерное практическое задание: Статически определимая рама, расчетная схема которой показана на рисунке, загружена внешней нагрузкой. а=2м, q=4kH/м Требуется: 1. Определить опорные реакции. 2. Записать выражения для внутренних усилий М z, Qy и N на каждом из участков рамы. 3. Построить эпюры внутренних усилий М z, Qy и N.
	1	нализ и синтез информации, применять системный подход для решения поставленных задач
УК-1.1	Анализирует задачу, выделяя ее базовые составляющие, рассматривает и предлагает возможные варианты решения	 Перечень теоретических вопросов: 1. Анализ напряженно-деформированного состояния в окрестности точки тела. 2. Понятие главных напряжений. Экстремальность главных напряжений. Экстремальные значения касательных напряжений.

	поставленной задачи, оценивая их достоинства и недостатки	 Закон парности касательных напряжений. Обобщенный закон Гука для изотропного материала. Понятие о хрупком и вязком разрушении материала. Теории прочности для хрупкого состояния материала (I и II теории). Основные гипотезы. Эквивалентные напряжения по первой и второй теориям прочности. Теории пластического деформирования (III и IV теории). Основные гипотезы. Эквивалентные напряжения по третьей и четвертой теориям прочности.
УК-1.2	Определяет, интерпретирует и ранжирует информацию, требуемую для решения поставленной задачи; осуществляет поиск информации по различным типам запросов	 Перечень теоретических вопросов: Цель и задачи курса "Основы прочностного расчета в литейном производстве" и его связь с другими дисциплинами. Свойства, которыми наделяется основная модель твердого деформируемого тела в механике. Характерные формы элементов конструкций. Виды основных деформаций стержня. Внешние силы. Отличие во взгляде на внешние силы в сопротивлении материалов и в теоретической механике. Внутренние силы. Метод сечений. Понятие о напряжении, его компоненты. Закон Гука для материала. Принцип Сен-Венана. Принцип независимости действия сил. Условия его применимости. Внутреннее усилие при осевом растяжении (сжатии) прямоосного призматического стержня. Эпюра продольной силы и характерные особенности ее очертания. Вывод формулы для нормального напряжения в поперечных сечениях стержня при растяжении (сжатии). Основная гипотеза.
УК-1.3	При обработке информации отличает факты от мнений, интерпретаций, оценок, формирует собственные мнения и суждения, аргументирует свои выводы и точку зрения	Перечень теоретических вопросов 1. Сдвиг. Чистый сдвиг. Закон Гука при чистом сдвиге. Связь между упругими постоянными изотропного материала. 2. Кручение. Понятие о кручении вала. Внутренние усилия при кручении. Построение эпюры крутящего момента. 3. Вывод формулы для касательного напряжения в поперечном сечении вала кругового сечения. Основные гипотезы. 4. Условие прочности при кручении. Полярный момент сопротивления. Подбор сечения вала по условию прочности. Примерное практическое задания для зачета: Для схемы балки требуется: ———————————————————————————————————

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Основы прочностного расчета в литейном производстве» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета.

Показатели и критерии оценивания зачета:

Для получения зачёта по дисциплине обучающийся должен изучить необходимые разделы в конспектах, учебных пособиях и методических указаниях; работать со справочной литературой, исправлять ошибки.

Промежуточная аттестация включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачёта.

- на оценку «зачтено» обучающийся должен показать знания не только на уровне воспроизведения и объяснения информации, но и на интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам.
- на оценку «не зачтено» обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач