МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ОСНОВЫ ФИЗИЧЕСКОГО ЭКСПЕРИМЕНТА И МЕТРОЛОГИИ

Направление подготовки (специальность) 03.03.02 Физика

Направленность (профиль/специализация) программы Моделирование физических процессов и преподавание физики

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт естествознания и стандартизации

Кафедра Физики

Kypc 1

Семестр 2

Магнитогорск 2022 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 03.03.02 Физика (приказ Минобрнауки России от 07.08.2020 г. № 891)

Рабочая программа рассмотрена и одобрена на заседании кафедры Физики 01.02.2022, протокол № 4
Зав. кафедройМ.Б. Аркулис
Рабочая программа одобрена методической комиссией ИЕиС 14.02.2022 г. протокол № 6
ПредседательИ.Ю. Мезин
Рабочая программа составлена: ст. преподаватель кафедры Физики, <i>Е.А.</i> Игнатьева
Рецензент: зав. кафедрой ВТиП, д-р техн. наукО.С. Логунова

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2023 - 2024 учебном году на заседании кафедры Физики					
	Протокол от Зав. кафедрой	20 г. № М.Б. Аркулис			
Рабочая программа перес учебном году на заседани	- ·	брена для реализации в 2024 - 2025			
	Протокол от Зав. кафедрой	20 г. № М.Б. Аркулис			
Рабочая программа перес учебном году на заседани		брена для реализации в 2025 - 2026			
	Протокол от Зав. кафедрой	20 г. № М.Б. Аркулис			
Рабочая программа перес учебном году на заседани		брена для реализации в 2026 - 2027			
<i>y</i>	ии кафедры Физики				

1 Цели освоения дисциплины (модуля)

- овладение системой знаний по организации и постановке физического эксперимента с последующим анализом и оценкой полученных результатов;
- формирование умений применять теоретический материал к анализу конкретных физических ситуаций, экспериментально изучать основные закономерности.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Основы физического эксперимента и метрологии входит в обязательую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Элементарная физика

Математический анализ

Линейная алгебра

Информатика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Вычислительная физика

Общий физический практикум

Учебная - ознакомительная практика

Методы математической физики

Планирование эксперимента и обработка данных на ЭВМ

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Основы физического эксперимента и метрологии» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции							
ОПК-1 Способен и	ОПК-1 Способен применять базовые знания в области физико-математических и (или)							
естественных наук	в сфере своей профессиональной деятельности;							
ОПК-1.1	Способен использовать базовые знания в области физико-							
	математических и (или) естественных наук для решения задач							
	профессиональной деятельности							
ОПК-1.2	Способен применять различные способы и приёмы решения							
	стандартных профессиональных задач на основе базовых знаний в							
	области физико-математических и естественных наук							
ОПК-2 Способен	проводить научные исследования физических объектов, систем и							
процессов, обрабат	ывать и представлять экспериментальные данные;							
ОПК-2.1	Способен планировать научные исследования физических объектов,							
	явлений, систем и процессов.							
ОПК-2.2	Способен выполнять запланированные экспериментальные							
	исследования физических объектов, явлений, систем и процессов							
ОПК-2.3	Способен составлять обрабатывать и анализировать результаты							
	экспериментальных и теоретических исследований, составлять отчеты.							

ОПК-3 Способен использовать современные информационные технологии и программные средства при решении задач профессиональной деятельности, соблюдая требования информационной безопасности.

ОПК-3.1	Способен определять перечень ресурсов программного обеспечения
	для использования в профессиональной деятельности с учетом
	требований информационной безопасности
ОПК-3.2	Способен применять современные информационные технологии и
	программные средства для решения задач профессиональной
	деятельности

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 34,1 акад. часов:
- аудиторная 34 акад. часов;
- внеаудиторная 0,1 акад. часов;
- самостоятельная работа 73,9 акад. часов;
- в форме практической подготовки 0 акад. час;

Форма аттестации - зачет с оценкой

Раздел/ тема дисциплины	Семестр	конт	Аудиторь гактная р акад. ча лаб. зан.	абота	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
1. Введение								
1.1 Техника безопасности и общие правила работы в лаборатории. Правила работы с электроприборами и схемами, с оптическими приборами и деталями. Правила записи и обработки результатов эксперимента. Требования к оформлению отчета по лабораторной работе.	2		2		3,9	Подготовка к лабораторно- практическому занятию, поиск дополнительной информации по данной теме	Устный опрос, консультации	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2
Итого по разделу			2		3,9			
установки и методы измере								
2.1 Измерительные приборы и установки. Чувствительность и точность измерительных приборов. Классификация измерений по точности. Основные типы измерительных методов. Абсолютные и относительные, прямые и косвенные измерения.	2		2/2И		4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме	Устный опрос, консультации, лабораторно-практическая работа	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1,

2.2 Интерполяционные шкалы. Нониус и микрометрический винт.			2/2И		4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Устный опрос, консультации, лабораторнопрактическая работа, защита лабораторной работы	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2
2.3 Классификация электроизмерительных приборов. Обозначения на шкалах.			2/2И		4	Подготовка к лабораторно- практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Устный опрос, консультации, лабораторнопрактическая работа, защита лабораторной работы	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2
2.4 Основные системы электроизмерительных приборов. Некоторые условные обозначения, наносимые на электроизмерительные приборы и вспомогательные части			2/2И		4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Устный опрос, консультации, лабораторно-практическая работа	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2
Итого по разделу			8/8И		16			
3. Обработка результ измерений	атов							
3.1 Типы погрешностей измерения физической величины. Случайные погрешности и некоторые сведения из теории вероятностей. Абсолютная и относительная погрешности. Погрешности прямых и косвенных измерений.	2		2/2И		10	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Устный опрос, консультации, лабораторнопрактическая работа, защита лабораторной работы	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2
Итого по разделу			2/2И		10			
4. Измерение физических величин								
 4.1 Масса и ее измерение. Измерение температуры: ртутный и спиртовой термометры; термометр сопротивления. Принцип работы термопары 	2		2		4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Устный опрос, консультации, лабораторнопрактическая работа, защита лабораторной работы	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2

4.2 Измерение электрических величин: силы тока, напряжения, мощности, энергии, электрического сопротивления Итого по разделу		2	4 8	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Устный опрос, консультации, лабораторнопрактическая работа	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2
5. Лабораторный практику	M					
5.1 Измерение линейных размеров твердых тел	2	4	8	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ.	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2
5.2 Определение удельной теплоемкости жидкости калориметрическим методом		2	4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2
5.3 Методы экспериментального и теоретического определения центра масс (инерции) и центра тяжести		4	8	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ.	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2
5.4 Изучение электронного осциллографа		2	4	Подготовка к лабораторно- практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ.	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2

5.5 Определение КПД при подъеме тела по наклонной плоскости и коэффициента трения скольжения	4	8	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ.	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2
5.6 Определение показателя преломления плоскопараллельной пластины	2	4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ.	ОПК-1.1, ОПК-1.2, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-3.1, ОПК-3.2
Итого по разделу	18	36	•		
Итого за семестр	34/10И	73,9		зао	
Итого по дисциплине	34/10И	73,9		зачет с оценкой	

5 Образовательные технологии

- 1. Традиционные образовательные технологии. Форма учебных занятий лабораторная работа.
- 2. Технологии проблемного обучения. Формы учебных занятий с использованием технологий проблемного обучения: практическое занятие в форме лабораторного практикума

На лабораторных занятиях применяются как активные, так и интерактивные методы обучения.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Кравченко Н.С. Методы обработки результатов измерений и оценки погрешностей в учебном лабораторном практикуме: учебное пособие / Н.С. Кравченко, О.Г. Ревинская. Томск: Изд-во Томского политехнического универси-тета, 2011. 88 с. ISBN 0-00000-000-0
- 2. Сивухин Д.В. Общий курс физики: учеб. пособие для вузов. В 5 т. Т. 1. Ме-ханика / Д.В. Сивухин. 4-е изд., стереот. М.: ФИЗМАТЛИТ; Изд-во МФТИ, 2011. 560 с. ISBN 978-5-9221-0225-4.

б) Дополнительная литература:

- 1. Тартаковский Д. Ф. Метрология, стандартизация и технические средства измерений [Текст] : учебник / Д. Ф. Тартаковский, А. С. Ястребов. М. : Высшая школа, 2002. 202 с. : ил.
- 2. Шишмарев В. Ю. Технические измерения и приборы [Текст] : учебник / В. Ю. Шишмарев. М. : Академия, 2010. 384 с. : ил., граф., схемы, табл. (Высшее проф. образование : Автоматизация и управление).

в) Методические указания:

Долгушин Д.М., Долгушина О.В. Основы физического эксперимента и метрологии: учебно-методическое пособие / Д.М. Долгушин, О.В. Долгушина. – Магнитогорск: МаГУ, 2010.-32 с.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
7Zip	свободно распространяемое ПО	бессрочно
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Поисковая система Академия Google (Google Scholar)	1 0 0
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Лаборатория «ОСНОВЫ ФИЗИЧЕСКОГО ЭКСПЕРИМЕНТА И МЕТРОЛОГИИ»:

Секундомер

Микрометр

Штангенциркуль

Весы с разновесами

Ртутный, спиртовой термометры.

Пирометр

Термометр сопротивления

Микроскоп

Отсчетный микроскоп.

Уровни

Амперметры

Вольтметры

Омметры

Авометр

Источники тока

Штатив с муфтой и лаками

Набор грузов

Линейка измерительная

Динамометр

Брусок деревянный

Каток

Отвес

Набор плоских фигур

Алюминиевый, латунный цилиндры

Калориметр

Стакан калориметра

Мензурка

Электрическая плита

Плоскопараллельные пластины

Булавки

Сферометр

Линзы

Скамья оптическая

Приложение 1. Учебно-методическое обеспечение самостоятельной работы обучающихся

Лабораторная работа № 1

«Измерение линейных размеров твердых тел методом непосредственной оценки»

Цель работы:

- 1. ознакомиться с назначением, устройством, принципом действия и принципами работы и применением простейших измерительных приборов штангенциркуля, микрометра;
 - 2. познакомиться с методами обработки данных эксперимента;
- 3. осуществить прямые измерения и косвенные измерения и рассчитать погрешность;
- 4. приобрести практические навыки работы с микрометром и штангенциркулем, производя прямые измерения различных тел (линейные размеры);
 - 5. научиться устранять грубые ошибки и учитывать случайные ошибки.

<u>Оборудование:</u> штангенциркуль, микрометр, набор различных тел (для измерения линейных размеров).

Лабораторная работа № 2

«Определение удельной теплоемкости жидкости калориметрическим методом»

<u>Цель работы</u>: ознакомиться с калориметрическим методом определения удельной теплоёмкости жидкости.

<u>Оборудование:</u> весы, разновес, термометр, калориметр, внутренний сосуд калориметра, цилиндры: стальной, алюминиевый, латунный, исследуемая жидкость, электроплитка, мензурка, крючок.

Лабораторная работа № 3 «Изучение электронного осциллографа»

Цель работы:

- 1. ознакомиться с устройством электронного осциллографа, его работой и принципом действия его основных узлов;
- 2. изучить процессы, происходящие в простых электрических цепях, используя осциллограф;
- 3. приобрести измерительные навыки амплитуды и периода (параметры колебаний) электрического сигнала.

<u>Оборудование:</u> электронный осциллограф, звуковой генератор, источник регулируемого переменного напряжения, комплект соединительных проводов.

Лабораторная работа № 4 «Методы экспериментального и теоретического определения центра масс (инерции) и центра тяжести»

Цель работы:

- 1. ознакомиться с понятиями центра масс и центра тяжести твердого тела;
- 2. ознакомиться с методами экспериментального и теоретического расчета центра масс (инерции), центра тяжести.

<u>Оборудование</u>: штатив с муфтой, набор фигур произвольной формы, отвес, линейка.

Лабораторная работа № 5

«Определение коэффициента полезного действия при подъеме тела по наклонной плоскости и коэффициента трения скольжения динамическим методом»

Цель работы:

- 1. Осуществить экспериментальную проверку факта: полезная работа, выполненная с помощью простого механизма (наклонной плоскости), меньше полной работы;
- 2. Найти значение КПД наклонной плоскости, определив полезную и затраченную (полную) работу по поднятию груза;
 - 3. Выявить, что КПД<1;
- 4. Определить коэффициент трения скольжения при помощи наклонной плоскости динамическим методом.

<u>Оборудование</u>: трибометр, штатив, набор лабораторных грузов, линейка измерительная, динамометр, брусок с отверстиями, линейка.

Лабораторная работа № 6 «Определение показателя преломления стекла»

<u>Цель работы</u>:

- 1. определить показатель преломления плоскопараллельной пластины
- 2. и смещение падающего луча.

Оборудование: плоскопараллельная стеклянная пластинка, булавки, подложка, линейка, циркуль, транспортир.

Требования к оформлению отчета по лабораторной работе

Структура отчета по лабораторной работе отражает следующие элементы:

- 1) цель и задачи выполняемой лабораторной работы;
- 2) Схема лабораторной установки и используемое в работе оборудование;
- 3) Подробный конспект, содержащий теорию по работе (основные законы, формулы с необходимыми пояснениями, графики зависимостей, физические величины, единицы измерений, физический смысл измеряемых величин, назначение, устройство и принцип действия приборов...);
 - 4) Таблицы, с результатами экспериментальных измерений и вычисления;
- 5) Формулы для расчета промежуточных и конечных результатов (с «расшифровкой» величин, входящих в формулу) с подстановкой данных, результаты расчетов с указанием единиц измерения итоговых величин;
- 6) Графики построенные с помощью карандаша и линейки на миллиметровой бумаге (в зависимости от требования к ходу выполнения работы).

<u>При построении графиков зависимостей необходимо соблюдать следующие правила:</u>

- а) на миллиметровой бумаге начертите оси координат;
- б) на осях нанесите масштабную сетку, укажите единицы измерения и символы изображаемых величин;
 - в) экспериментальные точки фиксируйте с максимальной точностью;
- г) график должен быть максимально плавный (кривая без изломов и перегибов), либо провести кривую так, чтобы экспериментальные точки равномерно распределялись по обе стороны от нее;
- 7) Сделать вывод по результатам выполнения работы (он должны быть аргументированным: со ссылками на полученные результаты, таблицу или график).

Правила записи и обработки результатов лабораторного эксперимента

1. Результаты измерений необходимо записывать с одной и той же точностью (количество знаков после запятой одинаковое).

Например, при пяти измерениях массы тела с точностью до 0,1 г полученную серию результатов надо записывать в виде:

Запись этой серии в виде:

является неверной.

2. Усредненное значение $x_{\rm cp}$ должно быть записано с большим количеством значащих цифр, чем измеренное.

Например, для приведенной выше серии результатов из 5 измерений массы тела правильной записью усредненного значения массы будет:

$$m_{\rm cp} = 24,06 \, \Gamma$$

запись:

$$m_{\rm cp} = 24,1 \; \Gamma$$

является неверной.

- 3. Следует помнить, что в записи измеренной величины должно содержаться столько значащих цифр, сколько было измерено: точность записи должна соответствовать точности измерения.
- 4. При записи доверительного интервала последняя цифра результата и последняя цифра его абсолютной погрешности должны принадлежать к одному и тому же десятичному разряду при одинаковом порядке.

Если в ответе содержится множитель вида 10^{y} , то показатель степени y и в результате, и в абсолютной погрешности должен быть одинаковым. Например:

$$m = (24,06 \pm 0,04)10^{-3}$$
, KG

Правила построения графиков (графическое представление результатов измерений)

- 1) Графики зависимости нужно строить вручную на отдельном листе рабочей тетради либо на миллиметровой бумаге (и вклеивают), либо можно использовать специальные компьютерные программы, полученные таким образом графики выводят на печать и вклеиваются в рабочую тетрадь.
- 2) График должен содержать заголовок, из которого будет ясна суть проведенной работы, т.е. физический смысл представленной закономерности.
- 3) Обязательно нужно маштабировать график (крупно, деления масштаба (метки) равно отстоят друг от друга) отметить точки начала отсчёта по координатным осям.
 - 4) График должен быть достаточно крупным

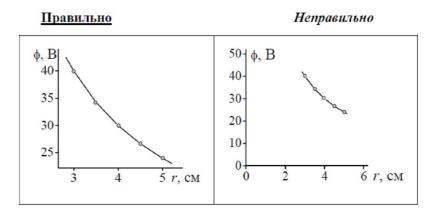
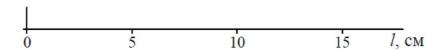
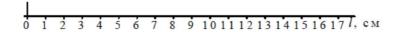



Рис. Построение графика зависимости (правильное – слева, неправильное – справа)

- 5) Значения, полученные в эксперименте, на координатных осях не отмечаются!
- 6) На координатных осях (в конце, снизу, сбоку) обязательно указываются «заголовки» обозначения откладываемых величин и, через запятую, их единицы измерения. Допускается указывать полное название откладываемой величины.

Правильно


Неправильно

(отмечены значения, полученные в эксперименте, а сам масштаб не задан; цифры указаны очень мелко)

Неправильно

(обозначения масштаба – деления на координатной оси – указаны слишком часто и мелко)

7) Для очень больших либо очень малых значений отложенных по осям величин следует выносить их порядок в «заголовок оси».

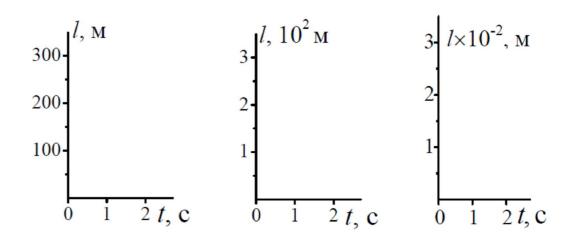
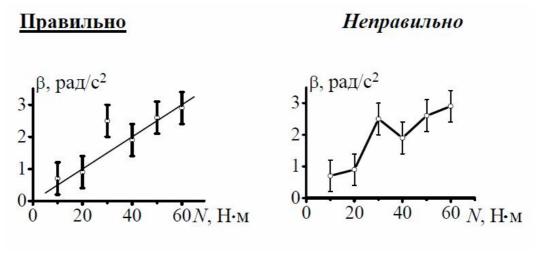
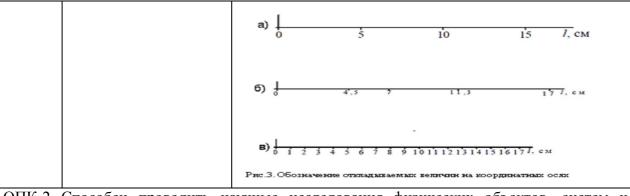



Рис. Возможные варианты оформления графика.

8) Экспериментальные точки отмечаются в виде крупных читаемых

- 9) Кроме экспериментальных точек на графике указывают и погрешности измеренных величин. Они указываются в виде отрезков
- 10) длиной в доверительный интервал, расположенных параллельно соответствующей оси



Рисунок

- 11) Экспериментальная кривая, проводится в виде плавной линии. Линия должна проходить через доверительные интервалы всех или большинства экспериментальных точек так, чтобы экспериментальные точки по возможности близко и равномерно располагались с разных сторон кривой.
- 12) Если на графике приводится теоретическая кривая, то нужно указать закономерность, на основании которой она строиться.

Приложение 2 «Оценочные средства для проведения промежуточной аттестации»

Струнступ	nyy vy	Пломируом до россии тоту у объявания
Структуј элемент	рныи	Планируемые результаты обучения
компете	KKKIIII	
		вовые знания в области физико-математических и (или)
	•	профессиональной деятельности;
ОПК-	Способен	Вопросы для самоконтроля:
1.1	использовать базовые	1. Что такое физический эксперимент?
1.1	знания в области	2. Что значит: измерить физическую величину?
	физико-	3. Прямые измерения – это?
	математических и	4 **
	(или) естественных	5. Систематическая ошибка возникает из-за?
	наук для решения	6. Появления грубых ошибок зависит от?
	задач	7. Промахи в эксперименте появляются из-за?
	профессиональной	8. Как появляются случайные ошибки?
	деятельности	9. Что такое среднее значение измеряемой величины?
ОПК-	Способен применять	10. Абсолютная погрешность – это? Единицы её
1.2	различные способы и	измерения?
	приёмы решения	11. Что называют относительной погрешностью?
	стандартных	Единицы её измерения?
	профессиональных	12. Формула для подсчёта среднеквадратичной
	задач на основе	погрешности при однократном прямом измерении?
	базовых знаний в	13. Формула для подсчёта среднеквадратичной
	области физико-	погрешности прямых многократных измерений?
	математических и	14. Ошибка косвенного измерения подсчитывается?
	естественных наук	15. Дисперсия – это?
		16. Доверительный интервал – это?
		17. каков физический смысл доверительной
		вероятности?
		18. Конечный результат измерений записывают в виде
		?
		19. Что такое приборная ошибка и от чего она зависит?
		Пример задания
		Определите, на каком рисунке график построен
		правильно
		φ, B \ 50† φ, B
		40-
		35- 30-
		30-
		104
		25 0 0 2 4 6 r, cm
		3 4 5 r, cm 0 2 4 6 r, cm
		P-07
		Рис. 2. Построение графика зависимости Пример задания
		<u> </u>
		Определите, на каком рисунке величины отложены правильно
<u> </u>	<u> </u>	правильно

ОПК-2 Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные

ОПК-2.1

Способен планировать научные исследования физических объектов, явлений, систем и процессов.

Алгоритмы расчета погрешностей

Алгоритм расчета погрешностей № 1:

1. Находим значение косвенно измеряемой величины ξ для каждого проведённого эксперимента:

$$\xi_1 = f(x, y, z,...),$$
 $\xi_2 = f(x, y, z,...),$... $\xi_n = f(x, y, z,...);$

2. Определяем средне арифметическое значение величины ξ (поскольку измеряется одна и та же физическая величина, и её показатель, различается лишь погрешностью измерений):

$$\langle \xi \rangle = \frac{\xi_1 + \xi_2 + \dots + \xi_n}{n}$$

3. Проводится оценка приборной погрешности величины ξ .

При оценки погрешности величины ξ $\xi_n = f(x,y,z,...)$, используют вывод формулы на базе формулы (11) или (12) (или таблицы 2). Вместо Δx , Δy , Δz ..., подставляются показатели приборных погрешностей

 $\Delta x_{npuборa}$, $\Delta y_{npuбоpa}$, $\Delta z_{приборa}$, а вместо величин x, y, z ... — любые (только не минимальные и не максимальные) значения измеренной физической величины.

4. Далее нужно оценить погрешность измерений величины ξ :

$$\Delta \xi_{u_{3Mep}} = \frac{1}{n} \sum_{i=1}^{n} \left| \Delta \xi_i \right|,$$

B этом алгоритме расчета погрешность измерений косвенно измеренной величины ξ оценивается так же, как и при прямых измерениях.

5. Затем определяем полную погрешность

		эксперимента:						
		_						
		$\Delta \xi = \Delta \xi_{usmep} + \Delta \xi_{npu\delta opa};$						
		6. Оценим относительную погрешность для						
		физической величины ξ в эксперименте:						
		$\Lambda \mathcal{E}$						
		$\mathcal{E}_{\mathcal{E}} = \frac{25}{\sqrt{\epsilon}}$						
		$arepsilon_{\xi} = rac{\Delta \xi}{\langle \xi angle}$						
		7. Конечный результат :						
		$\varepsilon \left(\frac{1}{2} \times \frac{1}{2} \times \varepsilon \right)$						
		$\xi = \left(\!\left\langle \xi \right\rangle \pm \Delta \xi \right)$ ед. измерения ($arepsilon_{\xi}$, %).						
ОПК-	Способен выполнять	Примерное задание						
2.2	запланированные	Выберите нужные формулы для оценки результатов						
	экспериментальные	измерения						
	исследования	Формулы для оценки погрешности косвенно измеряемых величин Расчётная Абсолютная Относительная						
	физических объектов, явлений, систем и	формула для погрешность погрешность величины ξ величины ξ						
	явлении, систем и процессов	$\xi = f(x, y)$ $\Delta \xi$ $\varepsilon_{\xi} = \frac{\Delta \xi}{\langle \xi \rangle}$						
	процессов	$x + y$ $\Delta x + \Delta y$ $\frac{\Delta x + \Delta y}{\langle x \rangle + \langle y \rangle}$						
		$x-y$ $\Delta x + \Delta y$ $\frac{\Delta x + \Delta y}{ \langle x \rangle - \langle y \rangle }$						
		$x \cdot y \qquad \langle x \rangle \cdot \Delta y + \langle y \rangle \cdot \Delta x \qquad \frac{\Delta x}{\langle x \rangle} + \frac{\Delta y}{\langle y \rangle} = \varepsilon_x + \varepsilon_y$						
		$\frac{x}{y} \qquad \frac{\langle x \rangle \cdot \Delta y + \langle y \rangle \cdot \Delta x}{\langle y \rangle^2} \qquad \frac{\Delta x}{\langle x \rangle} + \frac{\Delta y}{\langle y \rangle} = \epsilon_x + \epsilon_y$						
		VI VI						
		$x^{n} \qquad n \cdot \langle x \rangle^{n-1} \Delta x \qquad n \cdot \frac{\Delta x}{\langle x \rangle} = n \cdot \varepsilon_{x}$						
		$\frac{1}{n} \left \frac{1}{n} \right \cdot \langle x \rangle_n^{-1} \Delta x \qquad \qquad \left \frac{1}{n} \right \cdot \frac{\Delta x}{\langle x \rangle} = \left \frac{1}{n} \right \cdot \varepsilon_x$						
ОПК-	Способен составлять	Примерное задание						
2.3	обрабатывать и	Оценить класс точности прибора						
	анализировать результаты	60 80 100 120 140 160						
	экспериментальных и	20 60 80 100 120 140 160 180 180 200						
	теоретических							
	исследований,	вольтиетр						
	составлять отчеты	♦ 40-100 - 400 Hz						
		N 81894 1999						
		0.5 FOCT 8711-78						
ОПК-3		Рис. 1. Лицевая панель вольтметра овременные информационные технологии и программные						
		профессиональной деятельности, соблюдая требования						
	пационной безопасности	Transfer generality, comogen ipocobalina						
ОПК-	Способен определять	Оценка конечного результата проведенных						
3.1	перечень ресурсов	измерений						
	программного							
	обеспечения для	Полная погрешность измерений может быть						
	использования в	представлена в виде: $\Delta \xi = \Delta \xi_{uзмер} + \Delta \xi_{прибора}$						
	профессиональной							
	деятельности с учетом	Слагаемые имеют разное значение – измерительная						
	требований	погрешность может быть больше погрешности						
	информационной	приборов, и наоборот. Целесообразно оценивать						
	безопасности	погрешность, вносимую приборами, перед проведением						

измерений. Опенка величин соответствующих погрешностей, позволяет сделать определённые выводы о работе приборов (если она велика, то приборы нужно заменить на более точные) и о качестве измерений (если её размер вели, то необходимо более тщательно проводить измерения, и увеличить количество опытов). Если погрешности примерно сравнимы друг с другом, то результаты измерений вполне удовлетворительны. Требования к округлению результата: После завершения измерений и проведения вычислений руководствуются следующими правилами округления: При округлении погрешности $\Delta \xi$ нужно «значащую» цифру (округление оставить проводить всегда в большую сторону). Результат ξ измерений округляется до того разряда, в котором содержится погрешность. промежуточных расчётах следует использовать на одну значащую цифру больше ОПК-Способен Примерное задание применять 3 2 современные Оценить погрешность прибора Таблила 1. информационные Абсолютные инструментальные погрешности простейших технологии И измерительных приборов Ν° Измерительный прибор Абсолютная Предел из-∐ена программные средства п/π мерения ления инструменрешения тальная погрешность профессиональной Линейка чертёжная инст-До 20 см 1 IVIVI ±0.1 mm деятельности 1 рументальная До 50.см 1 mm $\pm 0.1 \text{ mm}$ До 100 см ± 0.5 cm 1.cm 150 см 0,5 cm ±0,5 cm Лента измерительная Измерительный цилиндр До 250 мл 1 мл $\pm 1 \text{ MJI}$ Штангенциркуль 150 mm 0.1 mm ± 0.05 mm Микрометр 25. MM0.01 mm $\pm 0.005 \, \text{mm}$ Безмен ±0,05 H 4 H 0,1 H 6 200.r. Весы пружинные $\pm 0.01 r$ ±1 с за 30 мин 0-30 мин 0,2 c Секундомер Термометр лабораторный 0-100°C 1,.... ±1,°C 10 ±0,05 мл Шприц медицинский 2 мл 0,1 мл Мензурка медицинская б мл 0.2 дл ±0,15дл

Показатели и критерии оценивания результатов

- Оценка **«отлично»** (5 баллов) ставится, если все задания выполнены на высоком научном и организационно-методическом уровне, если при их рассмотрении обоснованно выдвигались и эффективно и рационально решались сложные вопросы научно-исследовательской деятельности и практические задачи, студент проявлял творческую самостоятельность, выполнил весь предусмотренный объем заданий дисциплины, своевременно отчитался по результатам изучения соответствующих разделов дисциплины.
- Оценка **«хорошо»** (4 балла) ставится, если работа была выполнена на высоком научном и организационно-методическом уровне, была проявлена инициатива,

самостоятельность при решении конкретных задач, но в отдельных частях работы были допущены незначительные ошибки, в конечном итоге отрицательно не повлиявшие на результаты работы.

- Оценка **«удовлетворительно»** (3 балла) ставится в том случае, если студент выполнил весь объем работы, предусмотренный дисциплиной, но в ходе выполнения допустил серьезные ошибки в изложении или применении теоретических знаний; не всегда поддерживал дисциплину, в том числе получал замечания по текущим занятиям (практические, лабораторные, семинарские); не всегда выполнял требования, предъявляемые студенту; несвоевременно сдал необходимые разработки (рефераты).
- Оценка **«неудовлетворительно»** (2 балла) ставится студенту, если не были выполнены все задания, были нарушения трудовой дисциплины, дни занятий пропускались без уважительной причины, к изучению дисциплины студент относился безответственно, не представил своевременно необходимые отчётные документы.
- Оценка **«неудовлетворительно»** (1 балл) ставится студенту, если задание преподавателя выполнено частично, обучающийся не может воспроизвести и объяснить содержание, не может показать интеллектуальные навыки решения поставленной задачи.