МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ИНЖЕРЕНЫХ ЗАДАЧ

Направление подготовки (специальность) 09.03.01 Информатика и вычислительная техника

Направленность (профиль/специализация) программы Проектирование и разработка приложений для мобильных устройств

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Вычислительной техники и программирования

Kypc 1

Семестр 2

Магнитогорск 2020 год

Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 09.03.01 Информатика и вычислительная техника (приказ Минобрнауки России от 19.09.2017 г. № 929)
Рабочая программа рассмотрена и одобрена на заседании кафедры Вычислительной техники и программирования 19.02.2020 г. протокол № 5 Зав. кафедрой О.С. Логунова
Рабочая программа одобрена методической комиссией ИЭ и АС 26.02.2020 г. протокол № 5 Председатель С.И. Лукьянов
Рабочая программа составлена: доцент кафедры ВТ и П, канд. физмат. наук Е.Г. Филиппов
Рецензент: Нач. отдела технологических платформ ООО "Компас Плюс", канд. техн. наук Д.С. Сафонов

Лист актуализации рабочей программы

* * * *	абочая программа пересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 небном году на заседании кафедры Вычислительной техники и программирования							
	Протокол от Зав. кафедрой	г. № О.С. Логунова						
	грена, обсуждена и одобрена д кафедры Вычислительной техн							
	Протокол от Зав. кафедрой	г. № О.С. Логунова						
	грена, обсуждена и одобрена д кафедры Вычислительной техн	-						
	Протокол от Зав. кафедрой	г. № О.С. Логунова						
	грена, обсуждена и одобрена д кафедры Вычислительной техн	-						
	Протокол от Зав. кафедрой	_20 г. № О.С. Логунова						

1 Цели освоения дисциплины (модуля)

Целью преподавания дисциплины (модуля) «Численные методы» является ознакомление студентов с базовыми понятиями, алгоритмами и методами решения уравнений математической физики, численными методами с использованием программных средств вычислительной техники, а также практического использования численных методов для решения прикладных задач.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Численные методы решения инжереных задач входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Прикладная математика

Программирование

Информатика

Элементы линейной алгебры

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Численные методы решения инжереных задач» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции								
ПК-5 Способность	ПК-5 Способность к формализации и алгоритмизации поставленных задач, к написанию								
программного кода с использованием языков программирования, определения и манипулирования данными и оформлению программного кода в соответствии									
установленными тр	ребованиями для мобильных устройств								
ПК-5.1	Оценивает качество математической модели при формализации задачи предметной области								
ПК-5.2	Оценивает качество разработанных алгоритмов для последующего кодирования								
ПК-5.3	Оценивает выбор программных средств для программирования и манипулирования данными в соответствии установленными требованиями								

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 51,95 акад. часов:
- аудиторная 51 акад. часов;
- внеаудиторная 0,95 акад. часов
- самостоятельная работа 56,05 акад. часов;

Форма аттестации - зачет с оценкой

Раздел/ тема дисциплины	Семестр	конт (в	удитор: актная р акад. ча лаб.	работа	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной	Код компетенции
		Лек.	зан.	зан.	Can		аттестации	
1. 1. Основные понятия теспогрешностей вычислений	-			•				
1.1 1.1 Типы погрешностей. Статистический и технический подходы к учету погрешностей.	2	1	2		2,05	Подготовка к практическому занятию	1. Беседа — обсуждение. 2. Проверка лабораторной работы. 3. Устный опрос.	
Итого по разделу		1	2		2,05			
2. 2. Численное реш систем линей алгебраических уравнений								
2.1 Прямые методы (LU-метод, метод прогонки)	2	1	4		6	Самостоятельное изучение учебной и научной литературы. Подготовка к выполнению домашнего задания	Беседа — обсуждение. Проверка лабораторной работы. Устный опрос	
2.2 Итерационные методы (метод простой итерации,		1	4		5			
метод Зейделя)		_	0		- 1 1			
Итого по разделу 3. 3. Методы аналитичес представления табли заданной функции		2	8		11			
3.1 Интерполирование функции многочленами Лагранжа и Ньютона	2	1	2		3	Самостоятельное изучение учебной и научной литературы. Выполнение домашнего задания	1. Беседа — обсуждение. 2. Проверка лабораторной работы. 3. Устный опрос	

				1	1			,
3.2 Апроксимация функции методом наименьших квадратов		1	2		3	Самостоятельное изучение учебной и научной литературы. Работа с электронными библиотеками. Подготовка к семинару Выполнение домашнего задания	Беседа — обсуждение. Проверка лабораторной работы. Устный опрос.	
Итого по разделу		2	4		6			
4. 4. Алгоритмы и мет численного интегрировани дифференцирования								
4.1 Квадратурные формулы Ньютона- Котеса, Гаусса	2	1	3		3	Самостоятельное изучение учебной и научной литературы. Выполнение домашнего задания	Беседа – обсуждение. Проверка лабораторной работы. Устный опрос	
4.2 Численное дифференцирование	2	1	4		4	Самостоятельное изучение учебной и научной литературы. Выполнение домашнего задания	Беседа — обсуждение. Проверка лабораторной работы. Устный опрос	
Итого по разделу		2	7		7			
5. 5. Численные мет решения обыкновен дифференциальных уравне								
5.1 Решение задачи Коши для обыкновенного дифференциального уравнения		1	3		3	Самостоятельное изучение учебной и научной литературы. Выполнение домашнего задания	1. Беседа — обсуждение. 2. Проверка лабораторной работы. 3. Устный опрос	
5.2 Решение краевой задачи для обыкновенного дифференциального уравнения	2	1	3		3	Самостоятельное изучение учебной и научной литературы. Работа с электронными библиотеками. Выполнение домашнего задания	Беседа — обсуждение. Проверка лабораторной работы. Устный опрос	
Итого по разделу	2	6		6				
6. 6. Разностные мет решения уравно математической физики								

6.1 Разностные схемы для решения эллиптических уравнений		2	1	4	Самостоятельное изучение учебной и научной литературы. Работа с электронными библиотеками.	Беседа – обсуждение. Проверка лабораторной работы. Устный опрос				
6.2 Разностные схемы для решения гиперболических уравнений	2				2	1	4	Самостоятельное изучение учебной и научной литературы. Работа с электронными библиотеками. Подготовка к семинару Выполнение домашнего задания	Беседа — обсуждение. Проверка лабораторной работы. Устный опрос	
6.3 Разностные схемы для решения параболических уравнений		2	1	4	Самостоятельное изучение учебной и научной литературы. Работа с электронными библиотеками. Выполнение домашнего задания	Беседа — обсуждение. Проверка лабораторной работы. Устный опрос				
Итого по разделу		6	3	12						
7. 7. Численные мет оптимизации	годы			-						
7.1 Методы поиска безусловного экстремума		1	2	6	Самостоятельное изучение учебной и научной литературы. Выполнение домашнего задания	1. Беседа — обсуждение. 2. Проверка лабораторной работы. 3. Устный опрос				
7.2 Методы штрафных и барьерных функций поиска условного экстремума функции	2	1	2	6	Самостоятельное изучение учебной и научной литературы. Работа с электронными библиотеками. Подготовка к семинару Выполнение домашнего задания	Беседа — обсуждение. Проверка лабораторной работы. Устный опрос				
Итого по разделу		2	4	12						
Итого за семестр		17	34	56,05		зао				
Итого по дисциплине		17	34	56,05		зачет с оценкой				

5 Образовательные технологии

Проектирование обучения строится на основе следующих принципов:

- Обучение на основе интеграции с наукой и производством.
- Профессионально-творческая направленность обучения.
- Ориентированность обучения на личность.
- Ориентированность обучения на развитие опыта самообразовательной деятельности будущего специалиста.

Для достижения планируемых результатов обучения, в дисциплине «Численные методы» используются образовательные технологии:

- 1. Традиционные образовательные технологии: лекции и лабораторные работы.
- 2. Технологии проблемного обучения: лабораторные работы и домашнее задание, направленное на решение комплексной учебно-познавательной задачи, требующей от студента применения как научно-теоретических знаний, так и практических навыков.
- 3. Интерактивные технологии: коллективное обсуждение какого-либо спорного вопроса, проблемы, выявление мнений в группе. Изложение проблем и их совместное решение.
- 4. Информационно-коммуникационные образовательные технологии: лекции с использованием электронной презентации представление результатов с использованием специализированных программных сред.
 - **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
 - **7 Оценочные средства для проведения промежуточной аттестации** Представлены в приложении 2.
 - 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Гулин, А.В. Введение в численные методы в задачах и упражнениях : учеб. пособие/ А.В. Гулин, В.А. Мажорова, В.А. Морозова. М.: ИНФРА-М, 2019. 368 с.- (Высшее образование: Бакалавриат). Режим доступа: http://www.znanium.com/read?id=342122

б) Дополнительная литература:

- 1. Шевченко, А.С.. Лабораторный практикум по численным методам: практикум / А.С. Шевченко.
- М.: ИНФРА-М; Znanium.com, 2018. 199 с. Режим доступа:

http://www.znanium.com/read?id=329357

в) Методические указания:

Филиппов, Е.Г. Численные методы поиска корней уравнения [Электронный ресурс] / Филиппов Е.Г., Ильина Е.А., Королева В.В.: Практикум. МГТУ.-

Магнитогорск: МГТУ, 2017. - 1 электрон. опт. диск (CD-ROM).

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка		
Поисковая система Академия Google (Google Scholar)			
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	https://elibrary.ru/project_risc.asp		
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/		

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Материально-техническое обеспечение дисциплины включает:

Лекционная аудитория ауд. 282 Мультимедийные средства хранения, передачи и представления информации

Компьютерные классы Центра информационных технологий ФГБОУ ВПО «МГТУ» Персональные компьютеры, объединенные в локальные сети с выходом в Internet, оснащенные современными программно-методическими комплексами для решения задач в области информатики и вычислительной техники

Аудитории для самостоятельной работы: компьютерные классы; читальные залы библиотеки Все классы УИТ и АСУ с персональными компьютерами, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Аудиторий для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Ауд. 282 и классы УИТ и АСУ

Помещения для самостоятельной работы обучающихся, оснащенных компьютерной техникой с возможностью подключения к сети «Интернет» и наличием доступа в электронную информационно-образовательную среду организации Классы УИТ и АСУ

Помещения для хранения и профилактического обслуживания учебного оборудования Центр информационных технологий – ауд. 372

Приложение 1

№ п/п	Текст вопроса	Варианты ответов	Отметка о выборе эталона
1.	Округлить число π = 3,1415926535 до пяти	3,1416	эталон
	значащих цифр	3,1425	
		3,142	
		3,14	
2	Методом половинного деления уточнить	0,867	эталон
	корень уравнения х4+2х3-х-1=0	0,234	
		0,2	
		0,43	
3	Используя метод хорд найти положительный корень уравнения х4-	1,198+0,0020	эталон
	0,2x2-0,2x-1,2=0	1,16+0,02	
		2+0,1	
		3,98+0,001	
4	Вычислить методом Ньютона отрицательный корень уравнения х4-	-10,261	эталон
	3x2+75x-10000=0	-10,31	
		-5,6	
	11-×	-3,2	
5	Найти действительные корни уравнения х- sinx=0,25	1,17	эталон
5		2,45	
		4,8	
6	Определить число положительных и число	2и0	эталон
	отрицательных корней уравнения x4- 4x+1=0	3 и 2	
	77.1-0	0 и 4	
		0 и 1	

Nº п/п	Текст вопроса	Варианты ответов	Отметка о выборе эталона
7	Как иначе называют метод бисекций?	Метод половинного деления	эталон
		Метод хорд	
		Метод пропорциональных частей	
		Метод «начального отрезка»	
8	Методы решения уравнений делятся на:	Прямые и итеративные	эталон
		Прямые и косвенные	
		Начальные и конечные	
		Определенные и	
		неопределенные	
	Отделение корней можно выполнить двумя способами:	аналитическим и графическим	эталон
	H-1	приближением и отделением	
		аналитическим и	
		систематическим	
		систематическим и	
		графическим	
10	Метод хорд-	Частный случай метода	эталон
		итераций	
		Частный случай метода	
		коллокации	
		Частный случай метода	
		прогонки	
		Частный случай метода	
		квадратных корней	

Контрольные вопросы к практической работе № 1

Вопрос 1: Приведите этапы решения нелинейных уравнений.

1Отделение корней, т.е. установление достаточно малых отрезков, в каждом из которых содержится только один корень уравнения.

2 Уточнение приближенного значения корней до некоторой заданной степени точности.

Вопрос 2: Поясните аналитический метод определения корней нелинейного уравнения.

Процесс отделения корней начинается с установления знаков функции в граничных точках аиb. Затем определяются знаки в ряде промежуточных точек. После чего выделяются отрезки, на границе которых функция меняет знак на противоположный. Выделенные отрезки и содержат корень данного уравнения. Согласно, теореме, если

 $f(a) \times f(b) < 0$ -то имеется один или несколько корней. Если $\frac{f^{\square}}{\square}(X) > 0$ или $\frac{f^{\square}}{\square}(X) < 0$, то корень будет единственным.

Вопрос 3:Какое условие лежит в основе метода бисекций.

Решение задачи методом бисекции разбивается на два этапа:

- 1 Локализация находится отрезок [a, b], соединяющий один и только один корень уравнения $f(\mathbf{x}) = 0$. На краях отрезка функция имеет разные знаки: $f(a) \times f(b) \le 0$.
- 2 *Итверационное уточнение корней* делим отрезок [a, b] пополам точкой с. Если = 0, то задача решена, если нет, то выбираем из двух получившихся отрезков [a, c] и [b, c] тот, на краях которого функция имеет разные знаки, и повторяем итерацию еще раз.

В основе метода лежит условие: итерационный процесс продолжается до тех пор, пока длина отрезка после n-ой итерации не станет меньше некоторого заданного малого числа (погрешности) ε , т.е. $|b-a| \le \varepsilon$

Тогда за искомое значение корня принимается полученное приближение : ξ = и говорят, что решение данного уравнения найдено с точностью ϵ .

Вопрос 4: Поясните, как выбирается начальное приближение для уточнения корня уравнения методом Ньютона.

В качестве начального приближения выбирается = а, для которого выполняется

условие Проводим касательную в точке A_0

[Первым приближением корня будет точка пересечения этой касательной с осью

абсцисс . Через точку A₁ [снова проводим касательную, точка пересечения

итерационного процесса может быть использовано условие:

Вопрос 5: Приведите формулу для построения итерационной последовательности при решении уравнения методом Ньютона.

Исходя из начального приближения , удовлетворяющего неравенству

, можно построить итерационную последовательность:

Сходящуюся к единственному на отрезке [a, b] решению ξ уравнения f(x) = 0.

Вопрос 6: Сформулируйте условия сходимости метода простых итераций.

Достаточным условием сходимости метода простых итераций является условие:

$$\frac{\varphi^{\square}}{\square}$$
 (X) < 1

выполненное для любого x, принадлежащего некоторому отрезку [a, b], содержащему корень уравнения.

Скорость сходимости зависит от абсолютной величины производной φ^{1} (X). Чем меньше φ^{\square} (X) вблизи корня, тем быстрее сходится процесс.

Вопрос 7: Поясните алгоритм решения нелинейного уравнения методом простых итераций.

- 1 Находим корни уравнений (интервалы) путем аналитического отделения корней нелинейного уравнения.
- 2 Приводим исходное уравнение к эквивалентному виду $x = \varphi(X)$.

- 3 Проверяем для каждого варианта условие сходимости □ (X) < 1 Выбираем значение начального полб
- 4 Выбираем значение начального приближения x_0 , при котором будет выполняться условие п.3 и скорость сходимости будет наибольшей, т.е φ^{T} / (X) наименьшее.

Вопрос 8: Поясните последовательность нахождения корня нелинейного уравнения средствами электронных таблиц Microsoft Excel.

- 1 Запускаем программу Microsoft Excel.
- 2 Помещаем в ячейку А1 «0»
- 3 В ячейку В1 левую часть нелинейного уравнения.
- 4 Устанавливаем команду «Подбор параметра», если она отсутствует на панели инструментов.
 - 5 Активизируем ячейку В1 и выполняем Подбор параметров.
 - 6 Задаваясь начальным приближением X_0 , находим значение корня A1.

	Индикатор достижения компетенции	Оценочн	ые средо	ства				
ПК-5 Спосо	ПК-5 Способность к формализации и алгоритмизации поставленных задач, к написанию							
	программного кода с использованием языков программирования, определения и							
	ования данными и оформлению ными требованиями для мобилн			кода в со	ответств	вии		
установлені	ными треоованиями для мооиль Г			шеские за	паниа.			
ПК-5.1	Типовые практические задания: Аппроксимировать функцию y= cos4(x) на отрезке (0;2) математической модели при формализации задачи предметной области предметной области Типовые практические задания: Аппроксимировать функцию y= cos4(x) на отрезке (0;2) Найти действительные корни уравнения x- sinx=0,25 Найти площадь криволинейной трапеции, ограниченной линиями: y= x2ex; y=0; y=3 Решить ОДУ: y''+ x4y'+cos(x)y=1, y(0)=y'(0)=1							
		Дано пра	ктическ	ое задани	ie:			
		1. Функция задана таблицей своих значений. Применяя метод наименьших квадратов, приблизить функцию многочленами 1-ой и 2-ой степеней. Для каждого приближения определить						
		величину среднеквадратичной погрешности.						
	Оценивает качество	Построить точечный график функции и графики						
ПК-5.2	разработанных алгоритмов	многочленов.						
	для последующего	X	-1	-0.5	0	0,5	1	
	кодирования	У	4	-0,5 -3	0,2	-1	2	
		2.Для функции: y=x2*sin(x2). Построить						
		интерполяционный многочлен Лагранжа.						
		3.Посчитать площадь криволинейной трапеции, ограниченной линиями:						
		y= x2*ex , y=0, x=0,1, x=2						
ПК-5.3	Оценивает выбор программных средств для программирования и манипулирования данными в соответствии установленными	Оценить точность и применимость методов рассмотренных выше.						
	требованиями							