МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЭиАС С.И. Лукьянов

26.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МЕТРОЛОГИЯ

Направление подготовки (специальность) 13.03.01 Теплоэнергетика и теплотехника

Направленность (профиль/специализация) программы Энергообеспечение предприятий

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт/ факультет

Институт энергетики и автоматизированных систем

Кафедра

Автоматизированных систем управления

Курс

2

Магнитогорск 2020 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника (уровень бакалавриата) (приказ Минобрнауки России от 28.02.2018 г. № 143)

	Рабочая	программа		рена и	одобрена	на	заседани	и ка	афедры
Автом		нных систем		R			4		- 0.1 - 0.10
	12.02.202	0, протокол №	№ 6			B	11		
				Зав. кас	редрой	Chy	End (C.M. A	ндреев
							1		
	Рабочая п	рограмма од	обрена мет	годическо	й комиссией	й ИЭиА	AC		
	26.02.2020	0 г. протокол	№ 5						
				Председ	атель	,	C	.И. Лу	кьянов
	Согласова	ано:					0		
		црой Теплоте	хнических	и энергез	ических сис	стем			
	•	•		1					
						21	-1	Е.Б. Ага	апитов
							//		
	Рабочая п	рограмма сос	тавлена:						
		аватель кафе			CALL	т	Е.Ю. Мухі	****	
	от препод	каратоль кафе	дры пол,		U. []	1	2.10. Myxi	ина	
		OH 5							
	Рецензент	102740212							
	AT AT	00	3AO "I	СонсОМ	CKC"	10	анд. т	ехн.	TIONIC
	/ m	1	О.Н. Воли		CRC	, .	апд.	CAH.	наук
/	1	1		JROD					
/	40 %	KoncOM CKC	12						
	A C	OHO JO	0						
	67 2	-11	1						

этист актуализации рабо	чен программы
Рабочая программа пересм учебном году на заседания	иотрена, обсуждена и одобрена для реализации в 2021 - 2022 и кафедры Автоматизированных систем управления
	Протокол от <i>© 1 09 1</i> 20 г. № <u>1</u> Зав. кафедрой С.М. Андреев
Рабочая программа пересм учебном году на заседании	потрена, обсуждена и одобрена для реализации в 2022 - 2023 и кафедры Автоматизированных систем управления
	Протокол от <u>16</u> 11 / 20 <u>22</u> г. № <u>5</u> Зав. кафедрой С.М. Андреев
Рабочая программа пересм учебном году на заседании	отрена, обсуждена и одобрена для реализации в 2023 - 2024 кафедры Автоматизированных систем управления
- Ho	Протокол от
Рабочая программа пересм учебном году на заседании	отрена, обсуждена и одобрена для реализации в 2024 - 2025 кафедры Автоматизированных систем управления
	Протокол от

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины «Метрология» являются: формирование знаний и умений, необходимых для определения способов измерения физических величин на объектах теплоэнергетики и теплотехники, а также приобретения навыков проведения измерения электрических и неэлектрических величин на объектах теплоэнергетики и теплотехники.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Метрология входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Математика

Электротехника

Физика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Подготовка к сдаче и сдача государственного экзамена

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Метрология» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции						
ОПК-6 Способен проводить измерения электрических и неэлектрических величин на объектах теплоэнергетики и теплотехники							
ОПК-6.1	Определяет способы измерения физических величин на объектах теплоэнергетики и теплотехники						
ОПК-6.2	Осуществляет измерения физических величин на объектах теплоэнергетики и теплотехники						

4. Структура, объем и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 8,6 акад. часов:
- аудиторная 6 акад. часов;
- внеаудиторная 2,6 акад. часов
- самостоятельная работа 90,7 акад. часов;
- подготовка к экзамену 8,7 акад. часа

Форма аттестации - экзамен

Раздел/ тема	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код		
дисциплины	K	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
метрологии	новы							
1.1 Основные понятия. Правовые основы. Метрологическое обеспечение. Единство измерений. Метрологические		0,2	1/1И		10	Самостоятельное изучение учебной литературы, конспекта лекции	Устный опрос Проверка инд. заданий	ОПК-6.1, ОПК-6.2
1.2 Измеряемые величины. Виды, методы измерений. Основные положения теории погрешностей.	2	0,2	1/1И		10	Самостоятельное изучение учебной литературы, подготовка к лабораторным занятиям	Устный опрос Проверка инд. заданий Контрольная работа	ОПК-6.1, ОПК-6.2
1.3 Средства измерения. Структурные схемы СИ. Выбор СИ.		0,2	0,5/0,5И		10	Самостоятельное изучение учебной литературы, подготовка к лабораторным занятиям	Устный опрос Проверка инд. заданий	ОПК-6.1, ОПК-6.2
Итого по разделу		0,6	2,5/2,5И		30			
2. Раздел 2. Осн стандартизации	новы							
2.1 Основные понятия. Цели стандартизации. История развития		0,2			10	Самостоятельное изучение учебной литературы	Устный опрос	ОПК-6.1, ОПК-6.2
2.2 Задачи, органы и службы стандартизации. Виды стандартов. Нормативные документы	2	0,2			10	Самостоятельное изучение учебной литературы	Устный опрос Проверка инд. заданий Тестирование	ОПК-6.1, ОПК-6.2
2.3 Методические основы стандартизации. Принципы и методы		0,2			10	Самостоятельное изучение учебной литературы	Устный опрос	ОПК-6.1, ОПК-6.2
Итого по разделу		0,6			30			

3. Раздел 3. Измере физических величин	ение						
3.1 Измерение электрических величин		0,2	0,5/0,5И	10	Самостоятельное изучение учебной литературы	Устный опрос	ОПК-6.1, ОПК-6.2
3.2 Измерение магнитных величин		0,2	0,5/0,5И	10	Самостоятельное изучение учебной литературы	Устный опрос	ОПК-6.1, ОПК-6.2
3.3 Измерение неэлектрических величин	2	0,2	0,5/0,5И	10	Самостоятельное изучение учебной литературы; подготовка к лабораторным работам	Устный опрос Лабораторные работы Тестирование	ОПК-6.1, ОПК-6.2
3.4 Измерительные информационные системы		0,2		0,7	Самостоятельное изучение учебной литературы	Устный опрос	ОПК-6.1, ОПК-6.2
Итого по разделу		0,8	1,5/1,5И	30,7			
Итого за семестр		2	4/4И	90,7		экзамен	
Итого по дисциплине		2	4/4И	90,7		экзамен	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Метрология» используются:

Традиционные образовательные технологии — информационная лекция (вводную лекцию, где дает первое представление о предмете и знакомство студентов с назначением и задачами курса); лекции — консультации, изложение нового материала сопровождается постановкой вопросов и дискуссией в поисках ответов на эти вопросы; лабораторные работы.

Технологии проблемного обучения — проблемные лекции является результатом усвоения полученной информации посредством постановки проблемного вопроса и поиска путей его решения; лабораторные работы с использованием проблемного обучение, которое заключается в стимулировании студентов к самостоятельной «добыче» знаний, необходимых для решения конкретной проблемы.

Информационно-коммуникационные образовательные технологии — в ходе проведения лекционных занятий предусматривается использование электронного демонстрационного материала (лекции-визуализации), использование Интернет ресурсов для промежуточных аттестаций и проверки остаточных знаний

Лекционный материал закрепляется в ходе лабораторных работ, на которых выполняются групповые или индивидуальные задания по пройденной теме.

Самостоятельная работа стимулирует студентов к самостоятельной проработке в процессе выполнения контрольных работ, а также в процессе подготовки к устному опросу, тестированию и итоговой аттестации.

В ходе проведения лекционных занятий предусматривается:

- использование электронного демонстрационного материала по современной измерительной технике;
 - использование электронных учебников по отдельным темам занятий;
- активные и интерактивные формы обучения: вариативный опрос, дискуссии, устный опрос, контрольная работа, тестовый опрос, индивидуальная «защита» лабораторных работ и т.д.
 - **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
 - **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
 - 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Грибанов, Д. Д. Основы метрологии, сертификации и стандартизации: учеб. пособие / Д.Д. Грибанов. Москва: ИНФРА-М, 2019. 127 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-009677-3. Текст : электронный. URL: https://znanium.com/read?id=330611 (дата обращения: 18.09.2020). Режим доступа: по подписке.
- 2. Эрастов, В. Е. Метрология, стандартизация и сертификация: Учебное пособие / В.Е. Эрастов. Москва: Форум, 2017. 208 с. (Высшее образование). ISBN 978-5-91134-193-0. Текст : электронный. URL: https://znanium.com/catalog/product/636241 (дата обращения: 18.09.2020). Режим доступа: по подписке

б) Дополнительная литература:

1. Самарина, И. Г. Основы метрологии, стандартизации и сертификации: учебное пособие / И. Г. Самарина, Т. Г. Сухоносова; МГТУ. - Магнитогорск: МГТУ, 2016.

- 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=2872.pdf&show=dcatalogues/1/1134 (дата обращения: 18.09.2020). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 2. Метрология. Теория измерений: учебник для академического бакалавриата / под общ. редакцией Т.И. Мурашкиной. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 167c. ISBN 978-5-534-07295-2. Текст : электронный. URL: https://urait.ru/viewer/metrologiya-teoriya-izmereniy-434719#page/1 (дата обращения: 18.09.2020).
- 3. Пелевин, В. Ф. Метрология и средства измерений: учеб. пособие / В.Ф. Пелевин. Минск: Новое знание; Москва: ИНФРА-М, 2019. 273 с.: ил. (Высшее образование: Бакалавриат). ISBN 978-5-16-006769-8. Текст: электронный. URL: https://znanium.com/catalog/document?pid=988250 (дата обращения: 18.09.2020). Режим доступа: по подписке
- 4. Корнилова, И. Г. Технические измерения и приборы : лабораторный практикум / И. Г. Корнилова, В. В. Гребенникова, А. И. Сергеев ; МГТУ, каф. ПКиСУ. Магнитогорск, 2010. 129 с. : ил. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=331.pdf&show=dcatalogues/1/10718 36/331.pdf&view=true (дата обращения: 18.09.2020). Макрообъект. Текст: электронный. Имеется печатный аналог.
- 5. Метрология, стандартизация, сертификация: учебное пособие / А.И. Аристов, В.М. Приходько, И.Д. Сергеев, Д.С. Фатюхин. Москва: ИНФРА-М, 2021. 256 с. + Доп. материалы [Электронный ресурс]. (Среднее профессиональное образование). ISBN 978-5-16-013964-7. Текст: электронный. URL: https://znanium.com/catalog/product/1190667 (дата обращения: 18.09.2020). Режим доступа: по подписке
- 6. Раннев, Г. Г. Интеллектуальные средства измерений: учебник / Г. Г. Раннев, А. П. Тарасенко. Москва: КУРС: ИНФРА-М, 2020. 280 с. ISBN 978-5-906818-66-9. Текст: электронный. URL: https://znanium.com/catalog/product/1054205 (дата обращения: 18.09.2020). Режим доступа: по подписке.

в) Методические указания:

- 1. Гребенникова, В. В. Технические измерения и приборы: учебное пособие / В. В. Гребенникова, М. В. Вечеркин; МГТУ, [каф. ЭиЭС]. Магнитогорск, 2014. 150 с.: ил., схемы. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=817.pdf&show=dcatalogues/1/11163 https://magtu.informsystema.ru/uploader/fileUpload?name=817.pdf https://magtu.informsystema.ru/uploader/fileUpload?name=817.pdf <a href="https://magtu.informsystema.ru/uploa
- 2. Мухина, Е. Ю. Автоматизация технологических процессов : практикум / Е. Ю. Мухина, А. Р. Бондарева ; МГТУ. Магнитогорск : МГТУ, 2017. 110 с. : ил., табл., схемы. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3507.pdf&show=dcatalogues/1/1514 313/3507.pdf&view=true (дата обращения: 18.09.2020). Макрообъект. Текст : электронный. Имеется печатный аналог.
- 3. Методические рекомендации по выполнению контрольной работы. Приложение 3

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021

MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	URL: http://www1.fips.ru/
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalogues/
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	http://magtu.ru:8085/marcweb2/Default.asp
Федеральный образовательный портал – Экономика. Социология. Менеджмент	http://ecsocman.hse.ru/
Университетская информационная система РОССИЯ	https://uisrussia.msu.ru
Международная наукометрическая реферативная и полнотекстовая база данных научных изданий «Web of science»	
Международная реферативная и полнотекстовая справочная база данных научных изданий «Scopus»	http://scopus.com

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа: мультимедийные средства хранения, передачи и представления информации.

Помещения для самостоятельной работы обучающихся: персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Учебные аудитории для групповых и индивидуальных консультаций, текущего контроля и промежуточных консультаций: доска, мультимедийный проектор, экран.

Помещение для хранения и профилактического обслуживания учебного оборудования: стеллажи для хранения учебно-методический документации.

Учебная аудитория для проведения лабораторных работ: компьютерный класс: персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Учебная аудитория для проведения лабораторных работ: лаборатория метрологии и технологических измерений: лабораторные установки для выполнения лабораторных работ:

- лабораторный стенд «Измерение расхода газа»:
- лабораторный стенд «Поверка термопар»;
- лабораторный стенд «Поверка прибора Диск-250, логометра Ш-4540/1 и прибора A-566»;
- лабораторный стенд «Испытание и поверка КСП-3, вольтметра Ш-4540, прибора Диск-250»;
 - лабораторный стенд «Измерение уровня жидкостей»;
 - лабораторный стенд «Измерение уровня сыпучих материалов»;
 - лабораторный стенд «Преобразователи давления Метран»;
- лабораторный стенд «Статические и динамические характеристики объекта управления»

Электронные плакаты по курсу «Основы метрологии и технические измерения» (136), ключ на 2 ПК.

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Метрология» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает выполнение и защиту лабораторных работ, решение контрольных задач.

Лабораторные работы направлены на получение практических навыков по теме «Измерение физических величин».

Перечень	Вопросы к защите					
лабораторных работ						
Поверка термопар	1. На каких явлениях основано действие термоэлектрических термометров? 2. Почему при подсоединении термопары к измерительному прибору, пользуются компенсационными проводами? 3. Как вводится поправка на температуру свободных концов термопары в автоматических и переносных потенциометрах, милливольтметрах? 4. Для каких термопар невозможно применение компенсационных проводов для введения поправки? 5. Пределы измерений стандартных термоэлектрических термометров? 6. При измерении температуры в печи с помощью хромельалюмелевой термопары (тип К) вольтметр показал 7,418 мВ. Температура холодного спая была стабилизирована на уровне 30°С. Пользуясь градуировочной таблицей для данной термопары,					
Испытание и поверка вторичных приборов работающих в комплекте с термоэлектрическим преобразователем	1. Каковы особенности методики проведения вторичного прибора Диск-250М? 2. Что такое основная и дополнительная погрешность прибора? 3. Какие погрешности необходимо рассчитать для того, чтобы сделать вывод о результатах поверки? 4. Для чего выполняют поверку прибора и что понимают под классом точности прибора? 5. Какие существуют виды поверок? 6. Перечислить метрологические характеристики средств измерений. 7. Что относится к неметрологическим характеристикам СИ? 8. Отчет по шкале прибора с пределами измерений 0 – 10 A и равномерной шкалой составил 2,5 A. Оценить пределы допустимой абсолютной погрешности этого отсчета при использовании различных СИ с КТ: 0,02/0,01; 0,5					
Термометры сопротивления	 Какой принцип действия у термометров сопротивления? От чего зависит электрическое сопротивление проводника? Влияет ли на электрическое сопротивление проводника электрический ток, проходящий по проводнику? Что является термометрическим параметром в термометре сопротивления? Почему термопреобразователи изготавливают, как правило, из металлов, а не из сплавов? Какие преимущества у медного и у платинового 					

Перечень	Вопросы к защите
лабораторных работ	термопреобразователей сопротивления?
	7. Какое значение при измерении температуры имеет показатель тепловой инерции? 8. Каким параметром характеризуется чистота материала, идущего на изготовление термометра сопротивления? 9. Что такое трехпроводная схема включения термопреобразователя сопротивления?
Испытание и поверка вторичных приборов работающих в комплекте с термометрами сопротивления	 Какие существуют методы измерения температуры? На чèм основано действие термометров сопротивления? Какие материалы используют для изготовления термометров сопротивления? Какие приборы применяют в комплекте с термометрами сопротивления? Схемы подключения термометров сопротивления ко вторичному прибору Достоинства и недостатки неуравновешенных мостов. Как работает уравновешенный мост? В чèм заключается условие равновесия мостов? Принцип действия работы логометрических схем Какие виды погрешностей вы знаете? Для чего выполняют поверку прибора и что понимают под классом точности прибора?
Пирометры	 Какая температура называется яркостной температурой? Как определить действительную температуру тела, зная яркостную температуру? Устройство пирометров частичного излучения Что такое цветовая температура? Как смещается максимум кривой распределения спектральной энергетической яркости с увеличением температуры абсолютно черного тела? Почему цветовая температура наиболее близка к действительной температуре? Устройство пирометров спектрального отношения Оцените систематическую погрешность измерения температуры радиационным методом. Радиационная температура t_p = 1527 ⁰C, коэффициент теплового излучения ε_т = 0,38. Пирометр полного излучения (радиационный) имеет показатель визирования п = 1/7, диаметр калильной трубки, на которую визируется пирометр, 30 мм. Можно ли пирометром полного излучения измерить температуру слитка в нагревательном колодце, если сторона слитка имеет размеры 1800х400 мм, расстояние от слитка до пирометра 1400 мм, показатель визирования п = 1/7? Каким образом в пирометрическом преобразователе ППТ—142 исключается влияние температуры корпуса телескопа? Какие существуют способы исключения влияния температуры корпуса телескопа на результат измерения?

Примеры задач по теме «Выбор средств измерений»

Пример 1. Определить верхний предел измерения и основную приведенную погрешность датчика для измерения тяги газотурбинного двигателя (ГТД) $P = (1,6 \pm 0,1)$ кH.

Решение: Наибольшая и наименьшая предельные тяги $P_{max} = 1,6+0,1=1,7$ кH; $P_{min} = 1,6-0,1=1,5$ кH; допуск T=1,7-1,5=0,2 кH; основная допустимая абсолютная погрешность датчика (допуск па измерение) $\Delta=0,33\cdot T=0,33\cdot 0,2=0,066$ кH; нижний предел рабочей части шкалы H<1,5-0,066=1,434 кH; верхний предел рабочей части шкалы B>1,7+0,066=1,766 кH. Выбираем датчик усилий с верхним пределом измерения B=2 кH. Нормирующее значение для определения основной приведенной погрешности датчика $X_N=2,0$ кH. Определяем предел допускаемой основной приведенной погрешности датчика $\gamma=0,066/2\cdot100=\pm3,3\%$. Ближайшим меньшим значением этой погрешности но отношению к найденному является $\gamma=2\%$.

Пример 2. Определить пределы измерения и класс точности вольтметра для измерения напряжения питания бортовой сети самолета $V = 27 \pm 2{,}7$ В.

Решение: Наибольшее предельное напряжение $V_{max} = 27 + 2,7 = 29,7$ В; наименьшее $V_{min} = 27 - 2,7 = 24,3$ В; допуск T = 29,7 - 24,3 = 5,4 В; основная допустимая абсолютная погрешность вольтметра (допуск на измерение) $\Delta = 0,33T = 0,33 \cdot 5,4 = 1,78$ В; нижний предел рабочей части шкалы H < 24,3 - 1,78 = 22,52 В; верхний предел B > 29,7 + 1,78 = 31,48 В. В соответствии с данными по H и В выбираем вольтметр с верхним пределом измерений 40 В. Основная приведенная погрешность этого прибора $\gamma = 1,78/40 \cdot 100 = 4,45\%$. Найденному значению γ соответствует класс точности 5.

Пример 3. Определить основную приведенную погрешность и пределы измерения виброакселерометра для измерения виброускорения $a = 50\pm 2 \text{ M/c}^2$.

Решение: Наибольшее предельное значение виброускорения $a_{max} = 50+2 = 52 \text{ м/c}^2$; наименьшее его значение $a_{min} = 50-2 = 48 \text{ м/c}^2$; допуск $T = 52-48 = 4 \text{ м/c}^2$; основная допустимая абсолютная погрешность виброакселерометра (допуск на измерение) $\Delta = 0.33T = 0.33 \cdot 4 = 1.32 \text{ м/c}^2$; нижний предел рабочей части шкалы $H < 48-1.32 = 46.68 \text{ м/c}^2$; верхний $B > 52+1.32 = 53.32 \text{ м/c}^2$. В соответствии с данными по H и B выбираем виброакселерометр с верхним пределом измерения 100 м/c^2 . Можно 60 м/c^2

Основная приведенная погрешность этого прибора $\gamma = 1.32 \cdot 100/100 = 1.32\%$

Примеры задач по теме «Основные положения теории погрешностей»

Пример 1. Манометр с диапазоном измерений от 0 до 6,3 МПа поверяли с помощью эталонного СИ в четырех поверяемых точках:

Поверяемая точка, МПа: 0 2 4 6 3начение эталонного манометра, МПа: 0,1 2,07 3,99 6,05

Необходимо рассчитать рассчитать абсолютную, относительную и приведенную погрешности для каждой поверяемой точки термометра и определить его класс точности.

Решение. Погрешность измерения (абсолютная погрешность) Δ определяется по формуле:

$$\Delta = X_{H3M} - X_{\mathcal{I}}, \tag{1}$$

где $X_{\rm H3M}$ – измеренное значение величины $X; X_{\rm II}$ – действительное значение измеряемой величины Х.

Относительная погрешность измерения δ рассчитывается по формуле (2), приведенная погрешность у рассчитывается по формуле (3), обе они выражены в процентах:

$$\delta = \frac{|\Delta|}{X_{\mathcal{A}}} \cdot 100 \, [\%], \qquad (2)$$

$$\gamma = \frac{|\Delta|}{X_{\mathcal{H}}} \cdot 100 \, [\%], \qquad (3)$$

$$\gamma = \frac{|\Delta|}{X_H} \cdot 100 \, [\%], \tag{3}$$

0.8

где Х_Н – нормирующее значение СИ, как правило, это диапазон показаний СИ или его верхний предел измерений.

	J	-		
Поверяемая точка, МПа	Значение эталонного термометра, МПа	Абсолютная погрешность Δ , МПа	Относительная погрешность измерения δ , %	Приведенная погрешность измерения ү, %
0	0,1	-0,1		1,6
2	2,07	-0,07	3,5	1,1
4	3 99	0.01	0.2	0.2

Таблица - Результаты расчетов

6.05

Класс точности СИ выбираем из ряда $1\cdot 10^n$, $1.5\cdot 10^n$, $2\cdot 10^n$, $2.5\cdot 10^n$, $4\cdot 10^n$, $5\cdot 10^n$, $6\cdot 10^n$. где n=1, 0, -1, -2 и т.д. Значения $1,6\cdot 10^n$ и $3\cdot 10^n$ не устанавливаются для вновь разрабатываемых СИ.

-0.05

У пригодного СИ максимальная приведенная погрешность должна быть меньше к.т. Так как максимальная приведенная погрешность манометра 1,6 %, < 2, то к.т. = 2.

Ответ: к.т. манометра 2.

Пример 2. Класс точности расходомера 0,2, диапазон показаний от 0 до $800 \text{ м}^3/\text{ч}$. Определить допустимую погрешность СИ в единицах измерения.

Решение. Класс точности – это обобщенная метрологическая характеристика СИ, определяемая пределами допускаемых основной и дополнительной погрешностей, а также другими свойствами СИ, влияющими на их точность, значения которых устанавливаются в стандартах на отдельные виды СИ. Как правило, класс точности нормируется по приведенной погрешности к.т. $> \gamma$, поэтому выразим из формулы (3) абсолютную погрешность измерения Δ :

$$\Delta = \frac{\gamma \cdot X_H}{100} = \frac{0.2 \cdot 800}{100} = 1.6 \ [M^3/V].$$

Ответ: допустимая погрешность расходомера $\Delta_{\text{доп}} < 1,6 \text{ м}^3/\text{ч}$.

Пример 3. Измерение давления производилось манометром с пределами измерения 0 – $6,3 \, \text{М}$ Па и токовым выходным сигналом $0-5 \, \text{м}$ А, к.т. $0,5 \, \text{Характеристика преобразователя}$ давления линейная. При измерении давления выходной сигнал составил 3,72 мА. Необходимо определить величину измеряемого давления и чувствительность средства измерения.

Решение. Построим линейную градуировочную (статическую) характеристику преобразователя давления по двум точкам. Первая точка характеристики: при давлении 0 МПа — выходной сигнал манометра 0 мА; вторая точка характеристики: при давлении 6,3 МПа — выходной сигнал манометра 5 мА, рис. 1.

Чувствительность датчика (коэффициент преобразования) S показывает на сколько единиц изменится выходной сигнал, если входной сигнал датчика, т.е. ИФВ, изменится на единицу.

$$S = \frac{\Delta Y}{\Delta X}.$$

$$V = \frac{1}{\Delta X}$$

$$V = \frac{1}{$$

Рис. 1. Градуировочная характеристика датчика

Давление (ИФВ), МПа

Подставив исходные данные в формулу (4) получим:

$$S = \frac{5 - 0}{6,3 - 0} = 0,794 \approx 0,79 \left[\frac{MA}{M\Pi a} \right].$$

Для линейной статической характеристики чувствительность S постоянна на всем диапазоне ИФВ. Уравнение линейной характеристики датчика в общем виде:

$$Y(X) = Y(0) + S \cdot X , \qquad (5)$$

где X – входной измеряемый сигнал датчика, давление, МПа; Y – выходной сигнал датчика, сигнал постоянного тока, мА; Y(0) – значение выходного сигнала при X=0.

По формуле (5) и рис. 1 определим уравнение характеристики датчика: Y(X) = 0 + 0.79X. Подставим известное значение выходного сигнала Y = 3.72 мА в полученное уравнение и определим X:

$$3,72 = 0 + 0,79X;$$
 $X = \frac{Y(X) - 0}{0,794} = \frac{3,72}{0,79} = 4,7M\Pi a.$

Значение ИФВ можно определить менее точно по графику градуировочной характеристики датчика, см. рис. 1.

Ответ: измеряемое давление равно 4,7 МПа; чувствительность преобразователя S = 0.79 мA/MПа.

Пример варианта контрольной работы №1

1. Оцените относительную погрешность простых бытовых часов с суточным ходом в 20 с (суточный ход – поправка к показаниям часов за 1 сутки).

- 2. При измерении температуры термометр показал 20° C, СКП 0.3° C. Систематическая погрешность ± 0.5 °C. Указать доверительные границы истинного значения температуры с $P_{\text{ЛОВ}} = 0.9973$.
- 3. Измерение силы тока дало следующие результаты: 10,07; 10,08; 10,10; 10,12; 10,13; 10,15; 10,16; 10,17; 10,2; 10,4 А. Необходимо проверить, не является ли промахом значение 10,4 А
- 4. Энергия определяется уравнением $E = m \cdot c^2$, где m масса, c скорость света. Определить размерность энергии в системе LMT.

Пример варианта контрольной работы №2

- 1. Введите поправку в показания термопары и определите температуру рабочего конца, если термо-ЭДС термометра S равна 3,75 мB, а температура свободных концов 32 $^{\circ}$ C.
- 2. Одинаковы ли значения коэффициентов преобразования у медных термометров сопротивления градуировки 50M и 100M в интервале 0-150 °C?
- 3. Температура измеряется пирометром частичного излучения. Вторичный прибор показывает температуру 1100 °C. Определить действительную температуру и систематическую погрешность ($T_{a.ч.т.} T_{д}$), если коэффициент теплового излучения 0.75 и длина волны 0.65 мкм.
- 4. Что означает аббревиатура ПП, ХК?
- 5. Есть возможность измерить температуру термопарой и пирометром. Чему отдадите предпочтение и почему?

Оценочные средства для проведения промежуточной аттестации а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатора	Индикатор достижения компетенции	Оценочные средства
ОПК-6 Способ	ен проводить измерения электрических и	неэлектрических величин на объектах теплоэнергетики и теплотехники
ОПК-6.1		Перечень теоретических вопросов к экзамену:
		1. Метрология. Основные понятия и определения
		2. Государственная система приборов (ГСП)
		3. Единство измерений
		4. Измеряемые величины. Виды измерений
		5. Методы измерений. Методика выполнения измерений
		6. Основные положения теории погрешностей. Классификация погрешностей
		7. Вероятностные оценки погрешностей измерения
		8. Средства измерения, виды. Сигналя измерительной информации
		9. Метрологические характеристики. Неметрологические характеристики
		10. Структурные схемы и свойства средств измерения
		11. Обработка результатов измерения
	Определяет способы измерения	12. Измерение магнитных величин. Параметры, характеристик, схемы измерения
	физических величин на объектах	13. Измерение неэлектрических величин. Классификация
	теплоэнергетики и теплотехники	14. Измерение температуры термометрами сопротивления (пределы измерения, градуировки). Требования, предъявляемые к материалу
		15. Преобразователи неэлектрических величин. Металлические термометры сопротивления
		16. Преобразователи неэлектрических величин. Полупроводниковые термометры сопротивления
		17. Преобразователи неэлектрических величин. Эффекты Томсона, Зеебека и
		Пельтье
		18. Преобразователи неэлектрических величин. Термоэлектрические преобразователи
		19. Стандартные термоэлектрические преобразователи (пределы измерения,
		градуировки, материал электродов)
		20. Способы исключения влияния температуры свободных концов термопар.
		21. Требования, предъявляемые к материалам, термопар

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		22. Преобразователи неэлектрических величин. Законы излучения
		23. Преобразователи неэлектрических величин. Пирометры
		24. Уравновешенные мосты. Достоинства, недостатки.
		25. Способы подключения термометров сопротивления
		26. Неуравновешенные мосты. Достоинства, недостатки
		27. Прибор 250М
		28. Логометрические схемы
		29. Милливольтметр. Принцип действия. Устройство. Достоинства, недостатки
		30. Измерительные информационные системы
		31. Способы представления информации
		32. Информационные технологии, используемые при поиске информации
		33. Основные понятия стандартизации
		34. Цели стандартизации
		35. Задачи стандартизации
		36. Органы и службы стандартизации
		37. Виды стандартов.
		38. Нормативные документы
		39. Методические основы стандартизации.
		40. Принципы и методы стандартизации
		Примеры практических заданий:
		Задание 1. Используя различные литературные источники дать определение каждому
		термину из следующей схемы.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		Объект измерения Физическая величина Единица физической величины Метод измерения Измерения Измерения Результат измерения Погрешность измерения
ОПК-6.2	Осуществляет измерения физических величин на объектах теплоэнергетики и теплотехники	 Примеры практических заданий для экзамена: Медный термометр сопротивления имеет сопротивление R₂₀ = 1,75 Ом. Определить его сопротивление при 100 и 150 °C (α = 4,26·10⁻³ K⁻¹) Введите поправку в показания термопары и определите температуру рабочего конца, если термо-ЭДС термометра типа S = 3,75 мВ, температура свободных концов 32 °C Амперметр с пределом измерения 10 А показал при измерениях ток 5,3 А при его действительном значении 5,23 А. Определите абсолютную, относительную и относительную приведенную погрешности Имеются два амперметра: один КТ 0,5 имеет верхний предел измерения 20 А, другой КТ 1,5 имеет верхний предел измерения 5 А. Определите, у какого прибора меньше предел допускаемой основной относительной погрешности при измерении тока 3 А Примеры практических задач: Задача 1. Рассчитать недостающую температуру пользуясь таблицами статических характеристик термопар в соответствии с ГОСТ Р 8.585–2001 «Термопары.

Код индикатора	Индикатор достижения компетенции	Оценочные средства						
		Номинальные статические характеристики преобразования». Решение пояснить. Требуется: а) указать международный и российский шифр термопары; б) полное наименование термопары и химический состав электродов; в) пределы измерения температур для которых в ГОСТ Р 8.585–2001 приведены номинальные значения термоЭДС;						
		г) рассчитать	ь недостающую те Значе	1 212	р вариантам			
		Вариант Спая, °С Температура объекта), °С Температура объекта), °С Температура объекта), °С Температура объекта), °С Температура, объекта), °С Температура, объекта), °С Температура, объекта), °С Температура, объекта), °С						
		1	35	705	$T_{M} = ?$	K		
		2	125	1525	$T_{M} = ?$	S		
		3	45	1204	$T_{\mathrm{M}}=?$	R		
		4	20	-155	$T_{M} = ?$	M		
		5	48	$T_{\mathcal{I}} = ?$	450	L		
		 5 48 Тд = ? 450 L Задача 2. Диапазон показаний прибора от 0 до 1000 °С. По вариантам представлен значения измереные эталонным средством измерения (СИ) для одиннадцат поверяемых точек. Требуется: а) рассчитать абсолютную, относительную и приведенную погрешности для каждо поверяемой точки прибора; б) определить класс точности СИ. Задача 3. Определите доверительный интервал действительного значения измеряемо физической величины с доверительной вероятностью Р_{дов}, если измерения был многократные и равноточные. Требуется: а) из РМГ29-99 «ГСОЕИ. Метрология. Основные термины и определения» выписат определения понятий: многократное измерение, равноточные измерения, разма результатов измерений, доверительные границы погрешности измерения; б) определить размах результатов измерений R_n; в) определить доверительный интервал ИФВ. Задание по вариантам 						

Код индикатора	Индикатор достижения компетенции	Оценочные средства										
		Bap.	нр. $P_{\text{дов}}$ Номер измерения и значение величины $X_{\text{ИЗМi}}$									
			1 дов	1	2	3	4	5	6	7	8	9
		1 2	0,95	84,15 53	84,06 52	83,8 52,5	83,9 51	84,1 48,5	84 50,2	84,02 50,3	84,03 49,2	_
		3	0,98	7,05	6,9	6,85	7,2	6,74	7,25	6,7	6,6	_
		4	0,9 0,95	4,3 890,3	4,2 890,2	4,25 890,3	4,1 890,1	3,85 889,9	4,02 890	4,03 890,2	4,12 890,6	
		Прим	<u> </u>				070,1	007,7	070	0,70,2	0,00,0	
		_	аких сл				ометры	?				
		а) пр	ои измер	ении вы	соких	-		измерени	и темпе	ратуры	движущ	ихся
			ператур;				объект		_			
				ении те	мперату	р ниже		а необход	димо об	еспечит	ь высоку	ТЮ
		0°C;		ун ирман	AIIII TA	NATE D. O.C.	ТОЧНОС	ть. боты терг	иопари	и тармо	матра	
			кои мето Этивлени	-	сния ле.	жигвос	новс ра	ооты терг	монары	и термо	мстра	
			тактны		есконта	ктный;	в) кос	венный.				
		3. Kai	к изменя	ются св	ойства м	иатериал	та термо	метра со	противл	ения пр	и измене	нии
			ературы									
			иеняется			сопроти	вление;					
			меняется									
			меняется меняется				опушнов	одниковн	IV TANM	OMATROD	сопроти	рпанца
			к изменя величен				олупров	одников	ых терме	эмстров	Сопроти	ВЛСНИЯ
		1 2	еличиває				в) не	изменяет	ся.			
		/ -			, •		/	работы те		Ы		
		а) зак	он План	іка; б)	закон Т	омсона	; в) заі	кон Пельт	гье <u>.</u>			
			олько сп									
								змерения				
								ерительну		y		
		/ 1		/		/ 1) свободн		******		
			я чего ві иператур					холодных	x chaeb,	чтооы		
		a) ICN	mepary	ла холод	пыл CIIa	св оыла	поль,					

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		б) температура холодных спаев была равна температуре горячих спаев. 9. Какой метод измерения лежит в основе работы пирометров а) контактный; б) бесконтактный; в) прямой.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Метрология» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена с оценкой.

Экзамен проводится в устной форме по теоретическим вопросам и задачам.

Показатели и критерии оценивания экзамена:

- на оценку «*отлично*» (5 баллов) обучающийся должен полно раскрыть содержание материала в объеме программы дисциплины, чётко и правильно дать определения, привести доказательства на основе математических и логических выкладок, показать навыки исследовательской деятельности. Ответ должен быть самостоятельный, при ответе использованы знания, приобретённые ранее;
- на оценку «хорошо» (4 балла) обучающийся должен раскрыть содержание материала в объеме программы дисциплины, в основном правильно дать основные определения и понятия предмета. При ответе допущены неточности, нарушена последовательность изложения, допущены небольшие неточности при выводах и использовании терминов, практические навыки нетвердые;
- на оценку «удовлетворительно» (3 балла) обучающийся должен усвоить основное содержание материала. При ответе определения и понятия даны не чётко, допущены ошибки при промежуточных математических выкладках в выводах, практические навыки слабые:
- на оценку «неудовлетворительно» (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач. При ответе допущены грубые ошибки в определениях, доказательства теорем не проведено, не даны ответы на дополнительные вопросы преподавателя, отсутствуют навыки исследовательской деятельности;
- на оценку *«неудовлетворительно»* (1 балл) не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач, основное содержание учебного материала не раскрыто.

Методические рекомендации по выполнению контрольной работы по дисциплине «Метрология»

1. Общие положения

Контрольная работа выполняется студентами самостоятельно по вариантам. Работа содержит 2 задания, которые оформляются в соответствии с требованиями данных методических рекомендаций. Оформленная контрольная работа сдается до начала экзаменационной сессии.

2. Задание 1 – Решение задач

2.1 Тема - Выбор средств изменений

Пример 1. Определить верхний предел измерения и основную приведенную погрешность датчика для измерения тяги газотурбинного двигателя (ГТД) $P = (1,6 \pm 0,1)$ кH.

Решение: Наибольшая и наименьшая предельные тяги $P_{max}=1,6+0,1=1,7$ кH; $P_{min}=1,6-0,1=1,5$ кH; допуск T=1,7-1,5=0,2 кH; основная допустимая абсолютная погрешность датчика (допуск па измерение) $\Delta=0,33\cdot T=0,33\cdot 0,2=0,066$ кH; нижний предел рабочей части шкалы H<1,5-0,066=1,434 кH; верхний предел рабочей части шкалы B>1,7+0,066=1,766 кH. Выбираем датчик усилий с верхним пределом измерения B=2 кH. Нормирующее значение для определения основной приведенной погрешности датчика $X_N=2,0$ кH. Определяем предел допускаемой основной приведенной погрешности датчика $\gamma=0,066/2\cdot100=\pm3,3\%$. Ближайшим меньшим значением этой погрешности но отношению к найденному является $\gamma=2\%$.

Варианты к примеру 1

№ варианта	Р, кН
	· ·
1	$P = (1,0 \pm 0,1) \text{ KH}.$
2	$P = (1,1 \pm 0,2) \text{ kH}.$
3	$P = (1,3 \pm 0,1) \text{ kH}.$
4	$P = (1.4 \pm 0.2) \text{ kH}.$
5	$P = (1,5 \pm 0,1) \text{ kH}.$
6	$P = (1,6 \pm 0,2)$ кH.
7	$P = (1,7 \pm 0,1)$ кH.
8	$P = (1.8 \pm 0.1) \text{ kH}.$
9	$P = (1.9 \pm 0.1) \text{ kH}.$
10	$P = (1,0 \pm 0,2) \text{ KH}.$
11	$P = (1,1 \pm 0,1) \text{ KH}.$
12	$P = (1,2 \pm 0,1)$ кH.
13	$P = (1,2 \pm 0,2) \text{ KH}.$
14	$P = (1,3 \pm 0,2) \text{ kH}.$
15	$P = (1,4 \pm 0,1)$ кH.
16	$P = (1,5 \pm 0,2) \text{ kH}.$
17	$P = (1,6 \pm 0,3) \text{ kH}.$
18	$P = (1,7 \pm 0,2) \text{ kH}.$
19	$P = (1.8 \pm 0.2) \text{ kH}.$
20	$P = (1,9 \pm 0,2) \text{ kH}.$

Пример 2. Определить пределы измерения и класс точности вольтметра для измерения напряжения питания бортовой сети самолета $V = 27 \pm 2.7 \; B$.

Решение: Наибольшее предельное напряжение $V_{max} = 27 + 2,7 = 29,7$ В; наименьшее $V_{min} = 27 - 2,7 = 24,3$ В; допуск T = 29,7 - 24,3 = 5,4 В; основная допустимая абсолютная погрешность вольтметра (допуск на измерение) $\Delta = 0,33T = 0,33 \cdot 5,4 = 1,78$ В; нижний предел рабочей части шкалы H < 24,3 - 1,78 = 22,52 В; верхний предел B > 29,7 + 1,78 = 31,48 В. В соответствии с данными по H и В выбираем вольтметр с верхним пределом измерений 40 В. Основная приведенная погрешность этого прибора $\gamma = 1,78/40 \cdot 100 = 4,45\%$. Найденному значению γ соответствует класс точности 5.

Варианты к примеру 2

№ варианта	V, B
1	$V = 27 \pm 2.0 \text{ B}.$
2	$V = 27 \pm 2,1 \text{ B}.$
3	$V = 27 \pm 2.2 \text{ B}.$
4	$V = 27 \pm 2.3 \text{ B}.$
5	$V = 27 \pm 2.4 \text{ B}.$
6	$V = 27 \pm 2.5 \text{ B}.$
7	$V = 27 \pm 2.6 \text{ B}.$
8	$V = 27 \pm 2.8 \text{ B}.$
9	$V = 27 \pm 2.9 \text{ B}.$
10	$V = 27 \pm 3.0 \text{ B}.$
11	$V = 26 \pm 2.1 \text{ B}.$
12	$V = 26 \pm 2.2 \text{ B}.$
13	$V = 26 \pm 2.3 \text{ B}.$
14	$V = 26 \pm 2.4 \text{ B}.$
15	$V = 26 \pm 2.5 \text{ B}.$
16	$V = 26 \pm 2.6 \text{ B}.$
17	$V = 26 \pm 2.7 \text{ B}.$
18	$V = 26 \pm 2.8 \text{ B}.$
19	$V = 26 \pm 2.9 \text{ B}.$
20	$V = 26 \pm 2.0 \text{ B}.$

Пример 3. Определить основную приведенную погрешность и пределы измерения виброакселерометра для измерения виброускорения $a = 50\pm 2 \text{ M/c}^2$.

Решение: Наибольшее предельное значение виброускорения $a_{max} = 50+2 = 52 \text{ м/c}^2$; наименьшее его значение $a_{min} = 50-2 = 48 \text{ м/c}^2$; допуск $T = 52-48 = 4 \text{ м/c}^2$; основная допустимая абсолютная погрешность виброакселерометра (допуск на измерение) $\Delta = 0.33T = 0.33 \cdot 4 = 1.32 \text{ м/c}^2$; нижний предел рабочей части шкалы $H < 48-1.32 = 46.68 \text{ м/c}^2$; верхний $B > 52+1.32 = 53.32 \text{ м/c}^2$. В соответствии с данными по H и B выбираем виброакселерометр с верхним пределом измерения 100 м/c^2 . Можно 60 м/c^2

Основная приведенная погрешность этого прибора $\gamma = 1,32 \cdot 100/100 = 1,32\%$ Варианты к примеру 3

№ варианта	а, м/c ²
1	$a = 40 \pm 2 \text{ m/c}^2.$
2	$a = 41 \pm 2 \text{ m/c}^2$.
3	$a = 42 \pm 2 \text{ m/c}^2$.

4	$a = 43 \pm 2 \text{ M/c}^2.$
5	$a = 44 \pm 2 \text{ M/c}^2.$
6	$a = 45 \pm 2 \text{ M/c}^2.$
7	$a = 46 \pm 2 \text{ m/c}^2$.
8	$a = 47 \pm 2 \text{ M/c}^2.$
9	$a = 48 \pm 2 \text{ M/c}^2.$
10	$a = 49 \pm 2 \text{ m/c}^2.$
11	$a = 51 \pm 2 \text{ m/c}^2$.
12	$a = 52 \pm 2 \text{ m/c}^2$.
13	$a = 53 \pm 2 \text{ M/c}^2.$
14	$a = 54 \pm 2 \text{ M/c}^2.$
15	$a = 55 \pm 2 \text{ M/c}^2.$
16	$a = 56 \pm 2 \text{ m/c}^2$.
17	$a = 57 \pm 2 \text{ m/c}^2$.
18	$a = 58 \pm 2 \text{ m/c}^2.$
19	$a = 59 \pm 2 \text{ m/c}^2$.
20	$a = 60 \pm 2 \text{ m/c}^2.$

2.2 Тема - Погрешности измерений

Пример 1. Манометр с диапазоном измерений от 0 до 6,3 МПа поверяли с помощью эталонного СИ в четырех поверяемых точках:

Необходимо рассчитать рассчитать абсолютную, относительную и приведенную погрешности для каждой поверяемой точки термометра и определить его класс точности.

Решение. Погрешность измерения (абсолютная погрешность) Δ определяется по формуле:

$$\Delta = X_{H3M} - X_{\pi}, \tag{1}$$

где $X_{\text{ИЗМ}}$ — измеренное значение величины $X;\ X_{\text{Д}}$ — действительное значение измеряемой величины X.

Относительная погрешность измерения δ рассчитывается по формуле (2), приведенная погрешность γ рассчитывается по формуле (3), обе они выражены в процентах:

$$\delta = \frac{|\Delta|}{X_{\mathcal{I}}} \cdot 100 \, [\%], \tag{2}$$

$$\gamma = \frac{|\Delta|}{X_H} \cdot 100 \, [\%], \tag{3}$$

где X_H – нормирующее значение СИ, как правило, это диапазон показаний СИ или его верхний предел измерений.

Таблица - Результаты расчетов

Поверяемая точка, МПа	Значение эталонного термометра, МПа	Абсолютная погрешность Δ, МПа	Относительная погрешность измерения δ, %	Приведенная погрешность измерения ү, %
-----------------------	-------------------------------------	----------------------------------	--	--

0	0,1	-0,1		1,6
2	2,07	-0,07	3,5	1,1
4	3,99	0,01	0,2	0,2
6	6,05	-0,05	0,8	0,8

Класс точности СИ выбираем из ряда $1 \cdot 10^n$, $1,5 \cdot 10^n$, , $2 \cdot 10^n$, $2,5 \cdot 10^n$, $4 \cdot 10^n$, $5 \cdot 10^n$, $6 \cdot 10^n$, где n = 1, 0, -1, -2 и т.д. Значения $1,6 \cdot 10^n$ и $3 \cdot 10^n$ не устанавливаются для вновь разрабатываемых СИ.

У пригодного СИ максимальная приведенная погрешность должна быть меньше к.т. Так как максимальная приведенная погрешность манометра 1,6 %, < 2, то к.т. = 2.

Ответ: к.т. манометра 2.

Задача 1. Диапазон показаний прибора от 0 до 1000 °C. В таблице по вариантам представлены значения измеренные эталонным средством измерения (СИ) для одиннадцати поверяемых точек. Требуется:

- a) рассчитать абсолютную, относительную и приведенную погрешности для каждой поверяемой точки прибора;
- б) определить класс точности СИ. Таблица 1 - Измеренные эталонным СИ значения температуры в поверяемых точках

Поверяемая точка Вариант -2 -2

18	11	107	209	304	395	501	601	703	797	897	995
19	5	95	204	301	402	501	601	698	797	903	1000
20	-3	101	197	299	395	501	596	698	797	898	993

Пример 2. Класс точности расходомера 0,2, диапазон показаний от 0 до 800 м³/ч. Определить допустимую погрешность СИ в единицах измерения.

Решение. Класс точности — это обобщенная метрологическая характеристика СИ, определяемая пределами допускаемых основной и дополнительной погрешностей, а также другими свойствами СИ, влияющими на их точность, значения которых устанавливаются в стандартах на отдельные виды СИ. Как правило, класс точности нормируется по приведенной погрешности к.т. > γ , поэтому выразим из формулы (3) абсолютную погрешность измерения Δ :

$$\Delta = \frac{\gamma \cdot X_H}{100} = \frac{0.2 \cdot 800}{100} = 1.6 \ [M^3/4].$$

Ответ: допустимая погрешность расходомера $\Delta_{\text{доп}} < 1,6 \text{ м}^3/\text{ч}$.

Задача 2. Известен класс точности (к.т.), измеряемая физическая величина (ИФВ) и диапазон показаний СИ. Определить максимально допустимую погрешность СИ в единицах ИФВ. Ответ пояснить. Варианты заданий см. в таблице.

Таблица 2 - Значения параметров по вариантам

Вариант	ИФВ, единицы измерения	K.T.	Диапазон показаний		
			X_{MIN}	X _{MAX}	
1	Давление, кгс/см ²	0,1	0	10	
2	Разряжение, кПа	1	0	4,3	
3	Давление, МПа	0,05	0	1,6	
4	Давление, мм.вод.ст.	1,5	0	0 6000	
5	Температура, °С	0,5	0	1300	
6	Температура, °С	1	-150	50	
7	Температура, °С	0,5	0	800	
8	Температура, °С	1,5	-100	100	
9	Расход, м ³ /ч	0,2	0	210	
10	Расход, кг/ч	1	0	100	
11	Расход, кг/с	0,5	0	150	
12	Расход, л/мин	1,5	0	10000	
13	Уровень, мм	0,2	-315	315	
14	Уровень, м	1	0	12	
15	Уровень, см	0,5	0	40	
16	Уровень, мм	1,5	-250	250	
17	Концентрация О2, %	1	0	12	
18	Концентрация NO, %	1,5	0	16	
19	Влажность, г/м ³	1	0	50	
20	Влажность, %	0,2	0	15	

Пример 3. Измерение давления производилось манометром с пределами измерения $0-6,3\,$ МПа и токовым выходным сигналом $0-5\,$ мА, к.т. $0,5.\,$ Характеристика

преобразователя давления линейная. При измерении давления выходной сигнал составил 3,72 мА. Необходимо определить величину измеряемого давления и чувствительность средства измерения.

Решение. Построим линейную градуировочную (статическую) характеристику преобразователя давления по двум точкам. Первая точка характеристики: при давлении 0 МПа — выходной сигнал манометра 0 мА; вторая точка характеристики: при давлении 6,3 МПа — выходной сигнал манометра 5 мА, рис. 1.

Чувствительность датчика (коэффициент преобразования) S показывает на сколько единиц изменится выходной сигнал, если входной сигнал датчика, т.е. ИФВ, изменится на единицу.

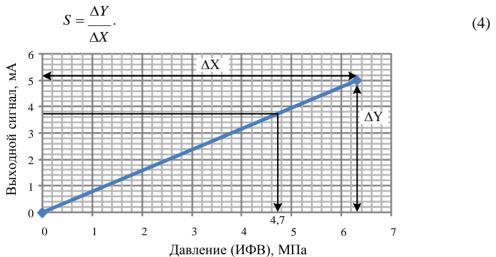


Рис. 1. Градуировочная характеристика датчика

Подставив исходные даңные в формулу (4) получим:

$$S = \frac{5-0}{6,3-0} = 0,794 \approx 0,79 \left[\frac{MA}{M\Pi a} \right]$$

Для линейной статической характеристики чувствительность S постоянна на всем диапазоне ИФВ. Уравнение линейной характеристики датчика в общем виде:

$$Y(X) = Y(0) + S \cdot X , \qquad (5)$$

где X – входной измеряемый сигнал датчика, давление, МПа; Y – выходной сигнал датчика, сигнал постоянного тока, мА; Y(0) – значение выходного сигнала при X = 0.

По формуле (5) и рис. 1 определим уравнение характеристики датчика: Y(X) = 0 + 0.79X . Подставим известное значение выходного сигнала Y = 3.72 мА в полученное уравнение и определим X:

3,72 = 0 + 0,79X;
$$X = \frac{Y(X) - 0}{0,794} = \frac{3,72}{0,79} = 4,7M\Pi a.$$

Значение ИФВ можно определить менее точно по графику градуировочной характеристики датчика, см. рис. 1.

Ответ: измеряемое давление равно 4,7 МПа; чувствительность преобразователя S = 0.79 мA/MПа.

Задача 3. Измерение физической величины производится СИ со стандартным выходным токовым сигналом. СИ выбрать по варианту из предыдущей задачи, см. табл. 2, характеристика СИ линейная, пределы выходного сигнала заданы в табл. 3. Требуется:

а) определить чувствительность датчика;

б) определить значение измеряемой величины, если выходной токовый сигнал равен

Таблица 3 - Значения параметров по вариантам

Y.

Вариант	Y _{MIN} , MA	Y_{MAX} , MA	Выходной сигнал датчика Ү, мА
1	0	5	3,5
2	4	20	10
3	20	4	10
4	5	0	3,8
5	0	20	3,8
6	0	5	4,5
7	20	4	4,5
8	0	5	1,5
9	4	20	8
10	20	4	8
11	5	0	3,5
12	4	20	6
13	0	5	2,2
14	20	4	10,2
15	4	20	11
16	5	0	4,1
17	4	20	19
18	0	5	2,3
19	4	20	14
20	5	0	2,5

 $^{^{*}}$ Y_{MIN} — значение выходного сигнала, соответствующее нижнему пределу измерений СИ X_{MIN} в соответствии с табл. 2;

3. Задание 2 – Технические средства измерения

В данном задании необходимо описать принцип действия и метрологические характеристики средства измерения (по вариантам). В тексте расставить ссылки на источники информации.

Варианты задания

№ варианта	Средство (метод) измерения		
1	Расходомеры с сужающим устройством		
2	Ротаметры		
3	Тепловые расходомеры		
4	Электромагнитные расходомеры		
5	Вихревые расходомеры		
6	Ультразвуковые расходомеры		
7	Тахометрические расходомеры		
8	Пирометры спектрального отношения		
9	Пирометры частичного излучения		
10	Пирометры полного излучения		
11	Магнитные газоанализаторы		

 $^{^{**}}$ Y_{MAX} — значение выходного сигнала, соответствующее верхнему пределу измерений СИ X_{MAX} в соответствии с табл. 2.

12	Оптические газоанализаторы
13	Тепловые газоанализаторы
14	Кондуктометрические анализаторы жидкости
15	Газовые хроматографы
16	Гидростатический метод измерения уровня жидкости
17	Ультразвуковые уровнемеры
18	Буйковые уровнемеры
19	Емкостные уровнемеры
20	Преобразователи серии Метран

4. Требования к оформлению контрольной работы

Формат листа A4. Шрифт Times New Roman, размер 12, межстрочный интервал 1,5. Выравнивание текста по ширине. Абзац 1,25. Параметра страницы: слева 30 мм, справа 10 мм, сверху и снизу 20 мм. Распечатать с одной стороны листа. Подшить в скоросшиватель.

Заголовки первого уровня записываются с абзацного отступа, полностью прописными буквами, жирно. Заголовки второго уровня записываются с абзацного отступа, с прописной буквы, жирно.

Слова «СОДЕРЖАНИЕ», «ВВЕДЕНИЕ», «СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ» записываются по центру полностью прописными буквами, жирно.

Точки после заголовка не ставятся.

Каждый раздел начинается с новой страницы.

Номер страницы проставляется внизу от центра.

Формулы, таблицы и рисунки отделяются от текста свободной строкой (до и после) и оформляются в соответствии с примерами:

$$\rho = m/V, \tag{1}$$

где m - масса образца, кг;

V - объем образца, M^3 .

Таблица 1 – Характеристики объекта

Масса, кг,	Длина, мм	L_1	L_2	L_3
не менее				
160	1000	4	5	6
170	1125	52	60	39
190	1165	389	405	247

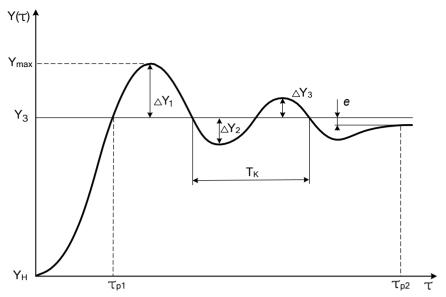


Рисунок 1 – График функциональной зависимости

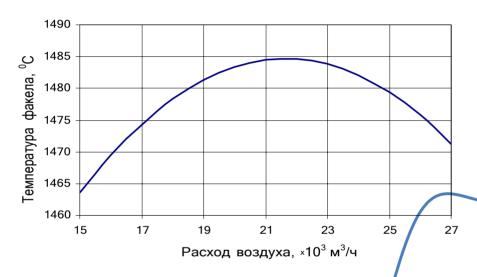
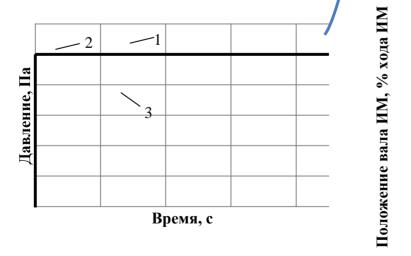



Рисунок 2 – График количественной зависимости

1-изменение давления, Па; 2- задание, Па; 3- положение вала ИМ, % хода ИМ Рисунок 2 — Переходный процесс при P=35 Па

Рисунок 3 – График количественной зависимости с подрисуночной надписью

В тексте обязательно должны быть расставлены ссылки на использованные источники. Список использованных источников формируется в порядке ссылок по тексту реферата и оформляется в соответствии с ГОСТ Р 7.0.100 -2018.

Примеры библиографических описаний (ГОСТ 7.0.100 -2018)

1.Описание изданий с одним автором

Сибикин, Ю.Д. Электроснабжение промышленных и гражданских зданий: учеб. для сред. проф. образ. / ЮД. Сибикин; Среднее проф. Образование, Строительство и архитектура. – Москва: Academia, 2006. – 362 с.: ил., табл. – ISBN 5-7695-2250-3. – Текст: непосредственный.

2. Описание с двумя авторами

Чертов, А.Г. Задачник по физике: учеб. пособие / А.Г. Чертов, А.А. Воробьев. — 8-е изд., перераб. и доп. — Москва: Физматлит, 2008. - 640 с.: ил. — ISBN 9875-94052-145-2. — Текст: непосредственный.

3. Описание с тремя авторами

Варламова, Л.Н. Управление документацией: англо-русский аннотированный словарь стандартизированной терминологии / Л.Н. Варламова, Л.С. Баюн, К.А. Бастрикова. – Москва: Спутник+, 2017. – 398 с. – ISBN 978-5-9973-4489-4. – Текст: непосредственный.

4. Описание изданий под заглавием (5 и более авторов)

Математика: учеб. пособие / Ю.М. Данилов, Л.Н. Журбенко, Г.А. Никонова [и др.]; Министерство образования и науки Российской Федерации, Казанский государственный технологический университет. – Москва: ИНФРА-М, 2011. – 496 с.: ил., табл. – ISBN 5-16-0022673-2. – Текст: непосредственный.

5. Описание многотомных изданий

Материалы и элементы электронной техники. В 2 томах. Т.1. Проводники, полупроводники, диэлектрики: учебник для студ. вузов, обучающихся по направлению «Электроники и микроэлектроника» / В.С. Сорокин, Б.Л. Антипов, Н.П. Лазарева. — Москва: ИЦ Академия, 2006. — 440 с. — Библиогр.: с. 435-438. — Предм. указ.: с. 438-440. — ISBN 5-7695-2785-4. — Текст: непосредственный.

6. Описание законодательных материалов

Гражданский процессуальный кодекс РСФСР: [принят третьей сес. Верхов. Совета РСФСР шестого созыва 11 июня 1964 г.]: офиц. текст: по состоянию на 15.11.2001 г.; Министерствово юстиции Российской Федерации. – Москва: Маркетинг, 2001. – 159 с. – 3000 экз. – ISBN 5-94462-191-5. – Текст: непосредственный.

7. Описание стандартов

ГОСТ Р 57564—2017. Организация и проведение работ по международной стандартизации в Российской Федерации = Organization and implementation of activity on international standardization in Russian Federation: национальный стандарт Российской Федерации: издание официальное : утвержден и введен в действие Приказом Федерального агентства по техническому регулированию и метрологии от 28 июля 2017 г. № 767-ст : введен впервые: дата введения 2017-12-01 / разработан Всероссийским научно-исследовательским институтом стандартизации и сертификации в машиностроении (ВНИИНМАШ). – Москва: Стандартинформ, 2017. – V, 43, [1] с.; 29 см. – 33 экз. – Текст непосредственный.

8. Описание патентных документов

Патент № 2637215 Российская Федерация, МПК В02С 19/16 (2006.01), В02С 17/00 (2006.01). Вибрационная мельница: № 2017105030: заявл. 15.02.2017: опубл. 01.12.2017 / Артеменко К. И., Богданов Н. Э.; заявитель БГТУ. -4 с.: ил. - Текст: непосредственный.

9. Описание периодических изданий

Безопасность жизнедеятельности. – ISSN 1684-6435. – Текст: непосредственный. Вестник древней истории. – ISSN 0321-0391. – URL:

https://dlib.eastview.com/browse/publication/669/udb/12 (дата обращения 02.10.2019). – Текст: электронный.

10. Описание изданий МГТУ

Парсункин, Б.Н. Локальные стабилизирующие контуры автоматического управления в АСУ ТП промышленного производства: монография / Б.Н. Парсункин, С.М. Андреев, О.С. Логунова, Т.У. Ахметов; Магнитогорский гос. технический ун-т им. Г.И. Носова. – Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та, 2012. – 406 с. – ISBN 978-5-4253-0418-0. – Текст: непосредственный.

11. Описание электронных изданий МГТУ (макрообъекты)

Мухина, Е. Ю. Проектирование автоматизированных систем: конспект лекций / Е.Ю. Мухина; МГТУ. – Магнитогорск: МГТУ, 2014. – 1 CD-ROM. – Загл. с титул. экрана. – https://magtu.informsystema.ru/uploader/fileUpload?name=1154.pdf&show=dcatalogues/1/1121 181/1154.pdf&view=true (дата обращения 09.10.2019). – Макрообъект. – Текст: электронный.

12. Описание ЭБС «Лань»

Основы металлургического производства: учебник / В.А. Бигеев, К.Н. Вдовин, В.М. Колокольцев, В.М. Салганик. – Санкт-Петербург: Лань, 2017. – 616с.: ил., табл. – ISBN 978-5-8114-2486-3. – Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. – URL: https://e/lanbook.com/book/90165 (дата обращения 02.10.2019). – Режим доступа: для авториз. пользователей.

13. Описание ЭБС «Знаниум»

Попов, Ю. И. Управление проектами: учебное пособие / Ю. И. Попов, О. В. Яковенко. — Москва: ИНФРА-М, 2019. — 208 с. — (Учебники для программы МВА). – ISBN 978-5-16-002337-3. — URL: https://new.znanium.com/read?id=329884 (дата обращения 10.10.2019). – Текст: электронный.

14. Описание ЭБС «Юрайт»

Троценко, В.В. Системы управления технологическими процессами и информационные технологии: учебное пособие для академического бакалавриата / В.В. Троценко, В.К. Федоров, А.И. Забудский, В.В. Комендантов. - Москва: Юрайт, 2019. – 136с. – ISBN 978-5-534-09938-6. – Текст: электронный // ЭБС Юрайт [сайт]. – URL: https://urait.ru/viewer/sistemy-upravleniya-tehnologicheskimi-processami-i-informacionnye-tehnologii-438994#page/2 (дата обращения 10.10.2019).

15. Описание сайтов в сети Интернет

Государственный Эрмитаж: [сайт]. — Санкт-Петербург, 1998. — URL: http://www.hermitagemuseum.org/wps/portal/hermitage (дата обращения: 16.08.2019). — Текст. Изображение: электронные.

ТАСС: информационное агентство России: [сайт]. – Москва, 1999. – Обновляется в течение суток. – URL: http://tass.ru (дата обращения: 26.05.2019). – Текст: электронный.

Электронная библиотека: библиотека диссертаций: сайт / Российская государственная библиотека. – Москва: РГБ, 2003. – URL: http://diss.rsl.ru/?lang=ru (дата обращения: 20.07.2019). – Режим доступа: для зарегистрир. читателей РГБ. – Текст: электронный.