МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов

15.02.2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

СОВРЕМЕННЫЕ ПРОГРАММНЫЕ ПРОДУКТЫ ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ

Направление подготовки (специальность) 15.03.01 Машиностроение

Направленность (профиль/специализация) программы Машины и технологии обработки металлов давлением

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Машины и технологии обработки давлением и машиностроения

Курс

Магнитогорск 2022 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 15.03.01 Машиностроение (приказ Минобрнауки России от 09.08.2021 г. № 727)

Рабочая программа рассмотрена и технологии обработки давлением и машино 26.01.2022, протокол № 3	одобрена на заседании кафедры Машины и остроения Зав. кафедрой — С.И. Платов
Рабочая программа одобрена метод 15.02.2022 г. протокол № 6	нческой комиссией ИММиМ Председатель
Рабочая программа составлена: доцент кафедры МиТОДиМ, канд. техн. на	укР.Н. Амиров
Рецензент: доцент кафедры Механики, канд. техн. нау	кМаМ.В. Харченко

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2023 - 2024 учебном году на заседании кафедры Машины и технологии обработки давлением и				
Протокол от				
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2024 - 2025 учебном году на заседании кафедры Машины и технологии обработки давлением и				
Протокол от				
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2025 - 2026 учебном году на заседании кафедры Машины и технологии обработки давлением и				
Протокол от				
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2026 - 2027 учебном году на заседании кафедры Машины и технологии обработки давлением и				
Протокол от				
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2027 - 2028 учебном году на заседании кафедры Машины и технологии обработки давлением и				
Протокол от				

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Современные программные продукты для моделирования процессов ОМД» являются: развитие у студентов личностных качеств, а также формирование общекультурных и профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению Машиностроение. Студент должен получить знание и навыки применения главных научных методов исследования технических объектов: математического моделирования с использованием современных программных продуктов, получить представление о систематической природе технических зависимостей и закономерностей; изучить условия подобия при моделировании, методы интерпретации результатов исследований.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Современные программные продукты для моделирования процессов обработки металлов давлением входит в обязательую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Информатика

Математика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Производственная – преддипломная практика

Подготовка к сдаче и сдача государственного экзамена

Подготовка к процедуре защиты и защита выпускной квалификационной работы

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Современные программные продукты для моделирования процессов обработки металлов давлением» обучающийся лолжен облалать следующими компетенциями:

дописи с спадать ст	едующими компетенциими:			
Код индикатора	Индикатор достижения компетенции			
ОПК-14 Способен	ОПК-14 Способен разрабатывать алгоритмы и компьютерные программы, пригодные для			
практического при	менения.			
ОПК-14.1	Применяет основные алгоритмы к решению прикладных программ			
ОПК-14.2	Использует системы программирования для разработки компьютерных программ			
ОПК-14.3	Разрабатывает компьютерные программы, пригодные для практического применения			

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 10,7 акад. часов:
- аудиторная 10 акад. часов;
- внеаудиторная 0,7 акад. часов;
- самостоятельная работа 93,4 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к зачёту 3,9 акад. час
 Форма аттестации зачет

Раздел/ тема		Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код	
дисциплины	У	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1.								
1.1 Введение. Цели и задачи моделирования процессов ОМД с использованием программных продуктов.	5	1			22	Изучение материалов лекций и оформление реферата.	Реферат	ОПК-14.1, ОПК-14.2, ОПК-14.3
Итого по разделу		1			22			
2.								
2.1 Программные продукты для моделирования процессов ОМД.	5	1		2	20	Изучение материалов лекций и оформление реферата.	Реферат	ОПК-14.1, ОПК-14.2, ОПК-14.3
Итого по разделу		1		2	20			
3.								
3.1 Особенности математического моделирования тепловых процессов ОМД с использованием программных продуктов.	5	1		4	27,1	Изучение материалов лекций и выполнение КР.	Контрольная работа	ОПК-14.1, ОПК-14.2, ОПК-14.3
Итого по разделу		1		4	27,1			
4.								
4.1 Характеристика решений от ESI Group, MSC Marc и др. разработчиков.	5	1			24,3	Изучение материалов лекций и выполнение КР.	Контрольная работа	ОПК-14.1, ОПК-14.2, ОПК-14.3
Итого по разделу		1			24,3			
5.								
5.1 Зачет	5							ОПК-14.1, ОПК-14.2, ОПК-14.3
Итого по разделу	Итого по разделу							
Итого за семестр		4		6	93,4		зачёт	

Итого по дисциплине	4	6	93,4	зачет	

5 Образовательные технологии

1. Традиционные образовательные технологии ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция — последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Семинар – беседа преподавателя и студентов, обсуждение заранее подготовленных сообщений по каждому вопросу плана занятия с единым для всех перечнем рекомендуемой обязательной и дополнительной литературы.

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

Лабораторная работа – организация учебной работы с реальными материальными и информационными объектами, экспериментальная работа с аналоговыми моделями реальных объектов.

2. Технологии проблемного обучения — организация образовательного процесса, которая предполагает постановку проблемных вопросов, создание учебных проблемных ситуаций для стимулирования активной познавательной деятельности студентов.

Формы учебных занятий с использованием технологий проблемного обучения:

Практическое занятие в форме практикума — организация учебной работы, направленная на решение комплексной учебно-познавательной задачи, требующей от студента применения как научно-теоретических знаний, так и практических навыков.

Практическое занятие на основе кейс-метода — обучение в контексте моделируемой ситуации, воспроизводящей реальные условия научной, производственной, общественной деятельности. Обучающиеся должны проанализировать ситуацию, разобраться в сути проблем, предложить возможные решения и выбрать лучшее из них. Кейсы базируются на реальном фактическом материале или же приближены к реальной ситуации.

4. Интерактивные технологии – организация образовательного процесса, которая Формы учебных занятий с использованием специализированных интерактивных технологий:

Лекция «обратной связи» — лекция—провокация (изложение материала с заранее за-планированными ошибками), лекция-беседа, лекция-дискуссия, лекция-прессконференция.

Семинар-дискуссия – коллективное обсуждение какого-либо спорного вопроса, про-блемы, выявление мнений в группе (межгрупповой диалог, дискуссия как спор-диалог).

5. Информационно-коммуникационные образовательные технологии — организация образовательного процесса, основанная на применении специализированных программных сред и технических средств работы с информацией.

Формы учебных занятий с использованием информационно-коммуникационных технологий:

Лекция-визуализация — изложение содержания сопровождается презентацией (де-монстрацией учебных материалов, представленных в различных знаковых системах, в т.ч. иллюстративных, графических, аудио- и видеоматериалов).

Практическое занятие в форме презентации — представление результатов проект-ной или исследовательской деятельности с использованием специализированных программных сред.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

1. Планирование эксперимента и обработка результатов с использованием ЭВМ : учебное пособие / А. А. Кальченко, К. Г. Пащенко ; МГТУ. - Магнитогорск : МГТУ, 2017. - 1 электрон. опт. диск (CD-ROM). - На тит. л. сост. указаны как авторы. - Текст : электронный.

б) Дополнительная литература:

- 1. Математические методы в инженерии : учебное пособие / А. А. Кальченко, К. Г. Пащенко ; МГТУ. Магнитогорск : МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). На обор. тит. л. авт. указаны как сост. Текст : электронный.
- 2. Компьютерные технологии в машиностроении : учебное пособие / А. А. Кальченко ; МГТУ. Магнитогорск : МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Текст : электронный.

в) Методические указания:

1. Моделирование систем и процессов. Практикум: учебное пособие для вузов / В. Н. Волкова [и др.]; под редакцией В. Н. Волковой. — Москва: Издательство Юрайт, 2020. — 295 с. — (Высшее образование). — ISBN 978-5-534-01442-6. — Текст: электронный // ЭБС Юрайт [сайт]. — URL: http://www.biblio-online.ru/bcode/451288 (дата обращения: 19.10.2020).

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
MathCAD v.15 Education University Edition	Д-1662-13 от 22.11.2013	бессрочно
MathWorks MathLab v.2014 Classroom License	К-89-14 от 08.12.2014	бессрочно
Maple 14 Classroom License	К-113-11 от 11.04.2011	бессрочно
Autodesk Architecture 2011 Master Suite	К-526-11 от 22.11.2011	бессрочно

Autodesk AutoCad 2011 Master Suite	К-526-11 от 22.11.2011	бессрочно
13D B.16	Д-261-17 от 16.03.2017	бессрочно
APM WinMachine 2010	Д-262-12 от 15.02.2012	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Information Services, OOO «MBMC»	nttps://diib.eastview.com/
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Лаборатория резки и сварки: Программируемые станки (с ЧПУ).

Машины универсальные испытательные на растяжение, сжатие, скручивание. Мерительный инструмент.

Приборы для измерения твердости по методам Бринелля и Роквелла. Микротвердомер измерения твердости по Виккерсу.

Печи термические.

Микроскопы МИМ-6, МИМ-7.

Мультимедийные средства хранения, передачи и представления информации

Компьютерные классы с соответствующим ПО.

Плакаты по первичным преобразователям (лаборатория каф. МиТОДиМ)

Датчики (лаборатория каф. МиТОДиМ).

Мультимедийные средства хранения, передачи и представления информации; видеопроектор, экран настенный, компьютер; тестовые задания для текущего контроля успеваемости

Комплект печатных и электронных версий методических рекомендаций, учебное пособие, плакаты по темам «Автоматизация производственных процессов в машиностроении». Оборудование для обработки резкой. Образцы машиностроительных материалов и образцы из специальных сталей и сплавов

Комплект методических рекомендаций, учебное пособие, плакаты по темам «Автоматизация сварочных процессов»

- 1. Машины универсальные испытательные на растяжение, сжатие, скручивание.
- 2. Мерительный инструмент.
- 3. Приборы для измерения твердости по методам Бринелля и Роквелла.
- 4. Микротвердомер.
- 5. Печи термические.

Микроскопы МИМ-6, МИМ-7.

Доска, мультимедийный проектор, экран

Персональные компьютеры с пакетом MS Office и выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Стеллажи, сейфы для хранения учебного оборудования

Инструменты для ремонта лабораторного оборудования

6 Учебно-методическоеобеспечениесамостоятельнойработыобучающихся По дисциплине «Современные программные продукты для моделирования процессов обработки металлов давлением» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Самостоятельная работа студентов предполагает решение задач, подготовку рефератов.

Примерные задания для самостоятельного решения:

Аудиторное практическое занятие

Аудиторная задача:Ознакомление с САЕ пакетами

Сделать постановку задачи в САЕ системе для модели технологического процесса изготовления ... используя чертежи. Вывести результаты.

Возможности Компас 3D по моделированию температурных деформаций.

Создать твердотельную модель сварной конструкции и произвести тепловой расчет. Используя библиотеку APM FEM, для твердотельных моделей сварных конструкций, с учетом закрепления произвести тепловой расчет. Под тепловым здесь понимается - стационарная теплопроводность, т.е. без учета отвода и подвода тепла к телу. Если же вас интересуют вопросы нагрева / охлаждения, то это уже нестационарная теплопроводность, которая может быть посчитана только в более старшем продукте компании НТЦ "АПМ" - системе APM WinMachine (только в аудиториях МГТУ на платном ПО).

Реферат.Подготовьте обзор на тему современные свободные и проприетарные САЕсистемы (примерные темы):

Свободные			
BRL-CAD Magic			
Electric	OpenSCAD		
freeCAD (A-S. Koh's)	Open CASCADE Technology		
FreeCAD (Juergen Riegel's)	QCad		
gEDA	SALOME		
KiCad	SolveSpace		
LibreCAD	ZCad		
<u>Проприетарные</u>			
A9CAD	Mineframe		
Active-HDL nanoCAD			

ADEM

Altium Designer ArchiCAD AutoCAD

Autodesk Inventor

bCAD Bocad-3D BricsCAD BtoCAD

CADintosh Cadmech

CATIA

CorelCAD
DraftSight
E3.series
easyEDA
EPLAN Electric
GstarCAD
Inovate
IntelliCAD
Ironcad

MEDUSA4

КЗ

Ironcad Draft

nanoCAD free

NX OrCAD P-CAD

Pro/ENGINEER Proteus PSpice

QForm 2D/3D

Revit

Rhinoceros 3D SAMCEF

SEE Electrical Expert

Solid Edge SolidWorks Specctra SprutCAM T-FLEX CAD Tecnomatix TopoR TurboCAD VariCAD ZwCAD

Компас

Темы к зачету. Дайте характеристику ПО:

Система комплексного нелинейного анализа конструкций MARC

Компьютерная программа ANSYS

Компьютерная программа SPOTSIM

Компьютерная программа SYSWELD

И.т.п, и.т.д.

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Индикатор достижения компетенции	Оценочі средст		
ОПК-14: Способен раз	рабатывать алгоритмы и компьютері	ные программы, пригодные для практического при	менения.	
ОПК-14.1	Применяет основные алгоритмы	Темы к зачету. Дайте характеристику ПО:		
	к решению прикладных программ	Система комплексного нелинейного анализа конс	трукций MARC	
		• Компьютерная программа Компас и ANSYS	5	
		• Компьютерная программа SPOTSIM		
		• Компьютерная программа SYSWELD И.т.п, и.т.д.		
ОПК-14.2	Использует системы	Реферат. Подготовьте обзор на тему современны	е свободные и проприетарные САЕ системы	
	программирования для	(примерные темы):		
	разработки компьютерных	0-6		
	программ		одные	
		BRL-CAD	Magic	
		Electric	OpenSCAD	
		freeCAD (A-S. Koh's)	Open CASCADE Technology	
		FreeCAD (Juergen Riegel's)	QCad	
		gEDA	SALOME	
		KiCad	SolveSpace	
		LibreCAD	ZCad	
		Προπο	 нетарные	
		A9CAD	Mineframe	

Структурный элемент компетенции	Индикатор достижения компетенции		Оценочные средства	
		Active-HDL ADEM Altium Designer ArchiCAD AutoCAD Autodesk Inventor bCAD Bocad-3D BricsCAD BtoCAD CADintosh Cadmech CATIA CorelCAD DraftSight E3.series easyEDA EPLAN Electric GstarCAD Inovate IntelliCAD Ironcad Ironcad Draft K3 MEDUSA4	nanoCAD nanoCAD free NX OrCAD P-CAD P-CAD Pro/ENGINEER Proteus PSpice QForm 2D/3D Revit Rhinoceros 3D SAMCEF SEE Electrical Expert Solid Edge SolidWorks Specctra SprutCAM T-FLEX CAD Tecnomatix TopoR TurboCAD VariCAD ZwCAD Kοмпас	
ОПК-14.3	Разрабатывает компьютерные программы, пригодные для практического применения	Аудиторное практическое занятие Аудиторная задача: Ознакомление		

Структурный элемент компетенции	Индикатор достижения компетенции	Оценочные средства
		Сделать постановку задачи в САЕсистеме для модели технологического процесса изготовления используя чертежи. Вывести результаты. Возможности Компас 3D по моделированию температурных деформаций.
		Создать твердотельную модель сварной конструкции и произвести тепловой расчет. Используя библиотеку APM FEM, для твердотельных моделей сварных конструкций, с учетом закрепления произвести тепловой расчет. Под тепловым здесь понимается - стационарная теплопроводность, т.е. без учета отвода и подвода тепла к телу. Если же вас интересуют вопросы нагрева / охлаждения, то это уже нестационарная теплопроводность, которая может быть посчитана только в более старшем продукте компании НТЦ "АПМ" - системе APM WinMachine (только в аудиториях МГТУ на платном ПО). Домашнее задание: оформить результаты расчета. Интерпретировать результаты.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Зачет считается сданным, если студент показал знание основных положений учебной дисциплины, умение решить конкретную практическую задачу, использовать рекомендованную и справочную литературу для выполнения проекта.

Оценка «зачтено» ставится, если студент освоил программный материал дисциплины, знает отдельные детали, последователен в изложении программного материала.

Оценка «не зачтено» ставится, если студент не знает отдельные темы дисциплины, непоследователен в его изложении, не в полной мере владеет необходимыми умениями и навыками при выполнении проекта.