

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов

20.02.2020 r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ОСНОВЫ ТЕОРИИ ПЛАСТИЧНОСТИ

Направление подготовки (специальность) 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

> Направленность (профиль/специализация) программы Технология машиностроения

Уровень высшего образования - бакалаврнат Программа подготовки - академический бакалаврнат

> Форма обучения заочная

Институт/ факультет Институт металлургин, машиностроения и материалообработки

Кафедра Машины и технологии обработки давлением и машиностроения

Kypc 4

Магнитогорск 2019 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств (уровень бакалавриата) (приказ Минобрнауки России от 11.08.2016 г. № 1000)

Рецензент: доцент кафедры МиХТ, канд. техи. наук

И.В. Макарова

Лист актуализации рабочей программы

Рабочая программа перес учебном году на заседани машиностроения	мотрена, обсуждена и одоб ии кафедры Машины и тех	брена для реализации в 2020 - 2021 хнологии обработки давлением и
	Протокол от 09,09.20 Зав. кафедрой	020 г. № 1
Рабочая программа перес учебном году на заседані машиностроения	мотрена, обсуждена и одоб ии кафедры Машины и те:	брена для реализации в 2021 - 2022 хнологии обработки давлением и
	Протокол от	г. № С.И. Платов
Рабочая программа перес учебном году на заседані машиностроения	:мотрена, обсуждена и одоб ии кафедры Машины и те:	брена для реализации в 2022 - 2023 хиологии обработки давлением и
	Протокол от	г. № С.И. Платов
Рабочая программа перес учебном году на заседани мащиностроения	смотрена, обсуждена и одо ин кафедры Машины и те	брена для реализации в 2023 - 2024 хнологии обработки давлением и
	Протокол от Зав. кафедрой	г. № С.И. Платов
Рабочая программа перес учебном году на заседани машиностроения	смотрена, обсуждена и одо ии кафедры Машины и те	брена для реализации в 2024 - 2025 хнологии обработки давлением и

1 Цели освоения дисциплины (модуля)

Целью преподавания дисциплины «Основы теории пластичности» является рассмотрение методов обработки, использующих электрическую, тепловую, ультразвуковую, химическую и другие виды энергии, а также оборудование, инструменты и сущность протекания процесса при разработке малоотходных энергосберегающих и экологически чистых инновационных технологий.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Основы теории пластичности входит в вариативную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Процессы и операции формообразования

Производство заготовок

Технологические процессы в машиностроении

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Подготовка к защите и защита выпускной квалификационной работы

Подготовка к сдаче и сдача государственного экзамена

Основы надежности технологических систем

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Основы теории пластичности» обучающийся должен обладать следующими компетенциями:

r .	
Структурный	Планируемые результаты обучения
элемент	
компетенции	
	ю к пополнению знаний за счет научно-технической информации
отечественного и за	арубежного опыта по направлению исследования в области разработки,
эксплуатации, авто	матизации и реорганизации машиностроительных производств
Знать	 основные понятия теории пластичности, особенности упругой и пластической деформации основные характеристики напряженного и деформированного состояний, реологические модели; связь между напряженным и деформированным состояниями; законы сохранения, постановку и методы решения задач теории пластичности
Уметь	 исследовать напряженно-деформированное состояние металла при растяжении, определять условия перехода металла в пластическое состояние, рассчитывать напряжения и деформации, выполнять постановку и решать прикладные задачи теории пластичности

Владеть	 навыками оценки напряженно-деформированного состояния металла, навыками расчетов напряжений, деформаций, применения реологических моделей, навыками постановки и решения задач теории пластичности
---------	---

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 8,7 акад. часов:
- аудиторная 8 акад. часов;
- внеаудиторная 0,7 акад. часов
- самостоятельная работа 95,4 акад. часов;
- подготовка к зачёту 3,9 акад. часа Форма аттестации зачет

Раздел/ тема дисциплины		Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код	
		Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Тема 1								
1.1 Напряженное состояние в точке.	4	0,5				Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	конспект.	ПК-10
Итого по разделу		0,5						
2. Тема 2.								
2.1 Деформированное состояние в точке.	4				20	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме.	конспект.	ПК-10
Итого по разделу					20			
3. Тема 3.								
3.1 Скорость деформации.	4	0,5			20	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме.	конспект.	ПК-10
Итого по разделу		0,5			20			
4. Лабораторная работа №1.								
4.1 Лабораторная работа «Закон постоянства объема. Коэффициенты и показатели деформирования»			2		10	Подготовка к лабораторному занятию.	Защита лабораторной работы	ПК-10
Итого по разделу			2		10			
5. Тема 4.								

5.1 Законы сохранения.	4	1			25,4	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	конспект.	ПК-10
Итого по разделу		1			25,4			
6. Тема 5.								
6.1 Уравнения состояния. Реологические модели.		1				Самостоятельное изуче-ние учебной и справочной литературы по рассматриваемой теме	контроль.	ПК-10
Итого по разделу		1						
7. Лабораторная работа № 2	2.							
7.1 лабораторная работа "Экспериментальные методы в теории пластичности"	4		2/2И		20	Пдготовка к лабораторному занятию.	Защита лабораторной работы	ПК-10
Итого по разделу			2/2И		20			
8. Тема 7.	_	_	_					
8.1 контроль.	4	1				перечень контрольных вопрослв.	конспект	ПК-10
Итого по разделу		1						
Итого за семестр		4	4/2И		95,4		зачёт	
Итого по дисциплине		4	4/2И		95,4		зачет	ПК-10

5 Образовательные технологии

В ходе реализации видов учебной работы в качестве образовательных технологий в преподавании данной дисциплины используются:

Традиционные формы обучения с использованием инновационных методов:

- классические лекции для ознакомления с основными положениями, понятиями и закономерностями технологии машиностроения, проводимые с использованием мультимедийного оборудования;

Активные и интерактивные формы обучения:

- вариативный опрос;
- устный опрос;
- совместная работа в малых группа (подгруппах) с анализом конкретных ситуаций по темам лабораторных работ.

Информационные технологии применяются для ознакомления со стандартами, чтения электронных учебников, справочной и периодической литературы по темам дисциплины при выполнении самостоятельной работы.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Молотников, В. Я. Теория упругости и пластичности / В. Я. Молотников, А. А. Молотникова. Санкт-Петербург: Лань, 2017. 532 с. ISBN 978-5-8114-2603-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/94741 (дата обращения: 18.09.2020). Режим доступа: для авториз, пользователей.
- 2.Паначев, И. А. Основы теории упругости и пластичности : учебно-методическое пособие / И. А. Паначев, И. В. Кузнецов, А. В. Покатилов. Кемерово : КузГТУ имени Т.Ф. Горбачева, 2017. 107 с. ISBN 978-5-906888-47-1. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/105416 (дата обращения: 18.09.2020). Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

1. Беломытцев, М. Ю. Механические свойства металлов : учебное пособие / М. Ю. Беломытцев. — Москва : МИСИС, [б. г.]. — Часть 1 : Твердость .Прочность . Пластичность — 2007. — 140 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/117085 (дата обращения: 18.09.2020). — Режим доступа: для авториз. пользователей.

в) Методические указания:

- 1. **Огарков, Н.Н., Налимова. М.В., Залетов, Ю.Д.** Методические указания к лабораторным работам по дисциплине "Основы теории пластичности" для студентов специальности 151001 [Текст]: Магнитогорск: ГОУ ВПО «МГТУ», 2010. 24 с.
 - г) Программное обеспечение и Интернет-ресурсы:

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Windows 7 Professional (для классов)	Д-757-17 от 27.06.2017	27.07.2018
7Zip	свободно	бессрочно
FAR Manager	свободно	бессрочно

Профессиональные базы данных и информационные справочные системы

	1
Название курса	Ссылка
Национальная	URL:
информационно-аналитическая система -	https://elibrary.ru/project_risc.asp
Поисковая система Академия Google	IIDI : https://gabolar.google.gu/
(Google Scholar)	OKL. https://scholar.google.ru/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа Мультимедийные средства хранения, передачи и представления информации

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Доска, мультимедийные средства хранения, передачи и представления информации.

Методические материалы.

Комплекс тестовых заданий для проведения промежуточных и рубежных контролей.

Учебная аудитория для проведения лабораторных работ: лаборатория резания и сварочного производства:

Металлорежущие станки.

Режущие и измерительные инструменты.

Образцы для исследований.

Помещения для самостоятельной работы обучающихся:

Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования:

Шкафы для хранения учебно-методической документации и учебно-наглядных пособий.

Инструменты для ремонта лабораторного оборудования.

Учебно-методическое обеспечение самостоятельной работы студентов

Перечень вопросов для подготовке к зачету по дисциплине «Основы теории пластичности»

- 1. Что такое пластичность?
- 2. Что такое главные нормальные напряжения?
- 3. Какие компоненты содержит тензор напряжений в произвольной системе координат?
 - 4. Написать тензор напряжений в главной системе координат.
 - 5. Сформулировать гипотезу сплошности.
 - 6. Правило назначения индексов для главных нормальных напряжений.
 - 7. Что такое гидростатическое давление в точке?
 - 8. Что показывает диаграмма Мора?
 - 9. Что показывает коэффициент Лоде?
 - 10. Назовите инварианты тензора напряжений.
 - 11. Что такое эллипсоид напряжений?
 - 12. Как можно охарактеризовать напряженное состояние тела?
 - 13. Какие компоненты содержит тензор деформаций?
 - 14. В чем заключается физический смысл шарового тензора и девиатора деформаций?
 - 15. Что такое однородная деформация?
 - 16. Что такое главные оси деформации?
 - 17. Что такое главные сдвиги при деформации?
 - 18. В каком случае шаровой тензор деформаций равен нулю?
 - 19. Физический смысл уравнений Сен-Венана.
 - 20. Из чего складывается движение точки деформируемой сплошной среды?
 - 21. Как описывается скорость деформации тела?
 - 22. Какие компоненты содержит тензор скорости деформации?
 - 23. Перечислите законы сохранения, применяемые в теории пластичности.
- 24. Сформулируйте закон сохранения массы при движении и деформации сплошной среды.
- 25. Какое уравнение следует из закона сохранения массы, каков его физический смысл?
 - 26. Сформулируйте закон сохранения импульса.
 - 27. Какое уравнение следует из закона сохранения импульса?
 - 28. Сформулируйте закон сохранения момента импульса.
 - 29. Какое уравнение следует из закона сохранения момента импульса?
 - 30. Сформулируйте закон сохранения энергии.
 - 31. Какое уравнение следует из закона сохранения энергии?
 - 32. Что такое реологические модели?
- 33. Назовите простые реологические модели. Какие свойства металла они изображают?
 - 34. Охарактеризуйте упруго-пластические и жестко-пластические среды.
 - 35. Какие вязкопластические среды вы знаете?
 - 36. Какие модели вязкоупругих сред вы знаете?
 - 37. Охарактеризуйте идеально упругое твердое тело.
 - 38. Какой тензор характеризует упругие свойства анизотропной среды?
 - 39. Какие уравнения входят в систему уравнений линейной теории упругости?
- 40. На основании чего устанавливается связь между напряженным и деформированным состоянием в теории течения?
 - 41. Что такое линии скольжения?

- 42. Какие напряжения можно определить методом линий скольжения?
- 43. Какие методы решения задач теории пластичности вы знаете?
- 44. Назовите экспериментальные методы теории пластичности.
- 45. Какие задачи обработки металлов резанием позволяет решить теория пластичности?
- 46. Какие условия, уравнения и методы теории пластичности лежат в основе изучения резания металлов?

Примеры типовых заданий для контрольной работы на тему: «Расчет балок и стержневых систем с учетом пластичности»

Задача 1

Найти предельную нагрузку, соответствующую наступлению общей текучести, для заданной статически неопределимой системы стержней, нагруженной заданной нагрузкой.

Залача 2

Построить поверхность текучести для заданной статически неопределимой системы стержней.

Задача 3

Определить остаточные деформации и напряжения в заданной системе стержней, нагруженной заданной нагрузкой, если она была выведена в упругопластическую стадию, а потом разгружена.

Примеры практических заданий:

- 1. Определить положение пластических шарниров в заданной статически неопределимой балке, нагруженной заданной нагрузкой.
- **2.** Построить поверхность текучести для заданной статически неопределимой балки, загруженной заданным образом.

Приложение 2

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный	Планируемые результаты обучения	Оценочные средства
элемент		
компетенции		
Код и содержані	ие компетенции: ПК-10 способность к пополнению знаний	за счет научно-технической информации отечественного и зарубежного
опыта по направл	пению исследования в области разработки, эксплуатации, ав	томатизации и реорганизации машиностроительных производств
Знать	- основные понятия теории пластичности, особенности	Перечень теоретических вопросов к зачету:
	упругой и пластической деформации основные	1. Что такое пластичность?
	характеристики напряженного и деформированного	2. Что такое главные нормальные напряжения?
	состояний, реологические модели;	3. Какие компоненты содержит тензор напряжений в произвольной
	- связь между напряженным и деформированным	системе координат?
	состояниями; законы сохранения,	4. Написать тензор напряжений в главной системе координат.
	- постановку и методы решения задач теории	5. Сформулировать гипотезу сплошности.
	пластичности	6. Правило назначения индексов для главных нормальных
		напряжений.
		7. Что такое гидростатическое давление в точке?
		8. Что показывает диаграмма Мора? 9. Что показывает коэффициент Лоде?
		10. Назовите инварианты тензора напряжений.
		11. Что такое эллипсоид напряжений?
		12. Как можно охарактеризовать напряженное состояние тела?
		13. Какие компоненты содержит тензор деформаций?
		14. В чем заключается физический смысл шарового тензора и
		девиатора деформаций?
		15. Что такое однородная деформация?
		16. Что такое главные оси деформации?
I		17. Что такое главные сдвиги при деформации?
		18. В каком случае шаровой тензор деформаций равен нулю?
		19. Физический смысл уравнений Сен-Венана.
L		20. Из чего складывается движение точки деформируемой сплошной

среды?
21. Как описывается скорость деформации тела?
22. Какие компоненты содержит тензор скорости деформации?
23. Перечислите законы сохранения, применяемые в теории
пластичности.
24. Сформулируйте закон сохранения массы при движении и
деформации сплошной среды.
25. Какое уравнение следует из закона сохранения массы, каков его
физический смысл?
26. Сформулируйте закон сохранения импульса.
27. Какое уравнение следует из закона сохранения импульса?
28. Сформулируйте закон сохранения момента импульса.
29. Какое уравнение следует из закона сохранения момента
импульса?
30. Сформулируйте закон сохранения энергии.
31. Какое уравнение следует из закона сохранения энергии?
32. Что такое реологические модели?
33. Назовите простые реологические модели. Какие свойства
металла они изображают?
34. Охарактеризуйте упруго-пластические и жестко-пластические
среды.
35. Какие вязкопластические среды вы знаете?
36. Какие модели вязкоупругих сред вы знаете?
37. Охарактеризуйте идеально упругое твердое тело.
38. Какой тензор характеризует упругие свойства анизотропной
среды?
39. Какие уравнения входят в систему уравнений линейной теории
упругости?
40. На основании чего устанавливается связь между напряженным и
деформированным состоянием в теории течения?
41. Что такое линии скольжения?
42. Какие напряжения можно определить методом линий
скольжения?

		43. Какие методы решения задач теории пластичности вы знаете? 44. Назовите экспериментальные методы теории пластичности. 45. Какие задачи обработки металлов резанием позволяет решить теория пластичности? 46. Какие условия, уравнения и методы теории пластичности лежат
Уметь	 исследовать напряженно-деформированное состояние металла при растяжении, определять условия перехода металла в пластическое состояние, рассчитывать напряжения и деформации, выполнять постановку и решать прикладные задачи теории пластичности 	В основе изучения резания металлов? Примеры типовых заданий для контрольной работы на тему: «Расчет балок и стержневых систем с учетом пластичности» Задача 1 Найти предельную нагрузку, соответствующую наступлению общей текучести, для заданной статически неопределимой системы стержней, нагруженной заданной нагрузкой. Задача 2 Построить поверхность текучести для заданной статически неопределимой системы стержней. Задача 3 Определить остаточные деформации и напряжения в заданной системе стержней, нагруженной заданной нагрузкой, если она была выведена в упругопластическую стадию, а потом разгружена.
Владеть	 навыками оценки напряженно-деформированного состояния металла, навыками расчетов напряжений, деформаций, применения реологических моделей навыками постановки и решения задач теории пластичности 	Примеры практических заданий: 3. Определить положение пластических шарниров в заданной статически неопределимой балке, нагруженной заданной нагрузкой. 4. Построить поверхность текучести для заданной статически неопределимой балки, загруженной заданным образом.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Основы теории пластичности» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, умений и владений, и проводится в форме опроса с учетом выполнения заданий по практическим работам.

Показатели и критерии оценивания:

- на оценку «зачтено» обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала.
- на оценку **«не зачтено»** обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать знание учебного материала.