МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

САПР В ЭЛЕКТРОЭНЕРГЕТИКЕ

Направление подготовки (специальность) 13.03.02 Электроэнергетика и электротехника

Направленность (профиль/специализация) программы Электроснабжение

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Электроснабжения промышленных предприятий

Kypc 3

Семестр 6

Магнитогорск 2022 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 13.03.02 Электроэнергетика и электротехника (приказ Минобрнауки России от 28.02.2018 г. № 144)

Рабочая программа рассмотрена и одобрена на заседании кафедры Электроснабжения промыпшенных предприятий

25.01.2022, протокол № 5

Зав. кафедрой Сруми Г.П.

Г.П. Корнилов

Рабочая программа одобрена методической комиссиой ИЭиЛС

26.01.2022 г. протокол № 5

Председатель Мишии

В.Р. Храминин

Рабочая программа составлена:

доцент кафедры ЭШІ, канд. техн. наук

Е.А. Панова

доцент кафедры ЭПП, канд. техн. наук

А.В. Варганова

Рецензент:

пачальник ЦЭСиППЛО «ММК», канд. техн здукцЭС

П.А. Николаев

Листактуализациирабочейпрограммы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2023 - 2024 учебном году на заседании кафедры Электроснабжения промышленных предприятий								
	Протокол от							
	мотрена, обсуждена и одобрена для реализации в 2024 - 2025 и кафедры Электроснабжения промышленных предприятий							
	Протокол от							
	мотрена, обсуждена и одобрена для реализации в 2025 - 2026 и кафедры Электроснабжения промышленных предприятий							
учебном году на заседани Рабочая программа перест	и кафедры Электроснабжения промышленных предприятий							

1Целиосвоения дисциплины (модуля)

формированиеустудентовзнаний,практическихуменийинавыковвобластипроектиро ванияраспределительныхустройствэлектростанцийиподстанций,электрическогоосвещения ,атакжевобластимоделированиярежимовсистемэлектроснабжениясиспользованиемсоврем енныхдостиженийнауки,техники,международногоиотечественногоопытавэтойобласти.

2Местодисциплины(модуля)вструктуреобразовательнойпрограммы

ДисциплинаСАПРвэлектроэнергетикевходитвчастьучебногопланаформируемуюуч астникамиобразовательныхотношенийобразовательнойпрограммы.

Дляизучениядисциплинынеобходимызнания(умения,владения),сформированныевр езультатеизучениядисциплин/практик:

Электрическиестанциииподстанции

Математическиезадачиэнергетики

Программированиевинженерномделе

Учебная-ознакомительная практика

Знания(умения,владения),полученныеприизученииданной дисциплины будутне обходимы для изучения дисциплин/практик:

Подготовкакпроцедурезащитыизащитавыпускнойквалификационнойработы

Подготовкаксдачеисдачагосударственногоэкзамена

Производственная-преддипломнаяпрактика

Управлениекачествомэлектрическойэнергии

Оперативно-диспетчерскоеуправлениевэлектроэнергетических системахисетях

Надежностьсистемэлектроснабжения

SmartGridsвгородскихипромышленныхсетях

Электроснабжение

ЗКомпетенцииобучающегося, формируемые врезультате освоения дисциплины (модуля) ипланируемые результаты обучения

Врезультатеосвоения дисциплины (модуля) «САПР вэлектроэнергетике» обучающийс ядолженобладать следующими компетенциями:

Кодинд	Индикатордостижениякомпетенции						
ивсоотве различни аниепрое	ПК-3Способенприниматьучастиевпроектированииобъектовпрофессиональнойдеятельност ивсоответствиистехническимзаданиеминормативно-техническойдокументацией,соблюдая различныетехнические,энергоэффективныеиэкологическиетребованияипроводитьобоснов аниепроектныхрешений,атакжеоформлятьтехническуюдокументациюнаразличныхстадиях разработкипроекта						
	Разрабатываетиоформляеткомплектыпроектнойирабочейдокументациипростыхуз ловсистемыэлектроснабженияобъектовкапитальногостроительства						
ПК-3.2	Выбираетоптимальныетехническиерешениядляразработкиотдельныхразделовнар азличныхстадияхпроектасистемыэлектроснабженияобъектакапитальногостроите льства						
ПК-3.3	Выбираетоборудованиедляотдельных разделов проекта наразличных стадиях проект ирования системы электросна бжения объектов капитального строительства						
огообору	ПК-4Способенразрабатыватьикорректироватьдокументыпоэксплуатацииэлектротехническ огооборудования						
ПК-4.1	Выполняетчертежиэлектрическихсхемивноситвнихизменения.						

ПК-4. Осуществляетведениеслужебнойитехническойдокументацииэлектрическогоцеха(по дразделения)ТЭС

4.Структура, объёмисодержание дисциплины (модуля)

Общаятрудоемкостьдисциплинысоставляет3зачетныхединиц108акад.часов,втомчисле:

- -контактнаяработа-54,15акад.часов:
- -аудиторная-51акад.часов;
- -внеаудиторная-3,15акад.часов;
- -самостоятельнаяработа-36,15акад.часов;
- -вформепрактическойподготовки-0акад.час;
- -подготовкакэкзамену-17,7акад.час

Формааттестации-экзамен

Раздел/тема дисциплины		А аз Л е к.	Ī	итор ая гактн бота пра кт.з ан.		Видсамо стоятель ной работы	Форматекущего контроляуспевае мостии промежуточной аттестации	Кодкомпете нции
1.Раздел1								
1.1ОбщиепонятияоСАПР:структура,подходыкразработке	6	3			5			ПК-3.1,ПК- 3.2,ПК-3.3, ПК-4.1
Итогопоразделу	•	3			5			
2.Раздел2								
2.1ВнедрениеСАПРдлярешениязадачвобластиэлектроэнер гетики:история,современныеСАПР,основныеобластиприм ененияивозможности		3			5			ПК-3.1,ПК- 3.2,ПК-3.3, ПК-4.1
Итогопоразделу		3			5			
3.Раздел3								
3.1ПрименениеСАПРдлярешениязадачвобластиэлектроэн ергетики	6	2			5			ПК-3.1,ПК- 3.2,ПК-3.3, ПК-4.1
Итогопоразделу	•	2			5			
4.Раздел4								
4.1САПРрасчетасветотехническойчасти	6			6/4 И	5	Выполн ение СР- 1, подгото вка к	CP-1,AKP-1	ПК-3.1,ПК- 3.2,ПК-3.3, ПК-4.1
Итогопоразделу		2		6/4	5			
5.Раздел5								

.1ОсобенностиработысСАПРвэлектроэнергетике		4	8/4 И	5	Выполн ение СР- 2, подгото вка к	CP-2,AKP-1	ПК-3.1,ПК- 3.2,ПК-3.3, ПК-4.1
Итогопоразделу		4	8/4	5			
6.Раздел7							
6.1САПРрасчетаиоптимизациирежимовсистемэлектросна бженияиэлектроэнергетическихсистем	6	3	20/4 И	1 1, 1 5	Выполн ение СР- 3, подгото вка к	CP-3,AKP-1	ПК-3.1,ПК- 3.2,ПК-3.3, ПК-4.1
Итогопоразделу		3	20/4	1			
7.Промежуточнаяаттестация							
7.1Подготовкакзачетусоценкой	6				Подгото вка к зачету	Зачетсоценкой	ПК-3.1,ПК- 3.2,ПК-3.3, ПК-4.1
Итогопоразделу							
Итогозасеместр		1 7	34/1 2И	3 6,		экзамен	
Итогоподисциплине		1 7	34/1 2И	3 6,		экзамен	

5Образовательные технологии

Дляреализациипредусмотренныхвидовучебнойработывкачествеобразовательныхте хнологийвпреподаваниидисциплины «САПРвэлектроэнергетике» используются традиционн аяимодульно-компетентностная технологии.

Передачанеобходимыхтеоретическихзнанийиформированиеосновныхпредставлени йпокурсу«САПРвэлектроэнергетике»происходитсиспользованиеммультимедийногообору дования.

Лекциипроходятвтрадиционнойформе, вформелекций-консультацийипроблемных екций. Теоретическийматериалнапроблемных лекциях является результатом усвоения полученной информации посредством постановки проблемного вопроса и поиска путей егорешения. На алекциях — консультациях изложение новогом атериала сопровождается постановкой вопросовидиску ссией в поисках ответов на эти в опросы.

Припроведениипрактических занятиях используются работавкомандеиметоды IT.

Самостоятельнаяработастимулируетстудентоввпроцессеподготовкидомашних зада ний, прирешении задачна практических занятиях, приподготовке кконтрольным работамиитог овой аттестации.

6Учебно-методическоеобеспечениесамостоятельнойработыобучающихся Представленовприложении 1.

7Оценочныесредствадляпроведенияпромежуточнойаттестации Представленывприложении2.

8Учебно-методическое иинформационное обеспечение дисциплины (модуля) а) Основная литература:

1.Варганова А.В. Системыа втоматизированного проектирования вэлектро-энергетике :автоматизированное создание схемра спреде-лительных устройстви пря-жением 6-220 кВ по низительных подстанций: учеб. пособие/А.В.Варганова, Е.А. Панова. - Магнитогорск:: Изд-во Магнитогорск. гос. техн. ун-таим. Г.И. Носова, 2019. – 78 с. (10 шт.)

б)Дополнительнаялитература:

- 1.Меликов, А.В. Теориянадежностиэлементовэлектротехническихкомплексовисисте мэлектроснабжения: учебноепособие/А.В.Меликов.-Волгоград:ФГБОУВОВолгоградский ГАУ, 2019.-96с.-ISBN 978-5-4479-0193-6.-Текст: электронный.-URL: https://znanium.com/catalog/product/1087875 (датаобращения: 29.06.2022).—Режимдоступа: поподписке.
- 2.Кирюхин,Ю.А.Проектированиесиловыхвысокочастотныхтрансформаторов:моно графия/Ю.А.Кирюхин,В.С.Степанов,С.А.Аршинов.-Москва;Вологда:Инфра-Инженерия,2 019.-152с.-ISBN978-5-9729-0312-2.-Текст:электронный.-URL:https://znanium.com/catalog/product/1053407(датаобращения:29.06.2022).—Режимдоступа:поподписке.
- 3.Тремясов,В.А.Теориянадежностивэнергетике.Надежностьсистемгенерации,использующихветровуюисолнечнуюэнергию:учеб.пособие/В.А.Тремясов,Т.В.Кривенко.-Красно ярск:Сиб.федер.ун-т,2017.-164с.-ISBN978-5-7638-3749-0.-Текст:электронный.-URL:https://znanium.com/catalog/product/1031885(датаобращения:29.06.2022).—Режимдоступа:поподписке.
- 4.Журнал «Вестник ЮУрГУ. Серия «Энергетика» https://vestnik.susu.ru/power/issue/arc hive(датаобращения: 29.06.2022).

5. Журнал «Электротехническиесистемыикомплексы» http://esik.magtu.ru/ru/(датаобращения :29.06.2022).

в) Методические указания:

Методические указания приведены в приложении 3 кРПД

г)ПрограммноеобеспечениеиИнтернет-ресурсы:

Программноеобеспечение

ripor pamminocooccinc icinic		
НаименованиеПО	№договора	Срокдействиялицензи и
MSOffice2007Professional	№135от17.09.2007	бессрочно
7Zip	свободнораспространяемоеП	бессрочно
STATISTICAB.6	К-139-08от22.12.2008	бессрочно
MathCADv.15EducationUniversityEd ition	Д-1662-13от22.11.2013	бессрочно
MSSQLServerManagementStudio	свободнораспространяемоеП О	бессрочно
AutodeskAutoCad2011MasterSuite	К-526-11от22.11.2011	бессрочно
АСКОНКомпас3 В.16	Д-261-17от16.03.2017	бессрочно
AdobeReader	свободнораспространяемоеП	бессрочно
FARManager	свободнораспространяемоеП	бессрочно

Профессиональныебазыданныхиинформационныесправочныесистемы

профессиональные оставляний ормационные справо инысенстемы							
Названиекурса	Ссылка						
Электроннаябазапериодическихизданий East View Information Servic	https://dlib.eastview.co						
es,OOO«ИВИС»	m/						
Национальнаяинформационно-аналитическаясистема—Российский индекснаучногоцитирования(РИНЦ)	URL:https://elibrary.ru/ project_risc.asp						
ПоисковаясистемаАкадемияGoogle(GoogleScholar)	URL:https://scholar.google.ru/						
Информационная система-Единое окнодоступакинформационным р	URL:http://window.edu						
есурсам	.ru/						
Федеральноегосударственноебюджетноеучреждение«Федеральны йинститутпромышленнойсобственности»	URL:http://www1.fips.ru/						

9Материально-техническоеобеспечениедисциплины(модуля)

Материально-техническоеобеспечениедисциплинывключает:

- 1.Учебные аудитории для проведения занятий лекционного типа-мультиме дийные сред ствахранения, передачии представления информации.
- 2. Учебные аудитории для проведения практических занятий, групповых и индивидуаль ных консультаций, текущего контроля и промежуточной аттестации-доска, мультиме дийный проектор, экран.
- 3.Помещения для самостоятельной работы обучающих ся-персональные компьютеры с пакетом MSO ffice, выходом в Интернети с доступом в электронную информационно-образоват ельную средууниверситета.
- 4.Помещениедляхраненияипрофилактическогообслуживанияучебногооборудовани я-стеллажи,сейфыдляхраненияучебногооборудования.

ПРИЛОЖЕНИЕ 1

(обязательное)

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Системы автоматизированного проектирования в электроэнергетике» предусмотрено проведение аудиторной контрольной работы и 6 индивидуальных заданий для обучающихся.

Аудиторнаяконтрольнаяработа (АКР):

- 1. Назовите, какие измерительные приборы и приборы учета должны быть установлены на присоединении ВЛ 220 кВ?
- 2. Назовите, какие измерительные приборы и приборы учета должны быть установлены на присоединении КЛ 6 кВ?
- 3. Назовите, какие измерительные приборы и приборы учета должны быть установлены на присоединении ТСН (ввод ВН)?
- 4. Назовите, какие измерительные приборы и приборы учета должны быть установлены на присоединении синхронного двигателя напряжением выше 1 кВ?
- 5. Назовите, какие измерительные приборы и приборы учета должны быть установлены на присоединении силового трансформатора с расщепленной обмоткой НН (ввод низкого напряжения)?
- 6. Какую схему должна предложить САПР в соответствии с требованиями норм проектирования для распределительного устройства ВН проходной подстанции напряжением 35 кВ с 4 присоединениями, при условии, что на РУ предполагаются частые коммутации трансформатора? Назовитеномер и полноеназваниесхемы.
- 7. Какую схему должна предложить САПР в соответствии с требованиями норм проектирования для распределительного устройства ВН транзитной подстанции напряжением 35 кВ с 6 присоединениями? Назовитеномер и полноеназваниесхемы.
- 8. Какую схему должна предложить САПР в соответствии с требованиями норм проектирования для распределительного устройства СН узловой подстанции напряжением 110 кВ с 5 присоединениями? Назовитеномер и полноеназваниесхемы.
- 9. Какую схему должна предложить САПР в соответствии с требованиями норм проектирования для распределительного устройства ВН узловой подстанции напряжением 110 кВ с 12 присоединениями? Назовитеномер и полноеназваниесхемы.
- 10. Какую схему должна предложить САПР в соответствии с требованиями норм проектирования для распределительного устройства ВН узловой подстанции напряжением 220 кВ с 4 присоединениями? Назовитеномер и полноеназваниесхемы.
- 11. Минимально допустимый ток отключения может быть у выключателей на РУ 10 кВ с $I_{\rm n0}=12.6$ кА и $T_{\rm a}=0.07$ с
 - a) 20 кА
 - б) 25 кА
 - в) 31,5 кА
 - г) 50 кА
- 12. Минимально допустимый номинальный ток выключателя на вводе 10 кВ силового трансформатора ТРДН-25000/110 составляет:
 - a) 630 A
 - б) 1000 А
 - в) 1600 A

13. Минимально допустимый номинальный ток выключателя на вводе 110 кВ силового трансформатора ТРДН-25000/110 составляет: а) 630 A
б) 1000 A
в) 1600 А
г) 2000 A
14. Минимально допустимый ток электродинамической стойкости может быть увыключателей на РУ 220 кВ с $I_{\rm n0}=21$ кА и $T_{\rm a}=0{,}02$ с а) 20 кА
б) 25 кА
в) 31,5 кА
г) 50 кА
15. Минимально допустимый ток отключения может быть у выключателей на РУ 220 кВ ($I_{\rm n0}=21~{\rm kA}$ и $T_{\rm a}=0.02~{\rm c}$ а) 35 кА
б) 50 кА
в) 102 кА
г) 125 кА
16. Минимально допустимый ток электродинамической стойкости может быть увыключателей на РУ 10 кВ с $I_{\rm n0}=12,6$ кА и $T_{\rm a}=0,07$ с а) 35 кА
б) 50 кА
в) 102 кА

Примерные самостоятельные работы:

г) 125 кА

СР-1 «САПР светотехнической части электроустановок»

Осуществить расчет прожекторного освещения открытого распределительно устройства подстанции 110/10 кВ с использованием программного обеспечения Dialux, если план подстанции приведен на рисунке. Привести план расстановки прожекторных мачт, указать типы светильников и ламп. Привести план с изображением изолиний.

На основании технического задания с использованием САПР «ОРУ САD» и «ЗРУ САD»:

- рассчитать технико-экономические показатели;
- выбрать оптимальную схему распределительного устройства главной понизительной подстанции;
 - разработать однолинейную схему ГПП;
 - осуществить расчет токов короткого замыкания;
 - осуществить выбор и проверку оборудования РУ ВН и НН;
 - спроектировать собственные нужды подстанции.

1. Общая характеристика района размещения подстанции

 1.1. Месторасположение ПС
 Урал

 1.2. Рельефплощадки ПС
 Равнинный

 1.3. Грунты
 Суглинки

2. Техническиепоказатели ПС

2.1. Мощностьтрансформаторов 40 МВА

2.2. Тип и количествотрансформаторов 2×ТРДН-40000/110

2.3. Главныесхемыэлектрическихсоединений Одинарнаясекционированная

2.4. Количество присоединений на стороне ВН

- 2.5. ЗРУ-10 кВ 4-х секционное, рассчитанное на установку 52 ячеек вакуумных выключателей
- 2.6. Количествоотходящихлиний 4 ВЛ
- 2.7. ПА принята при количестве присоединений 110 кВ более двух

CP-3 «Оптимизация режимов работы систем электроснабжения с собственными источниками электроэнергии»

Для заданной схемы электроснабжения с собственными источниками электроэнергии, осуществить поиск оптимального распределения активных мощностей между генераторами электростанций в ПВК «КАТРАН», если технико-экономические модели турбогенераторов имеют следующий вид:

Технико-экономические модели генераторов

P_{max}	=	6	МВт
1 HOM	_	v	$1\mathbf{V}1\mathbf{D}1$

P, MBT	4	5	6
D_0 , M^3	44	47	50
<i>S</i> , руб./м ³	234	235	233

$P_{\text{HOM}} = 12 \text{ MBT}$

P, MBT	8	9	10	11	12
D_0 , M^3	61	65	69	74	77
<i>S</i> , руб./м ³	351	358	342	347	354

$P_{\text{HOM}} = 20 \text{ MBT}$

- HOM — U						
P, MBT	13	15	17	18	19	20
$D_0, { m M}^3$	115	125	135	140	145	150
S, руб./м ³	270	272	274	269	267	267

$P_{\text{HOM}} = 32 \text{ MBT}$

P, MBT	14	18	20	24	26	30
D_0 , M^3	177	195	205	220	229	235
<i>S</i> , руб./м ³	240	240	232	245	241	234

$P_{\text{\tiny HOM}} = 40 \; \text{MBT}$

P, MBT	25	27	29	30	32	36	39	40
$D_0, { m M}^3$	163	171	176	182	188	201	212	216
<i>S</i> , руб./м ³	331	335	337	336	332	330	330	329

$P_{\text{HOM}} = 63 \text{ MBT}$

P, MBT	37	40	43	46	48	51	54	60
$D_0, { m M}^3$	177	189	202	214	222	235	248	260
<i>S</i> , руб./м ³	360	365	362	361	354	353	353	350

 $P_{\text{HOM}} = 100 \text{ MBT}$

P, MBT	82	85	86	88	90	92	95	100
$D_0, { m M}^3$	217	225	229	234	237	248	250	265
<i>S</i> , руб./м ³	321	325	325	333	330	329	327	326

Перечень вопросов для промежуточной аттестации:

- 1. Перечислите основные цели автоматизации проектирования СЭС. С помощью применения каких технологий их можно достичь?
- 2. Дайте определение понятиям: проектные операция и процедура, проектные решение и маршрут, этап и стадия проектирования.
 - 3. Какие виды проектных процедур могут быть использованы в САПР?
- 4. Какие этапы входят в типовую схему проектирования? Приведите их область назначения и основные функции.
- 5. Какие типовые задачи автоматизации проектирования характерны для ОРУ САD и ЗРУ CAD?
- 6. В чём особенность параллельного (смешанного проектирования)? Для каких энергетических объектов его можно применить?
- 7. Перечислите преимущества и недостатки технологии CAD/ CAM/CAE. В чём заключаются основные трудности их внедрения в электроэнергетике?
- 8. Какими свойствами обладает система электроснабжения как объект проектирования? Каконивлияютнасоздание САПР?
- 9. Какие задачи САПР ОРУ САD и ЗРУ САD относятся к формализуемым, а какие к трудно формализуемым? Какие применяются режимы в работе САПР в зависимости от характера и степени участия человека и использования ЭВМ?
- 10. В чём особенности нисходящего и восходящего проектирования? Как это учитывается при создании САПР? Приведитепримеры.
- 11. Дайте определения обеспечивающим подсистемам САПР. Как связаны между собой техническое и программное обеспечения САПР ОРУ САD и ЗРУ САD?
- 12. Какие подсистемы САПР можно отнести к обслуживающими, а какие к проектирующим?
 - 13. Приведите примеры компонентов и комплексов САПР систем электроснабжения.
- 14. Перечислите основные проблемы проектирования систем электроснабжения. Какое влияние они оказывают на создание САПР ОРУ САD и ЗРУ САD?
- 15. Какая информация необходима для составления ТЭО электрической части электроэнергетического объекта?
- 16. Какие основные задачи проектирования СЭС необходимо автоматизировать в первую очередь? Почему?
- 17. Какие этапы и стадии проектирования элементов систем электроснабжения регламентированы? Какимобразомихлучшеавтоматизировать?
- 18. Какие промышленные программные пакеты САПР вам известны? Сравните их основные возможности и область применения.

ПРИЛОЖЕНИЕ 2

(обязательное)

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Кодиндикатора	Индикатордостижениякомпетенций	Оценочныесредства
нормативно-те	хнической документацией, соблюдая р	и объектов профессиональной деятельности в соответствии с техническим заданием и различные технические, энергоэффективные и экологические требования и проводить
		техническую документацию на различных стадиях разработки проекта
ПК-3.1	Разрабатывает и оформляет комплекты проектной и рабочей документации простых узлов системы электроснабжения объектов капитального строительства	1. Вопросы для подготовки к промежуточной аттестации 1. Перечислите основные цели автоматизации проектирования СЭС. С помощью применения каких технологий их можно достичь? 2. Дайте определение понятиям: проектные операция и процедура, проектные решение и маршрут, этап и стадия проектирования. 3. Какие виды проектных процедур могут быть использованы в САПР? 4. Какие этапы входят в типовую схему проектирования? Приведите их область назначения и основные функции. 5. Какие типовые задачи автоматизации проектирования характерны для ОРУ САD и ЗРУ САD? 6. В чём особенность параллельного (смешанного проектирования)? Для каких энергетических объектов его можно применить? 7. Перечислите преимущества и недостатки технологии САD/ САМ/САЕ. В чём заключаются основные трудности их внедрения в электроэнергетике? 2. Задания для самостоятельных работ СР-2 «САПР схем распределительных устройств электростанций и подстанций» На основании технического задания с использованием САПР «ОРУ САD» и «ЗРУ САD»: разработать однолинейную схему ГПП; - спроектировать собственные нужды подстанции.

Кодиндикатора	Индикатордостижениякомпетенций	Оценочныесредства						
		1. Обшая	1. Общая характеристика района размещения подстанции					
		1.1. Месторасположение		Урал				
		1.2. Рельефплощадки ПС		Равнинный				
		1.3. Грунты		Суглинки				
			2. Техническиепоказате					
		2.1 Мощностьтрансформ	аторов	40 MBA				
		2.2. Тип и количествотра		2×ТРДН-40000/110				
		2.3. Главныесхемыэлектр		Одинарнаясекционированная				
			нений на стороне ВН	6				
				овку 52 ячеек вакуумных выключателей				
		2.6. Количествоотходящи	хлиний - 4 ВЛ					
		2.7. ПА принята при коли	честве присоединений 110 кВ	более двух				
			_					
		3. Аудиторнаяконтрол	тьнаяработа					
		17. Какая из схем выпо	олнена верно:					
		a)	б)	в)				
		l i	j					
		l	众	众				
			ΓÌ	\Box				
		\frac{1}{2}	*	*				
		, ¥ ,	• • •	•				
		┨┈┈╁╁╁	+++	7 4 4 4				
		l \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	£ \$\$	¥₽₽₽				
		1 & &&	$\mathcal{L}\mathcal{L}$	L LL				
		<u> </u>	↓ 	↓ ↓ ↓				
		\ <u>\</u>	<u> </u>	<u> </u>				
		J &	\ <u>'</u> \L	<u>_</u>				
		÷ ∱	<u>↓</u> ∱	Ì				
				/7 . /* ×				
			<>>	<>>				
			'					
		""	4	4 *				

2. Перечислите основные проблемы проектирования систем электроснабжения объекта капитального строительства 2. Перечислите основные проблемы проектирования систем электроснабже влияние они оказывают на создание САПР ОРУ САD и ЗРУ САD? 3. Какие промышленые программные пакеты САПР вам известны? Сравните и возможности и область применения. 2. Задания для самостоятельных работ СР-2 «САПР ехем распределительных устройств электростанций и подстанций» На основании технического задания с использованием САПР «ОРУ САD» и «ЗР - рассчитать технико-экономические показатели; - выбрать оптимальную схему распределительного устройства главной понизите подстанции; Условия задачи приведены в индикаторе 4.1. СР-3 «Оптимизация режимов работы систем электроснабжения с собственными источниками электроэнергии» Для заданной схемы электроснабжения с собственными источниками электроэнностанций в ПВК «КАТРАН», если технико-экономические модели турбогенерато электростанций в ПВК «КАТРАН», если технико-экономические модели генераторов Рром = 6 МВт — Технико-экономические модели генераторов Ром = 4 МВт — Технико-экономические модели генераторов Ром = 5 б	Кодиндикатора	Индикатордостижениякомпетенций	Оценочныесредства					
решения для разработки отдельных разделов на различных стадиях проекта системы электроснабжения объекта капитального строительства 1. Приведите примеры компонентов и комплексов САПР систем электроснабжения объекта капитального строительства 2. Перечислите основные проблемы проектирования систем электроснабжения объекта капитального строительства 3. Какие промышленные программные пакеты САПР вам известны? Сравните и возможности и область применения. 2. Задания для самостоятельных работ СР-2 «САПР схем распределительных устройств электростанций и подстанций» На основании технического задания с использованием САПР «ОРУ САD» и «ЗР - рассчитать технико-экономические показатели; выбрать оптимальную схему распределительного устройства главной понизите подстанции; Условия задачи приведены в индикаторе 4.1. СР-3 «Оптимизация режимов работы систем электроснабжения с собственными истоянствующей виданной схемы электроенабжения с собственными истоянствующей виданной схемы электроенабжения с собственными истояниками электроэносуществить поиск оптимального распределения активных мощностей между генератор электростанций в ЦВК «КАТРАН», если технико-экономические модели турбогенерато следующий вид: Технико-экономические модели генераторов Р _{пом} = 6 МВт — Р, МВт — 4 — 5 — 6 — В — В — В — В — В — В — В — В — В								
СР-2 «САПР схем распределительных устройств электростанций и подстанций» На основании технического задания с использованием САПР «ОРУ САД» и «ЗР - рассчитать технико-экономические показатели; - выбрать оптимальную схему распределительного устройства главной понизите подстанции; Условия задачи приведены в индикаторе 4.1. СР-3 «Оптимизация режимов работы систем электроснабжения с собственными ис электроэнергии» Для заданной схемы электроснабжения с собственными источниками электроэне осуществить поиск оптимального распределения активных мощностей между генератор электростанций в ПВК «КАТРАН», если технико-экономические модели турбогенерато следующий вид: Технико-экономические модели генераторов Рыом = 6 МВт Р, МВт 4 5 6 Д₀, м³ 44 47 50 S, руб./м³ 234 235 233	ПК-3.2	решения для разработки отдельных разделов на различных стадиях проекта системы электроснабжения	 Приведите примеры компонентов и комплексов САПР систем электроснабжения. Перечислите основные проблемы проектирования систем электроснабжения. Какое влияние они оказывают на создание САПР ОРУ САD и ЗРУ САD? Какие промышленные программные пакеты САПР вам известны? Сравните их основные 					
- рассчитать технико-экономические показатели;								
электроэнергии» Для заданной схемы электроснабжения с собственными источниками электроэно осуществить поиск оптимального распределения активных мощностей между генератор электростанций в ПВК «КАТРАН», если технико-экономические модели турбогенерато следующий вид:			- выбрать оптимальную схему распределительного устройства главной понизительной подстанции;					
$\begin{array}{ c c c c c c c }\hline P_{\text{HoM}} = 6 \text{ MBT} \\ \hline P_{\text{N}} \text{ MBT} & 4 & 5 & 6 \\ \hline D_{0}, \text{ M}^{3} & 44 & 47 & 50 \\ \hline S, \text{ py6./m}^{3} & 234 & 235 & 233 \\ \hline \end{array}$			Для заданной схемы электроснабжения с собственными источниками электроэнергии, осуществить поиск оптимального распределения активных мощностей между генераторами электростанций в ПВК «КАТРАН», если технико-экономические модели турбогенераторов имеют					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$P_{\text{\tiny HOM}} = 6 \text{ MB}_{ ext{T}}$					
D_0 , M^3 44 47 50 S, py6./ M^3 234 235 233								
			D_0, M^3 44 47 50					
$P_{ ext{ iny HOM}} = 12 \; ext{MBT}$			S, py6./m ³ 234 235 233					
			$P_{\text{HOM}} = 12 \text{ MBr}$					
$\begin{array}{ c c c c c c c c c }\hline P, MBT & 8 & 9 & 10 & 11 & 12 \\\hline D_0, M^3 & 61 & 65 & 69 & 74 & 77 \\\hline \end{array}$			· ·					

Кодиндикатора	Индикатордостижениякомпетенций	Оценочныесредства								
		<i>S</i> , py6./м ³	351	3	358	34	12	347	354	
		$P_{\text{\tiny HOM}} = 20 \; \text{MBT}$								
		P, MBT	13	15		17	18	19	20	
		D_0, M^3	115	125		135	140	145	150	_
		<i>S</i> , руб./м ³	270	272	2 1	274	269	267	267	_
		$P_{\text{\tiny HOM}} = 32 \text{ MBT}$								_
		<i>P</i> , MBT	14	18		20	24	26	30	_
		D_0, M^3	177	195		205	220	229	235	
		<i>S</i> , руб./м ³	240	240) 1	232	245	241	234	
		$P_{\text{\tiny HOM}} = 40 \; \text{MBT}$								_
		P, MBT	25		29	30	32		39 40	
		D_0, M^3			176	182	188		12 216	
		<i>S</i> , руб./м ³	331	335	337	336	332	330 3	30 329	$oldsymbol{\bot}$
		$P_{\text{\tiny HOM}} = 63 \; \text{MBT}$								_
		<i>P</i> , MB _T	37		43	46	48		54 60	
		D_0, M^3			202	214	222		48 260	
		<i>S</i> , руб./м ³	360	365	362	361	354	353 3	53 350	
		$P_{\text{\tiny HOM}} = 100 \text{ MBT}$								_
		P, MBT	82		86	88	90		95 100	
		D_0, M^3			229	234	237		50 265	
		<i>S</i> , руб./м ³	321	325	325	333	330	329 3	27 326	_
		3. Аудитор 1. Назови присоединении В	те, каки	е измер				ы и при	боры уче	та должны быть установлены на
					рител	ьные	прибоп	ы и пои	боры үче	та должны быть установлены на
		присоединении К			C 111 001.	ZIIDIO I	р.1.оор	pii	opp jie	za gamana azara yaranazaranin na

Кодиндикатора	Индикатордостижениякомпетенций	Оценочныесредства
		3. Назовите, какие измерительные приборы и приборы учета должны быть установлены на присоединении ТСН (ввод ВН)? 4. Назовите, какие измерительные приборы и приборы учета должны быть установлены на присоединении синхронного двигателя напряжением выше 1 кВ? 5. Назовите, какие измерительные приборы и приборы учета должны быть установлены на присоединении силового трансформатора с расщепленной обмоткой НН (ввод низкого напряжения)? 6. Какую схему должна предложить САПР в соответствии с требованиями норм проектирования для распределительного устройства ВН проходной подстанции напряжением 35 кВ с 4 присоединениями, при условии, что на РУ предполагаются частые коммутации трансформатора? Назовитеномер и полноеназваниесхемы. 7. Какую схему должна предложить САПР в соответствии с требованиями норм проектирования для распределительного устройства ВН транзитной подстанции напряжением 35 кВ с 6 присоединениями? Назовитеномер и полноеназваниесхемы. 8. Какую схему должна предложить САПР в соответствии с требованиями норм проектирования для распределительного устройства СН узловой подстанции напряжением 110 кВ с 5 присоединениями? Назовитеномер и полноеназваниесхемы. 9. Какую схему должна предложить САПР в соответствии с требованиями норм проектирования для распределительного устройства ВН узловой подстанции напряжением 110 кВ с 12 присоединениями? Назовитеномер и полноеназваниесхемы. 10. Какую схему должна предложить САПР в соответствии с требованиями норм проектирования для распределительного устройства ВН узловой подстанции напряжением 220 кВ с 4 присоединениями? Назовитеномер и полноеназваниесхемы.
ПК-3.3	Выбирает оборудование для отдельных разделов проекта на различных стадиях проектирования системы электроснабжения объектов капитального строительства	1. Вопросы для подготовки к промежуточной аттестации 1. Какие задачи САПР ОРУ САD и ЗРУ САD относятся к формализуемым, а какие — к трудно формализуемым? Какие применяются режимы в работе САПР в зависимости от характера и степени участия человека и использования ЭВМ? 2. В чём особенности нисходящего и восходящего проектирования? Как это учитывается при создании САПР? Приведитепримеры. 3. Дайте определения обеспечивающим подсистемам САПР. Как связаны между собой техническое и программное обеспечения САПР ОРУ САD и ЗРУ САD? 4. Какие подсистемы САПР можно отнести к обслуживающими, а какие — к проектирующим?

Кодиндикатора	Индикатордостижениякомпетенций	Оценочныесредства
		2. Задания для самостоятельных работ CP-2 «CAПР схем распределительных устройств электростанций и подстанций» На основании технического задания с использованием САПР «ОРУ САД» и «ЗРУ САД»: - осуществить расчет токов короткого замыкания; - осуществить выбор и проверку оборудования РУ ВН и НН. Условия задачи приведены в индикаторе 4.1.
		3. Аудиторнаяконтрольнаяработа 18. Минимально допустимый ток отключения может быть у выключателей на РУ 10 кВ с $I_{n0} = 12,6$ кА и $T_a = 0,07$ с а) 20 кА б) 25 кА в) 31,5 кА г) 50 кА
		19. Минимально допустимый номинальный ток выключателя на вводе 10 кВ силового трансформатора ТРДН-25000/110 составляет: а) 630 A б) 1000 A в) 1600 A г) 2000 A
		20. Минимально допустимый номинальный ток выключателя на вводе 110 кВ силового трансформатора ТРДН-25000/110 составляет: а) 630 A б) 1000 A в) 1600 A г) 2000 A
		21. Минимально допустимый ток электродинамической стойкости может быть у выключателей на РУ 220 кВ с $I_{\rm n0}=21$ кА и $T_{\rm a}=0.02$ с

Кодиндикатора	Индикатордостижениякомпетенций	Оценочныесредства
		а) $20~\rm kA$ б) $25~\rm kA$ в) $31,5~\rm kA$ г) $50~\rm kA$
ПК-4: Способен	н разрабатывать и корректировать до	г) 125 кА кументы по эксплуатации электротехнического оборудования
ПК-4.1	Выполняет чертежи электрических схем и вносит в них изменения.	1. Вопросы для подготовки к промежуточной аттестации 1. Какая информация необходима для составления ТЭО электрической части электроэнергетического объекта? 2. Какие основные задачи проектирования СЭС необходимо автоматизировать в первую очередь? Почему? 3. Какие этапы и стадии проектирования элементов систем электроснабжения регламентированы? Какимобразомихлучшеавтоматизировать? 2. Задания для самостоятельных работ СР-1 «САПР светотехнической части электроустановок» Осуществить расчет прожекторного освещения открытого распределительно устройства подстанции 110/10 кВ с использованием программного обеспечения Dialux, если план подстанции приведен на

Кодиндикатора	Индикатордостижениякомпетенций	Оценочныесредства
		рисунке. Привести план расстановки прожекторных мачт, указать типы светильников и ламп. Привести план с изображением изолиний.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний и выявляющие сформированность компетенций, проводится в форме зачета.

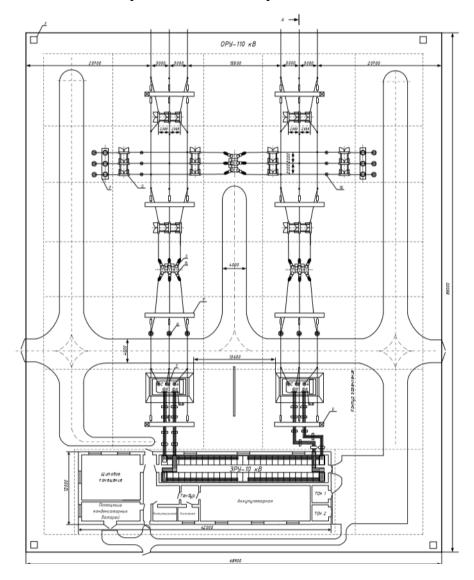
Зачет по данной дисциплине проводится в устной форме собеседования и включает 2-3 теоретических вопроса.

Критерии оценки:

—«зачтено» — студент должен знать особенности направления «Электроэнергетика и электротехника»;

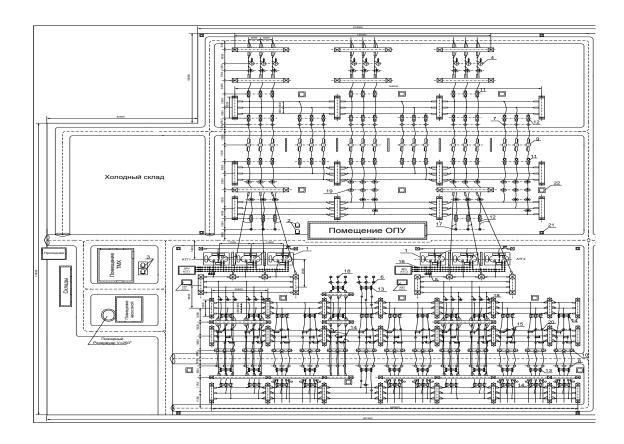
—**«не зачтено»** — студент не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

приложение 2

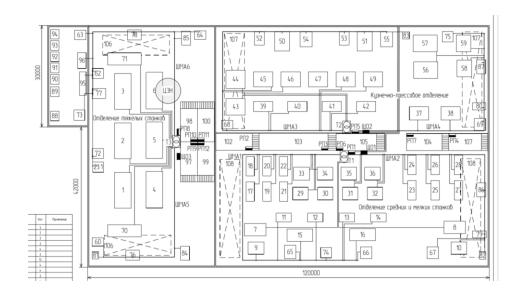

(обязательное)

Методические рекомендации по выполнению практических заданий

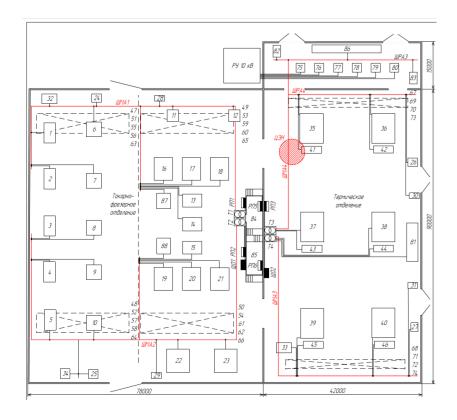
СР-1 «САПР светотехнической части электроустановок»


Вариант 1

Осуществить расчет прожекторного освещения открытого распределительно устройства подстанции 110/10 кВ с использованием программного обеспечения Dialux, если план подстанции приведен на рисунке. Привести план расстановки прожекторных мачт, указать типы светильников и ламп. Привести план с изображением изолиний.


Вариант 2

Осуществить расчет прожекторного освещения открытого распределительно устройства подстанции 500/220 кВ с использованием программного обеспечения Dialux, если план подстанции приведен на рисунке. Привести план расстановки прожекторных мачт, указать типы светильников и ламп. Привести план с изображением изолиний.


Вариант 3

Осуществить расчет освещения кузнечно-прессового отделения механического цеха с использованием программного обеспечения Dialux, если план цеха приведен на рисунке. Привести план расстановки светильников, указать типы светильников и ламп. Привести план с изображением изолиний.

Вариант 4

Осуществить расчет освещения термического отделения механического цеха с использованием программного обеспечения Dialux, если план цеха приведен на рисунке. Привести план расстановки светильников, указать типы светильников и ламп. Привести план с изображением изолиний.

СР-2 «САПР схем распределительных устройств электростанций и подстанций»

На основании технического задания с использованием САПР «ОРУ САD» и «ЗРУ САD»:

- рассчитать технико-экономические показатели;
- выбрать оптимальную схему распределительного устройства главной понизительной подстанции;
- разработать однолинейную схему ГПП;
- осуществить расчет токов короткого замыкания;
- осуществить выбор и проверку оборудования РУ ВН и НН;
- спроектировать собственные нужды подстанции.

Вариант 1

1. Общая характеристика района размещения подстанции

1.1.	месторасположение ПС	у рал
1.2.	Рельеф площадки ПС	Равнинный
1.3.	Грунты	Суглинки
	2. Технические показатели ПС	
2.1.	Мощность трансформаторов	40 MBA
2.2.	Тип и количество трансформаторов	2×ТРДН-40000/110
2.3.	Главные схемы электрических соединений	Одинарная
		секционированная
2.4.	Количество присоединений на стороне ВН	6
~ -	DDIV 10 D	~ ^

- 2.5. ЗРУ-10 кВ 4-х секционное, рассчитанное на установку 52 ячеек вакуумных выключателей
- 2.6. Количество отходящих линий 4 ВЛ
- 2.7. ПА принята при количестве присоединений 110 кВ более двух

Вариант 2

	1. Общая характеристика района разм	
	Месторасположение ПС	Поволжье
1.2.	Рельеф площадки ПС	Равнинный
1.3.	Грунты	Суглинки
0.1	2. Технические показател	
	Мощность трансформаторов	63 MBA
2.2.	Тип и количество трансформаторов	2×ТРДЦН-63000/220
	Главные схемы электрических соединений Количество присоединений на стороне BH	Две рабочие с.ш. 8
2.4. 2.5.	ЗРУ-10 кВ - 4-х секционное, рассчитанное на выключателей	
2.6	Количество отходящих линий - 6 ВЛ	
	ПА принята при количестве присоединений 220 г	кВ более лвух
	Вариант 3	
	1. Общая характеристика района разм	
	Месторасположение ПС	Западная Сибирь
1.2.	Рельеф площадки ПС	Равнинный
1.3.	Грунты	Суглинки
2.1	2. Технические показател	
	Мощность трансформаторов	125 MBA
	Тип и количество трансформаторов	2×АТДЦТН-125000/330/110
2.3.	Главные схемы электрических соединений	330 кВ - две рабочие с.ш.
		110 кВ - две рабочие с
2.4	V а нимаетра приссанимамий на сторома DU	обходной с.ш. 330 кВ - 6
2.4.	Количество присоединений на стороне ВН	330 кв - 0 110 кВ - 10
2.5	ЗРУ-10 кВ - 4-х секционное, рассчитанное на	
	выключателей	
2.6. 2.7.	Количество отходящих линий - 330 кВ - 4; 110 кВ ПА принята при количестве присоединений 330 кВ	
2.7.	ти с приняти при коли пестье присоединении 330	ко облес двух
	Вариант 4	
	1. Общая характеристика района разм	
	Месторасположение ПС	Восточная Сибирь
1.2.	Рельеф площадки ПС	Равнинный
1.3.	Грунты	Суглинки
	2. Технические показател	
2.1.	Мощность трансформаторов	63 MBA
2.2.	Тип и количество трансформаторов	2×ТРДН-63000/110
2.3.	Главные схемы электрических соединений	Шестиугольник
	Количество присоединений на стороне ВН	6
۷.).	ЗРУ-10 кВ - 4-х секционное, рассчитанное на	установку зо ячеек вакуумных
2.6	выключателей	

2.6. Количество отходящих линий - 4 ВЛ2.7. ПА принята при количестве присоединений 110 кВ более двух

Вариант 5

Рассчитать стоимость сооружения подстанции 220 кВ, если:

1. Общая характеристика района размещения подстанции

	- r /	- J
1.3.	Грунты	Суглинки
1.2.	Рельеф площадки ПС	Равнинный
1.1.	Месторасположение ПС	Дальний Восток

2. Технические показатели ПС

2.1	Мощность трансформаторов	100 MBA
∠	тиощность транеформаторов	100 111111

- 2.2. Тип и количество трансформаторов 2×ТРДЦН-100000/220 Две рабочие с.ш. с обходной
- 2.4. Количество присоединений на стороне ВН 10
- 2.5. ЗРУ-10 кВ 4-х секционное, рассчитанное на установку 38 ячеек вакуумных выключателей
- 2.6. Количество отходящих линий 8 ВЛ
- 2.7. ПА принята при количестве присоединений 220 кВ более двух

Вариант 6

1. Общая характеристика района размещения подстанции

Месторасположение ПС	Урал
Рельеф площадки ПС	Равнинный
Грунты	Суглинки
2. Технические показатели ПС	
Мощность трансформаторов	200 MBA
Тип и количество трансформаторов	2×ТРДЦН-200000/330/110
Главные схемы электрических соединений	330 кВ - две рабочие с.ш.
-	110 кВ - две рабочие с
	обходной с.ш.
Количество присоединений на стороне ВН	330 кВ - 8
	Рельеф площадки ПС Грунты 2. Технические показатели ПС Мощность трансформаторов Тип и количество трансформаторов Главные схемы электрических соединений

- 110 кВ 12 2.5. ЗРУ-10 кВ - 4-х секционное, рассчитанное на установку 64 ячеек вакуумных выключателей
- 2.6. Количество отходящих линий 330 кВ 6; 110 кВ 10
- 2.7. ПА принята при количестве присоединений 330 кВ более двух

Методические указания к выполнению СР-3

По заданной схеме рис. 1 в соответствии с заданным вариантом определите:

1) оптимальное распределение активных мощностей генераторов с учетом потерь мощности; без учета потерь мощности в распределительных сетях промышленного энергоузла при различных условиях связи с энергосистемой режимах методом последовательного утяжеления путем сопоставления расчетных значений коэффициента запаса устойчивости с нормативными значениями.

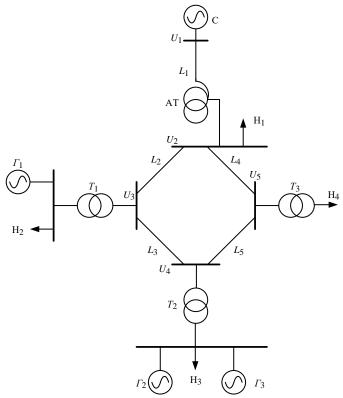


Рис. 1.1. Схема системы электроснабжения промышленного предприятия с собственными источниками электроэнергии

Расчет на примере варианта № 21

По исходным данным варианта № 21 (прил. 1, 2, 3) начертить схему электроснабжения в ПВК «КАТРАН».

1. Определить оптимальное распределение мощностей между генераторами собственных электростанций промышленного предприятия.

Во вкладке «Генераторы» («Расчёт» \rightarrow «Параметры» \rightarrow «Генераторы») установить флажок «Учитывать себестоимость на каждом отрезке характеристики», обязательно во вкладке «Динамика» того же окна «Параметры расчета» сбросить все флажки.

- В окне «Оптимизация» (рис. 2) («Оптимизация» \rightarrow «Оптимизация по активной мощности»):
- во вкладке «Оптимизация» установить «Условия связи с энергосистемой» «С 525»;
- во вкладке «Оптимизация» установить «Стоимость 1 кВт·час» электроэнергии в соответствии с приложением №2 -2,82 руб.;
- во вкладке «Оптимизация» установить ограничения по приему мощности из энергосистемы «Равно: 351» (ограничения по приему мощности из энергосистемы определяются автоматически);

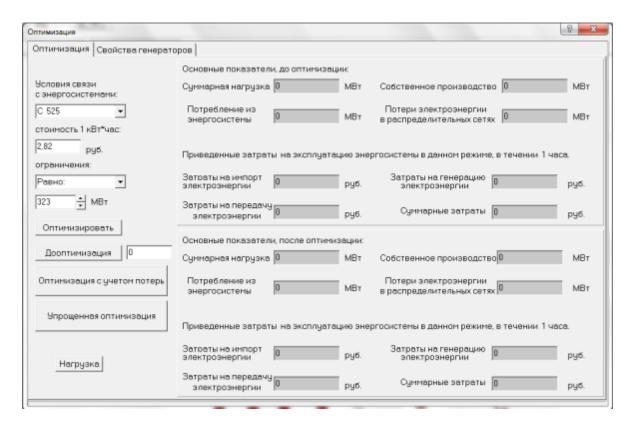


Рис. 2. Задание условий связи с энергосистемой

- во вкладке «Свойства генераторов» задать технико-экономические модели для генераторов: Γ_1 - 2×T-20 (далее по тексту − 1 Γ_1 и 2 Γ_1), Γ_2 - ТВФ-63, Γ_3 - Т-20 (рис. 3) в соответствии с приложением № 4.

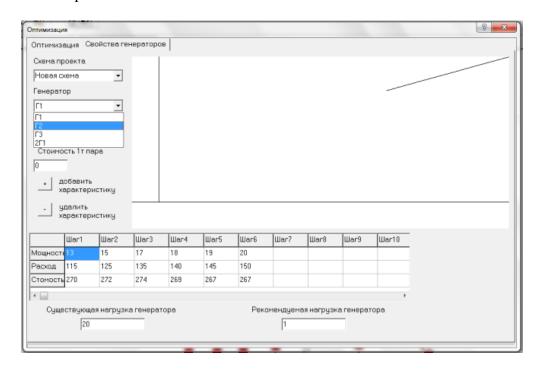


Рис. 3. Задание технико-экономических характеристик генераторов

Нажать кнопку «Оптимизировать» (определение оптимального распределения мощностей между источниками без учета потерь мощности). В результате расчета получим значения в полях «Собственное производство», «Потери электроэнергии в распределительных сетях», «Затраты на импорт электроэнергии», «Затраты на генерацию электроэнергии», «Затраты

на передачу электроэнергии», «Суммарные затраты» и «Рекомендуемая нагрузка генераторов» (рис. 4).

Далее, задав шаг 1 МВт и нажав кнопку «Дооптимизация», определить оптимальное распределение мощностей между генераторами промышленных электростанций с учетом потерь активной мощности в распределительных сетях системы электроснабжения предприятия черной металлургии. По результатам расчета зафиксировать те же значения. Определить значения показателей для существующего режима.

Для каждого значения мощности, принимаемой из энергосистемы, т.е. 351 - 395 MBT, с шагом 1 MBT повторить расчеты. Полученные значения свести в табл. 1 - 2.

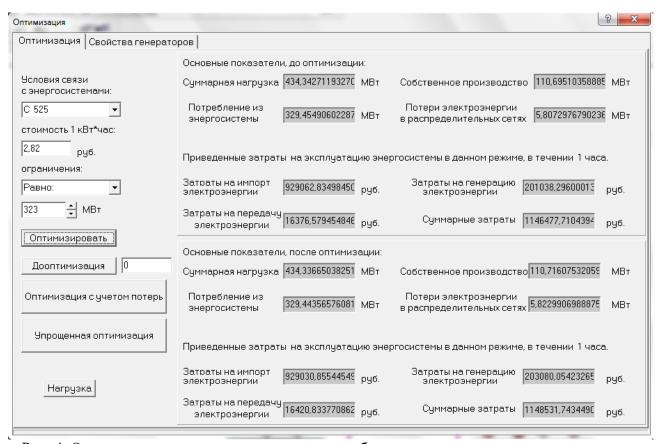


Рис. 4. Оптимизация режима системы электроснабжения промышленного предприятия

Таблица 1

Результаты расчета

Прием из системы, МВт	Собственн ое производс тво, МВт	Потер и, МВт	Затраты на прием э/э, руб.	Затраты на передачу э/э, руб.	Затраты на генерацию э/э, руб.	Суммарные затраты, руб.
	T		Существующи			
360	111,342	3,911	1024605,07	11029,26	201550,63	1237184,96
		Оптим	альный режим	без учета поз	герь	
351	120,351	3,769	1000857,74	10627,48	211150	1222635,22
352	119,349	3,782	1003505,31	10665,93	209890,93	1224062,17
353	118,349	3,8	1006141,94	10716,11	208635,38	1225493,43
354	117,35	3,818	1008776,89	10766,81	208055,33	1227599,03
355	116,35	3,836	1011409,31	10817,19	207355,63	1229582,13
356	115,35	3,854	1014040,89	10868,95	206655,88	1231565,72
357	114,35	3,873	1016670,78	10921,25	205956,06	1233548,1
358	113,35	3,891	1019298,15	10973,26	205256,19	1235527,61
359	112,35	3,91	1021924,68	11026,67	204556,27	1237507,62

360	111,35	3,929	1024548,69	11079,8	203910,93	1239539,42
361	110,35	3,948	1027171,85	11134,34	202380,87	1240687,06
			•••			
395	76,31	4,603	1115985,77	12980,85	158881,78	1287848,4
		Оптим	альный режим	с учетом пот	герь	
351	120,351	3,769	1000857,74	10627,48	211150	1222635,22
352	119,349	3,782	1003505,31	10665,93	209890,93	1224062,17
353	118,349	3,8	1006141,94	10716,11	208635,38	1225493,43
354	117,35	3,818	1008776,89	10766,81	208055,33	1227599,03
355	116,348	3,832	1011421,93	10806,06	206800,69	1229028,68
356	115,346	3,846	1014064,45	10845,72	205463,16	1230373,33
357	114,344	3,86	1016704,44	10885,82	204125,63	1231715,89
358	113,344	3,878	1019336,87	10936,8	202790,74	1233064,41
359	112,34	3,889	1021976,86	10967,31	202327,54	1235271,71
360	111,338	3,904	1024609,28	11008,73	200714,45	1236332,46
361	110,35	3,948	1027171,85	11134,34	202380,87	1240687,06
		•	•••			
395	76,31	4,603	1115985,77	12980,85	158881,78	1287848,4

Таблица 2

Рекомендуемые значения загрузки генераторов

					J 91111 1 01110	1 1				
Прием из	Γ_1 ,	Γ_2 ,	Γ_3 ,	Γ_4 ,	$1\Gamma_1$,	Г. МВт	Γ_3 , MBT	$2\Gamma_1$,		
системы,	МВт	МВт	МВт	МВт	МВт	,	- ,	МВт		
МВт	Оптим	иальный ј	режим бе	з учета	Опти	мальный ј	режим с у	четом		
WID1		ПОП	герь			ПОП	потерь			
360	20	60	20	20	20	60	20	20		
351	20	60	20	19	20	60	20	20		
352	20	60	19	19	20	60	19	19		
353	20	59	19	19	20	59	19	19		
354	20	58	19	19	19	59	19	19		
355	20	57	19	19	18	59	19	19		
356	20	56	19	19	18	59	19	18		
357	20	55	19	19	18	59	18	18		
358	20	54	19	19	15	59	19	19		
359	20	53	19	19	14	59	19	19		
360	20	52	19	19	20	52	19	19		
361	20	60	20	20	20	60	20	20		
•••			••				••			
395	13	37	13	13	13	37	13	13		

Приложение № 1

Устанави иваемые линии электропередачи в соответствии с номером варианта

		_	_	_			_	_	_	_	_	_	_	_			_	_	_	_		_
	L_5	AC-240/32	AC-300/39	AC-240/32																		
цов в ф све	$L_{\rm tf}$	2×AC-240/32	2×AC-240/32	2×AC-240/32	2×AC-240/32	2×AC-300/39	2×AC-400/27															
Марка провода, число проводов в фазе	L_3	AC-240/32	AC-300/39	AC-240/32																		
Марка пров	L_2	2×AC-240/32	2×AC-300/39	2×AC-400/27																		
	L_1	2×AC-300/39	2×AC-400/27	2×AC-500/64																		
	$L_{\rm S}$	20	8	30	56	42	28	8	09	99	52	84	4	40	36	32	28	24	20	19	18	17
й, км	L_4	4	69	R	26	¥	49	4	39	35	53	22	22	LZ	32	37	42	47	52	LS	62	29
линиі	L_3	43	38	33	28	23	21	56	31	36	4	46	51	99	19	99	31	97	19	35	37	42
Длины линий, км	L_2	20	25	30	35	40	45	20	55	09	99	20	35	09	53	28	33	89	63	89	53	48
7	L_1	300	190	200	310	180	210	320	170	220	330	130	230	340	140	240	350	150	250	360	160	260
№ вари-	анта		2	3	4	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21

Приложение №2

Устанавливаемые трансформаторы в соответствии с номером варианта

ТРДН-6 СТРДН-7 7ДЦН-1 12ДЦН-1 12ДЦН-1	TPДH-63000/220/10 2×TРДН 40000/220/10 2×TРДН 40000/220/10 TPДЦН-100000/220/10 TPДЦН-160000/220/10 TPДЦН-63000/220/10	Марки трансформаторов ТРДЦН-100000/220/10 ТРДЦТН-160000/220/10 2×ТРДЦН-63000/220/10 ТРДЦН-160000/220/10 ТРДЦН-160000/220/10 ТРДЦН-160000/220/10 ТРДЦН-160000/220/10	Тэ 2×ТРДН-40000/220/10 2×ТРДЦН-63000/220/10 2×ТРДЦН-63000/220/10 2×ТРДЦН-63000/220/10 2×ТРДЦН-100000/220/10 2×ТРДЦН-100000/220/10 2×ТРДЦН-100000/220/10 2×ТРДЦН-100000/220/10	Степс 1 2 2 1 1 1 2	енные пи наг.	е пока: <i>Q</i>	3are-	Стои- мость 1 кВт-ч руб/ кВт-ч 2,7 2,3 2,3 2,4 3,0 2,2
004 4 00 4	2×TPДH 40000/220/10 2×TPДH 40000/220/10 2×TPДH 40000/220/10 2×TPДH 40000/220/10	17. 人工 15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	2×17/441-100000/220/10 2×TP/441-100000/220/10 2×TP/441-100000/220/10 2×TP/44-100000/220/10	7 - 2 - 2	-0-00	0 - 2 0 -	7 - 2 2 -	2,1
0000	ТРДЦН-1 00000/220/10 2×ТРДЦН-6 3000/220/10 ТРДЦН-1 00000/220/10 2×ТРЛЦН-6 3000/220/10	ТРДЦН-100000/220/10 2×ТРДН-40000/220/10 2×ТРДЦН-63000/220/10 2×ТРДЦН-40000/220/10	2×TPДЦН-100000/220/10 2×TРДЦН-100000/220/10 2×TРДЦН-100000/220/10 2×TРДЦН-100000/220/10	1 - 2 - 2	-0-0	0 - 0	- 2 2 -	3,0
53000 53000 53000 53000	2×ТРДН 40000/220/10 2×ТРДН 40000/220/10 ТРДЦН-63000/220/10 ТРДЦН-63000/220/10 ТРДЦН-63000/220/10	2×ТРДН-40000/220/10 2×ТРДЦН-63000/220/10 2×ТРДЦН-63000/220/10 2×ТРДЦН-63000/220/10 ТРДЦН-160000/220/10	2×TPДЦН-100000/220/10 2×TPДЦН-100000/220/10 2×TPДЦН-100000/220/10 2×TPДЦН-100000/220/10 2×TPДЦН-40000/220/10 2×TPДЦН-63000/220/10	2 - 2 - 2 - 2	0 - 0 - 0	2 - 0 - 2 - 0 - 2	22-2-2	2,3 2,3 2,4 3,0 2,8

Приложение №3

Устанавливаемые генераторы и нагрузки в соответствии с номером варианта

		Q, MBap	LIL	17/15	2/8	11	6	9/5	11/10	5	19	30	15	5	3	15	2	2/3	LIS	100	2	14	9
	Γ3	P_{nb} MB _T	12/10	29/25	11/12	61	11	12/9	18/16	11	87	85	31	10	S	28	7	9/4	11/01	100	S	67	18
варианта		Марка	2×T-12	2×TBC-32	2×T-12	T-20	T-12	2×T-12	2×T-20	T-12	TB C-32	TB C-63	TB C-32	T-12	T-6	TB C-32	J-6	2×T-6	2×T-12	TBΦ-100	T-6	TB C-32	T-20
аторов		Qn, Mbap	20	9	20	30	19/17	25	18	18/16	10/9	3/2	972	21	10/11	10	10/8	6	15	100	30	8/11	25
ии с но	Γ_2	P_{n_b}	30	11	30	09	30/28	90	30	30/27	18/21	6/4	6/11	38	20/17	18	19/17	17	28	100	85	12//21	28
енераторы и нагрузки в соответствии с номером варианта Параметры генераторов		Марка	TBC-32	T-12	TBC-32	TB Φ-63	2×TBC-32	TB Φ-63	TBC-32	2×TBC-32	2×T-20	2×T-6	2×T-12	TBΦ-40	2×T-20	T-20	2×T-20	T-20	TBC-32	TBΦ-100	TB Φ-63	2×T-20	TBΦ-63
yskn B		Que MBap	13/10	12/8	32	14/10	40	30	14/10	21	22	1.5	20	10/12	18/15	35	15/14	20	6/8	100	14	12	10/8
инап	Γ1	Pa, MB _T	18/17	18/21	25	20/17	09	25	19/16	35	37	30	37	19/16	29/26	09	28/25	37	18/17	100	30	27	20/15
снераторы		Марка	2×T-20	2×T-20	TB Φ-63	2×T-20	TBΦ-63	TB Φ-63	2×T-20	TBΦ-40	TBΦ-40	TBC-32	TBΦ-40	2×T-20	2×TBC-32	TBΦ-63	2×TBC-32	TBΦ-40	2×T-20	TB Ф-100	TBC-32	TBC-32	2×T-20
устанавливаемые г рузки, МВА		H4	50+560	70+770	80+J70	08/+06	100+j80	110+770	120+j80	130+3110	140+5100	150+990	160+990	155+j110	150+j100	140+395	130+390	120+380	145+575	135+j60	125+j120	09+90	60+764
анавли и, МВА		H ₃	90+350	100+770	110+960	120+565	130+370	125+340	115+50			0£+S6	85+365	-		70+340	09/+59	09+jS0	78+355	85+360	90+340	100+178	120+,89
э станавли Нагрузки, МВА		H ₂	_	09/+09	30+3110 80+330 1	80+340	150+340 100+340 130+370	160+560 90+550 125+540	170+550 80+540 115+590	27/+501 05/+07 07/+081	190+/80 60+/35 90+/50	05/+56 05/+05	65+345	70+350	85+340	130+590 90+345 70+340	09/+59 85/+88	13+38 68+50	160+/60 68+/32 78+/55	170+350 58+325 85+360	180+,40 48+,20 90+,40	82+320 1 00+328	200+,20 63+,30 120+,89
		H ₁	100+j100 50+j40	120+j120 60+j60 100+j70	130+j110	140+j100 80+j40 120+j65	150+540	160+,60	170+550	180+770	190+/80	200+90	100+j120 65+j45 85+j65	110+j110 70+j50 80+j50	120+j100 85+j40 75+j35	130+90	140+/80	150+021	160+,60	170+550	180+,40	190+390	200+,20
٤	BabM-	анта	-	2	3	4	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21

Технико-экономические модели генераторов

D	_	6	N /	Вт
Γ HOM	_	U	IVI	$\mathbf{D}\mathbf{I}$

P, MBT	4	5	6
$D_0, { m M}^3$	44	47	50
<i>S</i> , руб./м ³	234	235	233

$P_{\text{HOM}} = 12 \text{ MBT}$

P, MBT	8	9	10	11	12
$D_0, { m M}^3$	61	65	69	74	77
<i>S</i> , руб./м ³	351	358	342	347	354

$P_{\text{HOM}} = 20 \text{ MBT}$

P, MBT	13	15	17	18	19	20
$D_0, { m M}^3$	115	125	135	140	145	150
<i>S</i> , руб./м ³	270	272	274	269	267	267

$P_{\text{HOM}} = 32 \text{ MBT}$

P, MBT	14	18	20	24	26	30
$D_0, { m M}^3$	177	195	205	220	229	235
<i>S</i> , руб./м ³	240	240	232	245	241	234

$P_{\text{HOM}} = 40 \text{ MBT}$

P, MBT	25	27	29	30	32	36	39	40
D_0 , M^3	163	171	176	182	188	201	212	216
<i>S</i> , руб./м ³	331	335	337	336	332	330	330	329

$P_{\text{HOM}} = 63 \text{ MBT}$

110141								
P, MBT	37	40	43	46	48	51	54	60
$D_0, { m M}^3$	177	189	202	214	222	235	248	260
<i>S</i> , руб./м ³	360	365	362	361	354	353	353	350

$P_{\text{HOM}} = 100 \text{ MBT}$

P, MBT	82	85	86	88	90	92	95	100
$D_0, { m M}^3$	217	225	229	234	237	248	250	265
<i>S</i> , руб./м ³	321	325	325	333	330	329	327	326