МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ЧИСЛЕННЫЕ МЕТОДЫ

Направление подготовки (специальность) 09.03.01 Информатика и вычислительная техника

Направленность (профиль/специализация) программы Программное обеспечение средств вычислительной техники и автоматизированных систем

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Вычислительной техники и программирования

Kypc 2

Магнитогорск 2020 год

Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 09.03.01 Информатика и вычислительная техника (приказ Минобрнауки России от 19.09.2017 г. № 929)
Рабочая программа рассмотрена и одобрена на заседании кафедры Вычислительной техники и программирования 19.02.2020 г. протокол № 5
Зав. кафедрой О.С. Логунова
Рабочая программа одобрена методической комиссией ИЭ и АС 26.02.2020 г. протокол № 5 Председатель С.И. Лукьянов
Рабочая программа составлена: доцент кафедры ВТ и П, канд. физмат. наук Е.Г. Филиппов
Рецензент: Нач. отдела технологических платформ ООО "Компас Плюс", канд. техн. наук Д.С. Сафонов

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 учебном году на заседании кафедры Вычислительной техники и программирования							
	Протокол от	20 г. № О.С. Логунова					
	рена, обсуждена и одобрена дл афедры Вычислительной техн	-					
	Протокол от	20 г. № О.С. Логунова					
	Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2023 - 2024 учебном году на заседании кафедры Вычислительной техники и программирования						
	Протокол от	20 г. № О.С. Логунова					
	рена, обсуждена и одобрена длафедры Вычислительной техн						
	Протокол от 2 Зав. кафедрой	20 г. № О.С. Логунова					
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2025 - 2026 учебном году на заседании кафедры Вычислительной техники и программирования							
	Протокол от 2 Зав. кафедрой	20 г. № О.С. Логунова					

1 Цели освоения дисциплины (модуля)

Целью преподавания дисциплины (модуля) «Численные методы» является ознакомление студентов с базовыми понятиями, алгоритмами и методами решения уравнений математической физики, численными методами с использованием программных средств вычислительной техники, а также практического использования численных методов для решения прикладных задач.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Численные методы входит в обязательую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Прикладная математика

Программирование

Информатика

Элементы линейной алгебры

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Численные методы» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции				
ОПК-1 Способен	применять естественнонаучные и общеинженерные знания, методы				
математического анализа и моделирования, теоретического и экспериментальног					
исследования в пр	офессиональной деятельности;				
ОПК-1.1	Решает стандартные профессиональные задачи с применением ес-				
	тественнонаучных и общеинженерных знаний, методов математи-				
	ческого анализа и моделирования				
ОПК-1.2	Решает профессиональные задачи с применением методов теорети-				
	ческого и экспериментального исследования				

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 6,4 акад. часов:
- аудиторная 6 акад. часов;
- внеаудиторная 0,4 акад. часов
- самостоятельная работа 97,7 акад. часов;

Форма аттестации - зачет с оценкой

Раздел/ тема	Курс	Аудиторная контактная работа (в акад. часах)		Вид самостоятельной	Форма текущего контроля успе- ваемости и	Код компетенции	
дисциплины		Лек.	лаб. зан.	практ. зан.	Самосто работа	работы	промежуточной аттестации
1. 1. Основные понятия теории погрешностей вычисле-							

			i					
1.1 1.1 Типы погрешностей. Статистический и технический подходы к учету погрешностей.	2				4,7	Подготовка к практическому занятию	Беседа — обсуждение. Проверка лабораторной работы. Устный опрос.	ОПК-1
Итого по разделу					4,7			
2. 2. Численное реше систем линейных алгеб ческих уравнений					-,,			
2.1 Прямые методы (LU-метод, метод про- гонки)	2				12	Самостоятельное изучение учебной и научной литературы. Подготовка к выполнению домашнего задания	 Беседа – обсуждение. Проверка лабораторной работы. Устный опрос 	ОПК-1
2.2 Итерационные методы (метод простой итерации, метод Зейде-		0,5	0,5		8			ОПК-1
Итого по разделу		0,5	0,5		20			
3. 3. Методы аналитиче го представления табли заданной функции		0,3	0,3		20			
3.1 Интерполирование функции многочленами Лагранжа и Ньютона			0,5		6	Самостоятельное изучение учебной и научной литературы. Выполнение домашнего задания	Беседа – обсуждение. Проверка лабораторной работы. Устный опрос	ОПК-1
3.2 Апроксимация функции методом наименьших квадратов	2				6	Самостоятельное изучение учебной и научной литературы. Работа с электронными библиотеками. Подготовка к семинару Выполнение домашнего задания	Беседа — обсуждение. Проверка лабораторной работы. Устный опрос.	ОПК-1
Итого по разделу			0,5		12			
4. 4. Алгоритмы и методы численного интегрирования и дифференцирования								
4.1 Квадратурные формулы Ньютона-Котеса, Гаусса	2	0,5	0,5		6	Самостоятельное изучение учебной и научной литературы. Выполнение домашнего задания	Беседа – обсуждение. Проверка лабораторной работы. Устный опрос	ОПК-1

						Самостоятельное		
4.2 Численное дифференцирование					6	изучение учебной и научной литературы. Выполнение домашнего задания	 Беседа – обсуждение. Проверка лабораторной работы. Устный опрос 	
Итого по разделу		0,5	0,5		12			
5. 5. Численные методы шения обыкновенных д ференциальных уравнени	циф-			1				
5.1 Решение задачи Коши для обыкновенного дифференциального уравнения		0,5	0,5		6	Самостоятельное изучение учебной и научной литературы. Выполнение домашнего задания	Беседа – обсуждение. Проверка лабораторной работы. Устный опрос	ОПК-1
5.2 Решение краевой задачи для обыкновенного дифференциального уравнения	2	0,5	0,5		6	Самостоятельное изучение учебной и научной литературы. Работа с электронными библиотеками. Выполнение домашнего задания	Беседа – обсуждение. Проверка лабораторной работы. Устный опрос	ОПК-1
Итого по разделу		1	1		12			
	оды ема-							
6.1 Разностные схемы для решения эллиптических уравнений	2		0,5		8	Самостоятельное изучение учебной и научной литературы. Работа с электронными библиотеками.	Беседа – обсуждение. Проверка лабораторной работы. Устный опрос	ОПК-1
6.2 Разностные схемы для решения гиперболических уравнений			0,5		8	Самостоятельное изучение учебной и научной литературы. Работа с электронными библиотеками. Подготовка к семинару Выполнение домашнего задания	Беседа — обсуждение. Проверка лабораторной работы. Устный опрос	ОПК-1

6.3 Разностные схемы для решения параболических уравнений			0,5	8	Самостоятельное изучение учебной и научной литературы. Работа с электронными библиотеками. Выполнение домашнего задания	1. Беседа — обсуждение. 2. Проверка лабораторной работы. 3. Устный опрос	
Итого по разделу			1,5	24			
7. 7. Численные метоптимизации	оды						
7.1 Методы поиска безусловного экстремума	2			13	Самостоятельное изучение учебной и научной литературы. Выполнение домашнего задания	1. Беседа — обсуждение. 2. Проверка лабораторной работы. 3. Устный опрос	ОПК-1
Итого по разделу				13			
Итого за семестр		2	4	97,7		зао	
Итого по дисциплине		2	4	97,7		зачет с оценкой	

5 Образовательные технологии

Проектирование обучения строится на основе следующих принципов:

- Обучение на основе интеграции с наукой и производством.
- Профессионально-творческая направленность обучения.
- Ориентированность обучения на личность.
- Ориентированность обучения на развитие опыта самообразовательной деятельности будущего специалиста.

Для достижения планируемых результатов обучения, в дисциплине «Численные методы» используются образовательные технологии:

- 1. Традиционные образовательные технологии: лекции и лабораторные работы.
- 2. Технологии проблемного обучения: лабораторные работы и домашнее задание, направленное на решение комплексной учебно-познавательной задачи, требующей от студента применения как научно-теоретических знаний, так и практических навыков.
- 3. Интерактивные технологии: коллективное обсуждение какого-либо спорного вопроса, проблемы, выявление мнений в группе. Изложение проблем и их совместное решение.
- 4. Информационно-коммуникационные образовательные технологии: лекции с использованием электронной презентации представление результатов с использованием специализированных программных сред.
 - **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
 - 7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
 - 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Гулин, А.В. Введение в численные методы в задачах и упражнениях : учеб. пособие/ А.В. Гулин, В.А. Мажорова, В.А. Морозова. М.: ИНФРА-М, 2019. 368 с.- (Высшее образование: Бакалавриат). Режим доступа: http://www.znanium.com/read?id=342122

б) Дополнительная литература:

1. Шевченко, А.С.. Лабораторный практикум по численным методам: практикум / А.С. Шевченко. – М.: ИНФРА-М; Znanium.com, 2018. – 199 с. – Режим доступа: http://www.znanium.com/read?id=329357

в) Методические указания:

Филиппов, Е.Г. Численные методы поиска корней уравнения [Электронный ресурс] / Филиппов Е.Г., Ильина Е.А., Королева В.В.: Практикум. МГТУ.-

Магнитогорск: МГТУ, 2017. - 1 электрон. опт. диск (CD-ROM).

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно

Профессиональные базы данных и информационные справочные системы

	, <u>I</u>
Название курса	Ссылка
Поисковая система Академия Google (Google Scholar)	
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	https://elibrary.ru/project_risc.asp
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Приложение 1

6 Учебно-методическое обеспечение самостоятельной работы студентов Тестовые задания по дисциплине «Численные методы» для направления

09.03.01 Информатика и вычислительная техника

Nº	03.03.01 Информатика и вы		Отметка о
Л 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Текст вопроса	Варианты ответов	выборе
11/11		OIBCIOB	эталона
1.	Округлить число $\pi = 3,1415926535$ до	3,1416	эталон
	пяти значащих цифр	3,1425	
		3,142	
		3,14	
2	Методом половинного деления уточнить	0,867	эталон
	корень уравнения х4+2х3-х-1=0	0,234	
		0,2	
		0,43	
3	Используя метод хорд найти положитель-	1,198+0,0020	эталон
	ный корень уравнения х4-0,2х2-0,2х-1,2=0	1,16+0,02	
		2+0,1	
		3,98+0,001	
4	Вычислить методом Ньютона отрицатель-	-10,261	эталон
•	ный корень уравнения х4-3х2+75х-10000=0	-10,31	31441011
	Tr. Spr.	-5,6	
		-3,2	
	Найти действительные корни уравнения х-	1,17	эталон
5	$\sin x = 0.25$	1,23	31441011
	, o, <u></u>	2,45	
		4,8	
6	Определить число положительных и число	2 и 0	эталон
	отрицательных корней уравнения х4-	3 и 2	31431011
	4x+1=0	0 и 4	
		0 и 1	
7	Как иначе называют метод бисекций?	Метод половинного деления	эталон
,		Метод хорд	31441011
		Метод пропорциональных	
		частей	
		Метод «начального отрезка»	
8	Методы решения уравнений делятся на:	Прямые и итеративные	эталон
		Прямые и косвенные	
		Начальные и конечные	
		Определенные и	
		неопределенные	
9	Отпалания корней можно вуществия честа	аналитическим и графическим	отопом
7	Отделение корней можно выполнить двумя способами:	приближением и отделением	эталон
	Chocodann.	аналитическим и	
		систематическим	
		систематическим и	
		графическим и	
10	Метод хорд-	Частный случай метода	эталон
10	тистод хорд-	итераций	эталон
		Частный случай метода	
		коллокации	<u> </u>

№ п/п	Текст вопроса	Варианты ответов	Отметка о выборе эталона
		Частный случай метода	
		прогонки	
		Частный случай метода квад-	
		ратных корней	

Контрольные вопросы к практической работе № 1

Вопрос 1: Приведите этапы решения нелинейных уравнений.

1Отделение корней, т.е. установление достаточно малых отрезков, в каждом из которых содержится только один корень уравнения.

2 Уточнение приближенного значения корней до некоторой заданной степени точности.

Вопрос 2: Поясните аналитический метод определения корней нелинейного уравнения.

Процесс отделения корней начинается с установления знаков функции в граничных точках аиb. Затем определяются знаки в ряде промежуточных точек. После чего выделяются отрезки, на границе которых функция меняет знак на противоположный. Выделенные отрезки и содержат корень данного уравнения. Согласно, теореме, если

 $f(a) \times f(b) < 0$ то имеется один или несколько корней. Если $\frac{f^{\square}}{\square}(X) > 0$ или $\frac{f^{\square}}{\square}(X) < 0$, то корень будет единственным.

Вопрос 3:Какое условие лежит в основе метода бисекций.

Решение задачи методом бисекции разбивается на два этапа:

1 Локализация − находится отрезок [a, b], соединяющий один и только один корень уравнения $f(\mathbf{x}) = 0$. На краях отрезка функция имеет разные знаки: $f(a) \times f(b) < 0$.

2 *Итверационное уточнение корней* — делим отрезок [a, b] пополам точкой c. Если = 0, то задача решена, если нет, то выбираем из двух получившихся отрезков [a, c] и [b, c] тот, на краях которого функция имеет разные знаки, и повторяем итерацию еще раз.

В основе метода лежит условие: итерационный процесс продолжается до тех пор, пока длина отрезка после n-ой итерации не станет меньше некоторого заданного малого числа (погрешности) ε , т.е. $|b-a| \le \varepsilon$

Тогда за искомое значение корня принимается полученное приближение : ξ = и говорят, что решение данного уравнения найдено с точностью ϵ .

Вопрос 4: Поясните, как выбирается начальное приближение для уточнения корня уравнения методом Ньютона.

В качестве начального приближения выбирается = а, для которого выполняется усло-

абсцисс . Через точку A_1 [снова проводим касательную, точка пересечения которой с осью OX даст нам второе приближение корня и т.д. Для окончания итерационного процесса мо-

жет быть использовано условие:

Вопрос 5: Приведите формулу для построения итерационной последовательности при решении уравнения методом Ньютона.

Исходя из начального приближения , удовлетворяющего неравенству , можно построить итерационную последовательность:

$$n = 0, 1, 2 \dots$$

Сходящуюся к единственному на отрезке [a, b] решению ξ уравнения $f(\mathbf{x}) = 0$.

Вопрос 6: Сформулируйте условия сходимости метода простых итераций.

Достаточным условием сходимости метода простых итераций является условие:

$$\frac{\varphi^{\square}}{\square}$$
 (X) < 1

выполненное для любого x, принадлежащего некоторому отрезку [a, b], содержащему корень уравнения.

Скорость сходимости зависит от абсолютной величины производной φ^{\uparrow} (X). Чем меньше

Вопрос 7: Поясните алгоритм решения нелинейного уравнения методом простых итераний.

- 1 Находим корни уравнений (интервалы) путем аналитического отделения корней нелинейного уравнения.
- 2 Приводим исходное уравнение к эквивалентному виду $x = \varphi(x)$.
- 3 Проверяем для каждого варианта условие сходимости □ (x) < 1 Выбираем значение начанимого == 7
- 4 Выбираем значение начального приближения x_0 , при котором будет выполняться условие п.3 и скорость сходимости будет наибольшей, т.е. (X) наименьшее.

Bonpoc 8: Поясните последовательность нахождения корня нелинейного уравнения средствами электронных таблиц Microsoft Excel.

- 1 Запускаем программу Microsoft Excel.
- 2 Помещаем в ячейку A1 «0»
- 3 В ячейку В1 левую часть нелинейного уравнения.
- 4 Устанавливаем команду «Подбор параметра», если она отсутствует на панели инструментов.
 - 5 Активизируем ячейку В1 и выполняем Подбор параметров.
 - 6 Задаваясь начальным приближением X_0 , находим значение корня A1.

Приложение2

Код индикатора	Индикатор достижения компетенции	Оценочные средства					
ОПК-1: Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического							
и экспериментального исследования в профессиональной деятельности;							
ОПК-1.1:	Решает профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования	Типовые практические задания: Аппроксимировать функцию y= cos4(x) на отрезке (0;2) Найти действительные корни уравнения x-sinx=0,25 Найти площадь криволинейной трапеции, ограниченной линиями: y= x2ex; y=0; y=3 Решить ОДУ: y''+ x4y'+cos(x)y=1, y(0)=y'(0)=1					
ОПК-1.2	Решает профессиональные задачи с применением методов теоретического и экспериментального исследования	Дано практическое задание: 1. Функция задана таблицей своих значений. Применяя метод наименьших квадратов, приблизить функцию многочленами 1-ой и 2-ой степеней. Для каждого приближения определить величину среднеквадратичной погрешности. Построить точечный график функции и графики многочленов. X					