МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ГИДРОПНЕВМОПРИВОД И ГИДРОПНЕВМОАВТОМАТИКА ГОРНЫХ МАШИН

Направление подготовки (специальность) 21.05.04 Горное дело

Направленность (профиль/специализация) программы Горные машины и оборудование

Уровень высшего образования - специалитет

Форма обучения заочная

Институт/ факультет Институт горного дела и транспорта

Кафедра Горных машин и транспортно-технологических комплексов

Kypc 4

Магнитогорск 2022 год Рабочая программа составлена на основе ФГОС ВО - специалитет по специальности 21.05.04 Горное дело (приказ Минобрнауки России от 12.08.2020 г. № 987)

Рабочая программа рассмотрена и одобрена на заседании кафедры Горных	машин и
транспортно-технологических комплексов	
11.02.2022, протокол № 6	
	Мажитов
Рабочая программа одобрена методической комиссией ИГДиТ	
14.02.2022 г. протокол № 3	
ПредседательИ.А.	Пыталев
/ ·	
Рабочая программа составлена:	
доцент кафедры ГМиТТК, канд. техн. наук	Рилатов
Рецензент:	
заместитель генерального директора полутерствутивному развити	ю ООО
«УралЭнергоРесурс», канд. техн. наукИ.С. Туркин	
The T	

Лист актуализации рабочей программы

	обрена для реализации в 2023 - 2024 ин и транспортно-технологических
	20 г. № А.М. Мажитов
 	обрена для реализации в 2024 - 2025 ин и транспортно-технологических
Протокол от Зав. кафедрой	20 г. № А.М. Мажитов
	обрена для реализации в 2025 - 2026 ин и транспортно-технологических
Протокол от Зав. кафедрой	20 г. № А.М. Мажитов
ии кафедры Горных маши	обрена для реализации в 2026 - 2027 ин и транспортно-технологических
Зав. кафедрой	20 г. № А.М. Мажитов
	обрена для реализации в 2027 - 2028 ин и транспортно-технологических
Протокол от Зав. кафедрой	20 г. № А.М. Мажитов
 	обрена для реализации в 2028 - 2029 ин и транспортно-технологических
Протокол от Зав. кафедрой	20 г. № А.М. Мажитов
	обрена для реализации в 2029 - 2030 ин и транспортно-технологических
Протокол от Зав. кафедрой	20 г. № А.М. Мажитов

1 Цели освоения дисциплины (модуля)

- систематизация знаний позволяющих сформировать у обучающихся компе-тенции необходимые специалисту для разработки и эксплуатации гидравлического, пневматического приводов и гидропневмоавтоматики;
- формирование и развитие способности анализировать состояние и пер-спективы развития гидравлических и пневматических приводов горных машин с исполь-зованием гидропневмоавтоматики;
- формирование и развитие способности выполнять экспериментальные и ла-бораторные исследования с гидропневмоприводами и гиропневмоавтоматикой, интерпре-тировать полученные результаты направленные на повышения качества привода горных машин

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Гидропневмопривод и гидропневмоавтоматика горных машин входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Основы функционирования гидропривода

Прикладная механика

Электротехника

Гидравлика

Сопротивление материалов

Горные машины и оборудование

Автоматика машин и установок горного производства

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Горные машины и оборудование подземных горных работ

Эксплуатация, техническое обслуживание и ремонт горных машин

Производственная - преддипломная практика

Выполнение, подготовка к процедуре защиты и защита выпускной квалификационной работы

Производственная - научно-исследовательская работа

Конструирование горных машин и оборудования

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Гидропневмопривод и гидропневмоавтоматика горных машин» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции					
-	ПК-1 Способен разрабатывать проектные инновационные решения по модернизации горных машины и оборудования различного функционального назначения в различных					
климатических, гор	климатических, горногеологических и горнотехнических условиях					
ПК-1.1	Обосновывает технологию и механизацию горных работ, методы профилактики аварий машин и оборудования, способы ликвидации их последствий					
ПК-1.2	Использует цифровые информационные технологии при проектировании горных машин и оборудования					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 8,6 акад. часов:
- аудиторная 6 акад. часов;
- внеаудиторная 2,6 акад. часов;
- самостоятельная работа 90,7 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 8,7 акад. час

Форма аттестации - экзамен

Раздел/ тема дисциплины	Kypc	кон	Аудито итактная в акад. ч лаб. зан.	я работа	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
1. Тема 1								
1.1 Общие сведения о приводах горных машин	4	0,25	0,25	0,25/0,1И	8,7	Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационнокоммуникационные сети Интернет). Подготовка к практическому, лабораторному занятиям	Индивидуальное собеседование. Индивидуальное сообщение на занятии.	ПК-1.1, ПК-1.2
Итого по разделу		0,25	0,25	0,25/0,1И	8,7			
2. Тема 2								

2.1 Объемные гидромашины	0,2	5 0,25	0,25/0,1И	9,8	Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационно-коммуникационные сети Интернет). Подготовка к практическому, лабораторному занятиям, выполнение практических работ.	Индивидуальное собеседование. Индивидуальное сообщение на занятии. Проверка индивидуального задания и его защита. Защита отчета по лабораторной работе.	ПК-1.1, ПК-1.2
Итого по разделу	0,2	0,25	0,25/0,1И	9,8			
3. Тема 3		I	•				
3.1 Гидроаппаратура и устройства управления 4 гидроприводами Итого по разделу	0,2		0,25/0,15И		Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационные сети Интернет). Подготовка к практическому, лабораторному занятиям, выполнение практических работ.	Индивидуальное собеседование. Индивидуальное сообщение на занятии. Проверка индивидуального задания и его защита. Защита отчета по лабораторной работе.	ПК-1.1, ПК-1.2
Итого по разделу	0,2	0,25	0,25/0,15И	12			
4. Тема 4							

4.1 Объемные гидроприводы	4	0,25	0,25	0,2/0,2И	14	Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационнокоммуникационные сети Интернет). Подготовка к практическому, лабораторному занятиям, выполнение практических работ.	Индивидуальное собеседование. Индивидуальное сообщение на занятии. Проверка индивидуального задания и его защита. Защита отчета по лабораторной работе.	ПК-1.1, ПК-1.2
Итого по разделу		0,25	0,25	0,2/0,2И	14			
5. Тема 5			<u> </u>					
5.1 Гидродинамические передачи Итого по разделу	4	0,25	0,2	0,3/0,3И	12,2	Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационные сети Интернет). Подготовка к практическому, лабораторному занятиям, выполнение практических работ.	Индивидуальное собеседование. Индивидуальное сообщение на занятии. Проверка индивидуального задания и его защита. Защита отчета по лабораторной работе.	ПК-1.1, ПК-1.2
Итого по разделу		0,25	0,2	0,3/0,3И	12,2			
6. Тема 6								

			1					1
6.1 Пневмоприводы	4	0,25	0,4	0,25/0,25И	16	Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационнокоммуникационные сети Интернет). Подготовка к практическому, лабораторному занятиям, выполнение практических работ.	Индивидуальное собеседование. Индивидуальное сообщение на занятии. Проверка индивидуального задания и его защита. Защита отчета по лабораторной работе.	ПК-1.1, ПК-1.2
Итого по разделу		0,25	0,4	0,25/0,25И	16			
7. Тема 7								
7.1 Устройства автоматического управления гидро и пневмоприводами	4	0,5	0,4	0,5/0,5И	18	Самостоятельное изучение учебной и научной литературы. Поиск дополнительной информации по теме (работа с библиографичес ким материалами, с электронными библиотеками и ЭОР, информационно-коммуникационные сети Интернет). Подготовка к практическому, лабораторному занятиям, выполнение практических работ.	Индивидуальное собеседование. Индивидуальное сообщение на занятии. Проверка индивидуального задания и его защита. Защита отчета по лабораторной работе.	ПК-1.1, ПК-1.2
Итого по разделу		0,5	0,4	0,5/0,5И	18			
8. Промежуточный контро	ЛЬ							
8.1 Зачет	4					Подготовка к зачету		ПК-1.1, ПК-1.2
Итого по разделу						·		

Итого за семестр	2	2	2/1,6И	90,7	экзамен	
Итого по дисциплине	2	2	2/1,6И	90,7	экзамен	

5 Образовательные технологии

1. Традиционные образовательные технологии ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция — последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

2. Технологии проблемного обучения — организация образовательного процесса, которая предполагает постановку проблемных вопросов, создание учебных проблемных ситуаций для стимулирования активной познавательной деятельности студентов.

Формы учебных занятий с использованием технологий проблемного обучения:

Проблемная лекция — изложение материала, предполагающее постановку проблемных и дискуссионных вопросов, освещение различных научных подходов, авторские комментарии, связанные с различными моделями интерпретации изучаемого материала.

Практическое занятие в форме практикума — организация учебной работы, направленная на решение комплексной учебно-познавательной задачи, требующей от студента применения как научно-теоретических знаний, так и практических навыков.

3. Технологии проектного обучения — организация образовательного процесса в соответствии с алгоритмом поэтапного решения проблемной задачи или выполнения учебного задания. Проект предполагает совместную учебно-познавательную деятельность группы студентов, направленную на выработку концепции, установление целей и задач, формулировку ожидаемых результатов, определение принципов и методик решения поставленных задач, планирование хода работы, поиск доступных и оптимальных ресурсов, поэтапную реализацию плана работы, презентацию результатов работы, их осмысление и рефлексию.

Основной тип проектов:

Исследовательский проект — структура приближена к формату научного исследования (доказательство актуальности темы, определение научной проблемы, предмета и объекта исследования, целей и задач, методов, источников, выдвижение гипотезы, обобщение результатов, выводы, обозначение новых проблем).

4. Интерактивные технологии – организация образовательного процесса, которая предполагает активное и нелинейное взаимодействие всех участников, достижение на этой основе личностно значимого для них образовательного результата. Наряду со специализир-ванными такого принцип интерактивности технологиями рода прослеживается большинстве современных образовательных технологий. Интерактивность подразумевает субъект-субъектные отношения в ходе образовательного процесса и, как следствие, формирование саморазвивающейся информационно-ресурсной

Формы учебных занятий с использованием специализированных интерактивных технологий:

Лекция «обратной связи» — лекция—провокация (изложение материала с заранее запланированными ошибками), лекция-беседа, лекция-дискуссия, лекция-прессконференция.

5. Информационно-коммуникационные образовательные технологии – организация образовательного процесса, основанная на применении

специализированных программных сред и технических средств работы с информацией.

Формы учебных занятий с использованием информационно-коммуникационных технологий:

Лекция-визуализация — изложение содержания сопровождается презентацией (демонстрацией учебных материалов, представленных в различных знаковых системах, в т.ч. иллюстративных, графических, аудио- и видеоматериалов).

Практическое занятие в форме презентации – представление результатов проектной или исследовательской деятельности с использованием специализированных программных сред.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

1. Нагорный, В.С. Средства автоматики гидро- и пневмосистем : учебное пособие / В.С. Нагорный. — Санкт-Петербург : Лань, 2014. — 448 с. — ISBN 978-5-8114-1652-3. — Текст : электронный // Электронно-библиотечная система «Лань» : [сайт]. — URL: https://e.lanbook.com/book/52612

б) Дополнительная литература:

- 1. Гидромеханика [Электронный ресурс] : практикум / А. Д. Кольга, В. С. Вагин, А. И. Курочкин, Б. М. Габбасов ; МГТУ. [2-е изд., подгот. по печ. изд. 2017 г.]. Магнитогорск : МГТУ, 2018. 1 электрон. опт. диск (CD-ROM). Режим доступа https://magtu.informsystema.ru/uploader/fileUpload?name=3466.pdf&show=dcatalogues/1/151428 8/3466.pdf&view=true Макрообъект.
- 2. Практикум по электрогидроавтоматике : практикум / А. Д. Кольга, В. В. Точилкин, В. С. Безверхний [и др.] ; Магнитогорский гос. технический ун-т им. Г. И. Носова. Магнитогорск : МГТУ им. Г. И. Носова, 2019. 1 CD-ROM. Загл. с титул. экра-на. Текст : электронный. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3930.pdf&show=dcatalogues/1/153050 3/3930.pdf&view=true (дата обращения: 02.12.2019). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 3. Основы функционирования гидро- и электроприводов [Электронный ресурс] : практикум / В. С. Вагин, А. М. Филатов, А. Д. Кольга [и др.]. Магнитогорск : МГТУ, 2014. 190 с. : ил., табл. Режим доступа: https://magtu.informsystema.ru/uploader/fileUpload?name=868.pdf&show=dcatalogues/1/1118358/868.pdf&view=true . Макрообъект.
- 4. Пропорциональный гидропривод [Электронный ресурс] : лабораторный практи-кум / Е. Ю. Мацко, И. М. Кутлубаев, О. Р. Панфилова, И. Г. Усов ; МГТУ. Магни-тогорск : МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Режим доступа: https://magtu.informsystema.ru/uploader/fileUpload?name=3368.pdf&show=dcatalogues/1/113917 8/3368.pdf&view=true. Макрообъект.
- 5. Кольга А.Д., Иванов С.А., Точилкин В.В., Филатов А.М., Задорожный В.Д., Ва-гин В.С. Основы функционирования гидравлических систем металлургического оборудования: учеб. пособие. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2011. 197 с. (допущено УМО по образованию в области ме-таллургии в качестве учебного пособия для студентов высших учебных заведе-ний, обучающихся по специальности «Металлургические машины и оборудова-ние»). ISBN 978-5-9967-0224-4.

- 6. Точилкин В. В. Проектирование элементов металлургических машин и оборудо-вания [Электронный ресурс] : учебное пособие / В. В. Точилкин, О. А. Филатова ; МГТУ. Магнитогорск : МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Режим доступа: https://magtu.informsystema.ru/uploader/fileUpload?name=3319.pdf&show=dcatalogues/1/113830 5/3319.pdf&view=true . Макрообъект. ISBN 978-5-9967-0975-5.
- 7. Точилкин В.В., Филатов А.М., Иванов С.А., Чиченев Н.А., Кольга А.Д., Вагин В.С. Исследование работы и характеристик элементов гидропривода металлурги-ческих машин: учеб. пособие. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2014. 207 с. (допущено УМО по образованию в области ме-таллургии в качестве учебного пособия для студентов высших учебных заведе-ний, обучающихся по специальности «Металлургические машины и оборудова-ние»). ISBN 978-5-9967-0451-4.

в) Методические указания:

- 1. Основы функционирования гидравлических систем металлургического оборудования. Лабораторный практикум по гидроприводу и гидроавтоматике [Текст]: учебное пособие / В. В. Точилкин, А. М. Филатов, В. Д. Задорожный и др.; Новотроицк. фил. Моск. гос. ин-та сталей и сплавов (технологич. ун-та); МГТУ. Маг-нитогорск: [б. и.], 2009. 105 с.: схемы, табл.
- 2. Пропорциональный гидропривод: лабораторный практикум / Е. Ю. Мацко, И. М. Кутлубаев, О. Р. Панфилова, И. Г. Усов; МГТУ. Магнитогорск: МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3368.pdf&show=dcatalogues/1/113917 8/3368.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.
- 3. Мацко Е.Ю., Усов И.Г., Кутлубаев И.М. Гидромеханика: Методические указания к контрольным работам для студентов направлений 190100, 150400, 150900 и специальностей 190205, 260301, 260303, 151001, 150400 всех форм обучения. Магнитогорск: ГОУ ВПО «МГТУ», 2009. 25с.
- 4. Мацко, Е. Ю. Гидравлика и гидропневмопривод : лабораторный практикум / Е. Ю. Мацко, И. Г. Усов ; МГТУ. Магнитогорск : МГТУ, 2014. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=1549.pdf&show=dcatalogues/1/112473 1/1549.pdf&view=true (дата обращения: 04.10.2019). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
7Zip	свободно распространяемое ПО	бессрочно
АСКОН Компас 3D в.16	Д-261-17 от 16.03.2017	бессрочно
APM WinMachine 2010	Д-262-12 от 15.02.2012	бессрочно

Электронные				
плакаты по				
дисциплине	К-278-11 от 15.07.2011	бессрочно		
"Гидравлика и				
гидропривод"				
Электронные				
плакаты по курсу	К-227-12 от 11.09.2012	бессрочно		
"Гидравлика и	R-22/-12 01 11.07.2012	оссерочно		
гидропривод"				
FAR Manager	свободно распространяемое ПО	бессрочно		

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/
Национальная информационно-аналитическая система – Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
	URL: https://scholar.google.ru/
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	URL: http://www1.fips.ru/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

1. Учебные аудитории для проведения занятий лекционного типа: мультимедийные средства хранения, передачи и

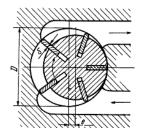
представления информации

2. Учебные аудитории для проведения практических и лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и

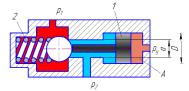
промежуточной аттестации: персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

3. Аудитории для самостоятельной работы: компьютерные классы; читальные залы библиотеки: персональные компьютеры с пакетом MS Office, вы-

ходом в Интернет и с доступом в электронную информационно-образовательную среду университета

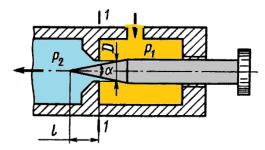

4. Помещение для хранения и профилактического обслуживания учебного оборудования: Стеллажи для хранения учебно-наглядных пособий и

учебно-метолической локументации.


приложение 1

Учебно-методическое обеспечение самостоятельной работы обучающихся

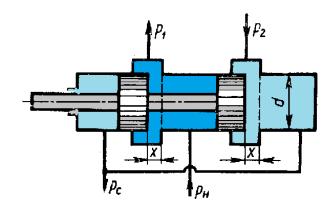
Задача 1. Пластинчатый насос имеет следующие размеры: диаметр внутренней поверхности статора D=100 мм; эксцентриситет e=10 мм; толщина пластин δ = 3 м; ширина пластин b = 40 мм. Определить мощность, потребляемую насосом при частоте вращения π = 1450 об/мин и давлении на выходе из насоса p = 5 МПа. Механический к.п.д. принять равным $\eta_{\rm M}$ = 0.



Задача 2. На рисунке представлена конструктивная схема гидрозамка, проходное сечение которого открывается при подаче в полость А управляющего потока жидкости с давлением p_y . Определить, при каком минимальном значении p_y толкатель поршня 1 сможет открыть шариковый клапан, если известно:

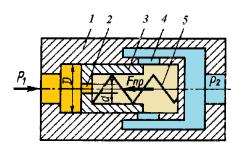
предварительное усилие пружины 2 F=50 H; D=25 мм, d=15 мм, $p_1=0.5$ МПа, $p_2=0.2$ МПа. Силами трения пренебречь.

Задача 3. На рисунке изображена схема регулируемого игольчатого дросселя. Определить, на какое расстояние I необходимо вдвинуть иглу в дросселирующее отверстие для обеспечения перепада давления $\Delta_p = p_1 - p_2 = 3$ МПа, если угол иглы $\alpha = 30^\circ$, диаметр дросселирующего отверстия D = 6 мм, его коэффициент расхода $\mu = 0.8$,



расход жидкости Q = 1,2 л/с, плотность рабочей жидкости $\rho = 900$ кг/м3.

Указание. Площадь дросселирующего кольца определить по приближенной формуле $S = S_0 - S_H$, где S_0 —площадь отверстия, S_H — площадь иглы в сечении 1-1.


Примерные задачи по теме «Гидроприводы»

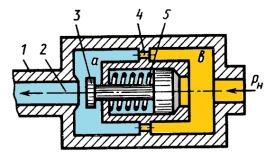
Задача 1. На рисунке представлена конструктивная схема регулятора расхода (клапан, обеспечивающий постоянство расхода). Он состоит из корпуса 1 с дросселирующими отверстиями 4, подвижного плунжера 3 с дросселирующим отверстием 2 и пружины 5. Определить, при каком значении силы пружины F_{np} регулятор будет обеспечивать расход Q = 5 л/мин, если диаметры D = 20 мм, d = 3 мм; коэффициенты расхода дросселирующих

отверстий μ = 0,8, плотность рабочей жидкости ρ = 900 кг/м³. Считать, что в пределах рабочего хода плунжера сила пружины остается-постоянной.

Задача 2. На рисунке представлена конструктивная схема регулятора расхода (клапан, обеспечивающий постоянство расхода). Он состоит из корпуса 1 с дросселирующими отверстиями 4, подвижного плунжера 3 с дросселирующим отверстием 2 и пружины 5. Определить, при каком значении силы пружины F_{np} регулятор будет обеспечивать расход Q=5 л/мин, если диаметры D=20 мм, d=3 мм; коэффициенты



расхода дросселирующих отверстий μ = 0,8, плотность рабочей жидкости ρ = 900 кг/м³. Считать, что в пределах рабочего хода плунжера сила пружины остается-постоянной.


Задача 3. Жидкость с плотностью $\rho = 900$ кг/м³ и вязкостью v = 0.01 Ст нагнетается по горизонтальному трубопроводу длиной I = 4 м и диаметром d = 25 мм. Определить давление в начальном сечении, если в конечном сечении трубопровода давление атмосферное, расход жидкости Q = 6 л/с; шероховатость стенок трубопровода $\Delta = 0.06$ мм.

Примерные задачи по теме «Гидроавтоматика»

Задача 1. Воздух под избыточным давлением p_0 подается к пневмодатчику детали А. Проходя через пневмодроссель Д с проходным сечением (диаметром d=1 мм), затем через зазор, образуемый срезом сопла С и поверхностью детали А, воздух поступает в атмосферу. Определить, при каком зазоре х показание манометра М будет равно 0,5 p_0 , если диаметр среза сопла $d_2=1,5$ мм. Коэффициенты расхода через дроссель Д и зазор одинаковы. Считать воздух несжимаемым, его скорость в камерах В и К равна нулю.

Задача 2. На рисунке показан гидроаппарат, назначение которого заключается в том, что в случае разрушения трубопровода 1 клапан 3 перекрывает отверстие 2 и тем самым препятствует выбросу рабочей жидкости из гидросистемы. При нормальной работе перепад давления в полостях а и в, обусловленный сопротивлением отверстий 4, недостаточен для сжатия пружины 5 и клапан

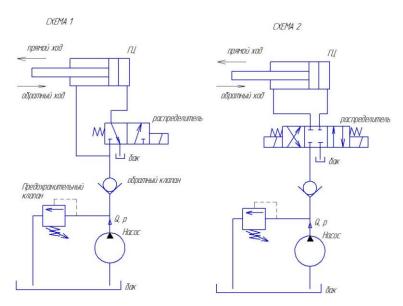
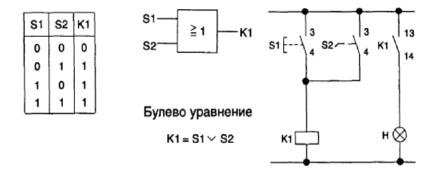
2 под действием силы предварительного поджатия пружины F_0 = 200 H находится в крайнем правом положении. Определить минимальное значение расхода Q, при котором клапан 3 начнет перемещаться влево, если известно: D = 20 мм; суммарная площадь отверстий 4 So = 0,5 см²; коэффициент расхода отверстий $\mu = 0,62$; плотность жидкости $\rho = 900$ кг/м3.

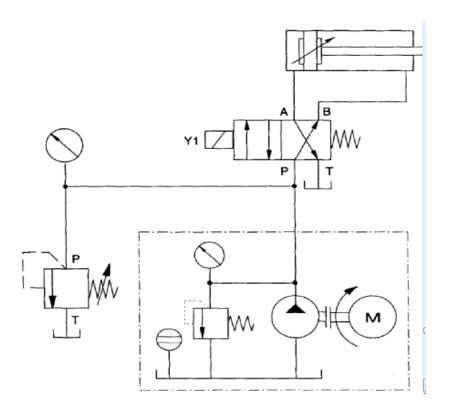
Выразить в общем виде силу, с которой клапан 3 будет прижиматься к седлу в случае разрушения трубопровода 1, приняв: максимальный ход клапана х; жесткость пружины с; диаметр отверстия 2d; давление на входе в гидроаппарат $p_{\rm H}$

Схема 1	Схема 2

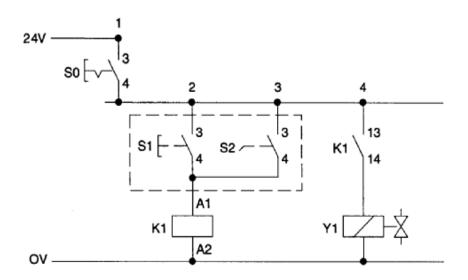
Примерное задание по лабораторной работе.

По исходным данным для двух гидросистем, показанных на рис. 1, определить скоростные и силовые параметры гидроцилиндра. Результаты ввести в таблицу. Объяснить полученные результаты.

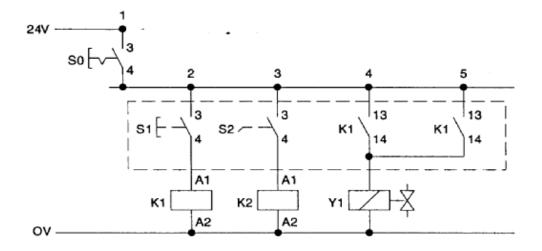



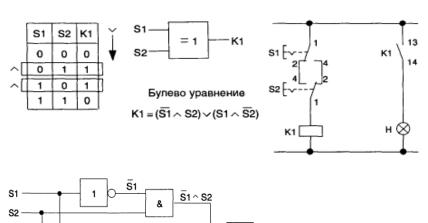

Рисунок 1 – Гидравлические схемы подключения гидроцилиндра

	Прямой ход	Обратный ход	Прямой ход	Обратный ход
Диаметр поршня				
D, MM				
Диаметр штока				
d, mm				
Давление				
номинальное р,				
МПа				
Номинальный				
расход Q, л/мин				
Площадь				
поршневой				
полости, Ѕп				
Площадь				
штоковой				
полости, Ѕшт				
Скорость штока				
v, m/c				
Усилие на штоке				
F, H				

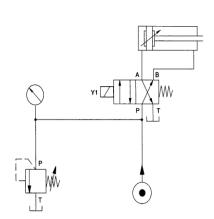

Электрогидравлическая схема с применением дизъюнкции

Для загрузки и выгрузки деталей дверь котла должна быть открыта на короткое время. Для открытия и закрытия двери служит двухсторонний цилиндр. Управление цилиндром возможно, как с помощью ручной кнопки, так и от ножной педали. После окончания воздействия на соответствующую кнопку или педаль цилиндр должен совершить обратный ход и закрыть дверь котла.

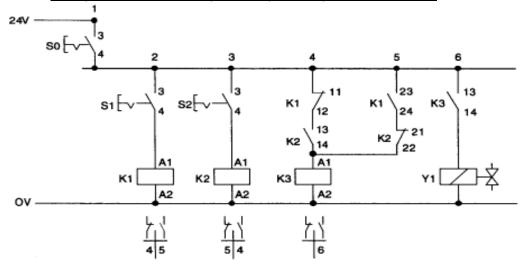



1 электрическая схема

2 электрическая схема



Электрогидравлическая схема с применением логической функции «исключенное «ИЛИ» в схеме (функция НЕ ИЛИ)»

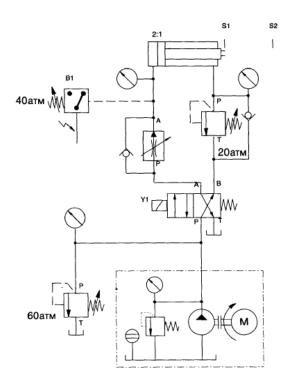

≧ 1

– K1

<u>1 электрическая схема с переключающими контактами (самостоятельно)</u>

2 электрическая схема с нормально разомкнутыми контактами

3. Система управления последовательностью действий по давлению и пути


Шаг 1

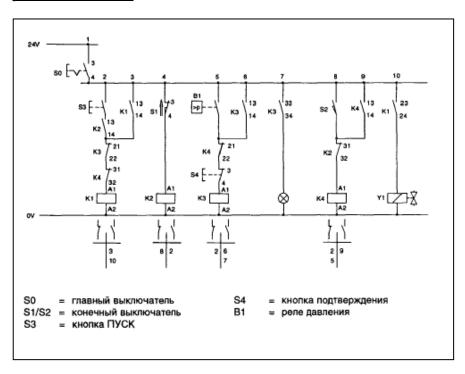
Заполните функциональную диаграмму. Помните, что условия запуска заданы в описании проблемы. Обозначьте конечный выключатель, который контролирует крайнее верхнее положение штока как S1 и S2 для крайнего нижнего положения.

Элементы			Время,	сек					
Наименование	Обозначе- ние	Состояние	Шаг	LL	2	 1L 3	4		<u></u> 5
Главный выключатель	So				+	 -	+	_	Ŧ
Кнопка ПУСК	S1				+-	 -	-		+
Распределитель	Y1	1			+	 -	-		+
		0			+	 -	+		+
Ципиндр	A1	1			+	 -	+		+
		0			+	 -	+		+
					+-	 -	+		+
				}			- 1		

Шаг 2. Изобразите гидравлическую схему

- Для управления гидравлическим цилиндром примените 4/2 электромагнитный распределитель с пружинным возвратом.
- Понижение скорости должно производиться для потока, текущего в дросселирующий клапан, а не для потока, текущего из него.
- Помните, что вес запрессовочного приспособления создает растягивающую силу на штоке.
- Положение конечного выключателя на схеме обозначается вертикальной чертой (|).

Шаг 3.Изобразите электрическую схему


Положения реле:

реле К1 включено: распределитель переключен, шток выдвигается,

реле К2 включено: шток в крайнем втянутом положении,

реле КЗ включено: превышение давления,

реле К4 включено: шток втягивается

приложение 2

Оценочные средства для проведения промежуточной аттестации а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатора	Индикатор достижения компетенции	Оценочные средства			
ПК-1: Способен разрабатывать проектные инновационные решения по модернизации горных машины и оборудования различного функционального назначения в различных климатических, горногеологических и горнотехнических условиях					
ПК-1.1:	Обосновывает технологию и механизацию горных работ, методы профилактики аварий машин и оборудования, способы ликвидации их последствий				

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		16. Что учитывается объемным, гидравлическим и механическим КПД
		гидроцилиндра?
		17. В каком направлении поршень будет двигаться быстрее и почему, если
		будут подаваться одинаковые расходы рабочей жидкости в штоковую и в поршневую
		полость дифференциального гидроцилиндра?
		18. Какие устройства применяются для торможения поршня в крайних его
		положениях?
		19. Какое влияние на работу объемного гидродвигателя оказывает
		противодавление?
		20. Какими способами можно регулировать частоту вращения гидромоторов?
		21. Что называется рабочим объемом гидромотора и какое влияние он
		оказывает на частоту вращения ротора?
		22. Как классифицируют распределительные устройства по конструктивным
		признакам?
		23. В каких случаях в гидроприводах применяют золотниковые, крановые и
		клапанные распределители жидкости?
		24. Как определяют потери давления в аппаратах распределения?
		25. Как классифицируются клапаны давления в гидропривода?
		26. Для чего применяются редукционные, обратные переливные и
		предохранительные клапаны?
		27. Для чего в гидроприводах применяют дроссельные устройства?
		28. От чего зависят местные гидравлические потери в дросселях?
		29. В каких местах гидропривода устанавливаются фильтры?
		30. Как определяется диаметр гидролинии гидропривода?
		31. Какими способами осуществляется бесступенчатое регулирование скорости
		выходного звена в гидроприводах объемного типа?
		32. Какой способ регулирование скорости движения более экономичен?
		33. Когда в системе гидропривода применяют дроссели, а когда - регуляторы
		потока?
		34. Каковы достоинства и недостатки схем гидропривода с замкнутой и
		разомкнутой циркуляционной жидкости?

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		35. Чем отличается следящий гидропривод от обычного гидропривода?
		36. Каков принцип действия гидродинамических передач?
		37. В каких горных машинах применяются гидродинамические передачи?
		38. Как конструктивно выполняются гидромуфта?
		39. Каковы основные внешние параметры гидромуфты и
		гидротрансформаторов?
		40. Каковы достоинства и недостатки гидродинамических передач?
		41. Каковы основные требования, предъявляемые к рабочим жидкостям
		гидродинамических передач?
		42. Что называют передаточным отношением и скольжением
		гидродинамической передачи?
		43. Какова внешняя характеристика гидромуфты?
		44. Какими способами и устройствами изменяют вид моментной
		характеристики гидромуфты?
		45. Каковы основные конструктивные различия между гидромуфтой и
		гидротрансформатором?
		46. Что называют коэффициентом трансформации гидропередачи?
		47. Чем отличается внешние характеристики гидромуфты и
		гидротранформатора?
		48. Какие гидромуфты называются регулируемыми?
		49. Где применяются гидромеханические передачи?
		50. Что называют пневмоприводом?
		51. Каковы достоинства и недостатки пневматического привода?
		52. Какие уравнения используются при расчете пневмопри-водов?
		53. Как рассчитываются потери давления в трубопроводах пневмосети?
		54. Как определяется расход воздуха по трубопроводу при заданном перепаде
		давления?
		55. Как определяется сечение воздухопровода по расходу и допустимой
		скорости воздуха в трубе?
		56. Как классифицируются пневмодвигатели?
		57. Каковы основные расчетные параметры пневмодвигате-лей и как они

Код индикатора	Индикатор достижения компетенции	Оценочные средства
ПК-1.2:	Использует цифровые информационные технологии при проектировании горных машин и оборудования	определяются? 58. Какие защитные и управляющие устройства применяются в пневмоприводах? Каковы особенности их конструкции и работы? 59. Как осуществляется энергообеспечение пневмоприводов и какова схема пневмосети? 60. Каковы особенности эксплуатации пневмоприводов? Практическое задание Составить электрогидравлическую схему по заданию: При литье под давлением в закрытой литейной форме развивается очень высокое давление. От замыкания двух полуформ одна из них (подвижная) оборудуется коленчатым рычажным механизмом. Привод этого механизма осуществляется цилиндром двухстороннего действия. Если в литьевой форме нет детали, то при длительном воздействии на кнопку с ручным управлением S1 форма закрывается. Если форма закрыта, автоматически осуществляется процесс литья под давлением. Отлитая деталь воздействует на конечный выключатель S2 и литьевая форма открывается, Только если деталь будет вынута из формы, можно начинать новый цикл. Сигналы, идущие от датчиков: «Кнопка вкл» (S1) и "Отливаемая деталь есть в наличии" (S2) — соответствуют входным сигналам по условию
		задания.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		Практическое задание Составить электрогидравлическую схему по заданию: Для загрузки и выгрузки деталей дверь котла должна быть открыта на короткое время. Для открытия и закрытия двери служит двухсторонний цилиндр. Управление цилиндром возможно, как с помощью ручной кнопки, так и от ножной педали. После окончания воздействия на соответствующую кнопку или педаль цилиндр должен совершить обратный ход и закрыть дверь котла.
		Основные требования по гидроприводу:
		Для того, чтобы при закрытии дверь котла не ударялась, нужно ее на
		корот-ком расстоянии от полного закрытия затормозить.
		• Торможение можно осуществить с помощью демпфера (см. эскиз

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		уста-новки). • Можно использовать цилиндр с регулируемым демпфированием в конце хода.
		Контрольная работа Примерное задание на контрольную работу см. в п.6.
		 Перечень тем и заданий для подготовки к экзамену: Какая наука называется автоматикой? Как делятся системы автоматики по выполняемым функциям? Для чего служат технические средства автоматики? Какие функции выполняют электрические устройства в системах управления? Какие функции выполняют гидравлические устройства в системах управления? Какие функции выполняют пневматические устройства в системах управления? Что является носителем информации?

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		8. Что понимается под сигналом?
		9. Какими могут быть сигналы по виду?
		10. Какие величины используются в качестве сигналов?
		11. Чем обеспечиваются появление сигналов информации?
		12. Что называется элементом автоматики?
		13. Для чего предназначены элементы автоматики?
		14. Что собой представляет элемент автоматики?
		15. Как подразделятся элементы автоматики?
		16. Чем отличается активный элемент от пассивного?
		17. Чем различаются реверсивные и нереверсивные элементы?
		18. Как различаются элементы по форме представления входного и выходного сигналов?
		19. Какой элемент называется разомкнутым?
		20. Какая характеристика элемента управления называется статической характеристикой?
		21. Как различаются характеристики управления элементов?
		22. Какими параметрами характеризуются элементы автоматики?
		23. Как определяется коэффициент (статический) передачи элемента?
		24. Как определяется динамический коэффициент преобразования элемента?
		25. Как определяется относительный коэффициент преобразования элемента?
		26. Как определяется порог чувствительности элемента?
		27. Как определяется абсолютная погрешность элемента?
		28. Как определяется относительная погрешность элемента?
		29. Как определяется приведенная погрешность элемента?
		30. Какие элементы автоматики называются замкнутыми?
		31. Какая обратная связь называется положительной (и отрицательной)?
		32. Как определяется коэффициент преобразования основного элемента с
		обратной связью?

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		 33. Как определяется коэффициент дополнительного элемента создающего обратную связь? 34. Как определяется коэффициент преобразования элемента, охваченного положительной обратной связью и (отрицательной)? 35. Как подразделяются системы автоматики по выполняемым функциям?
		Построить в программе FluidSim Pnevmo принципиальную пневатическую и электрорелейную схему управления пневмоприводом состоящим из четырех гидроцилиндров, работающих по заданной диаграмме. Dagram

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		Разработать принципиальную гидравлическую схему и 2 альтернтивные принципиальные электрические схемы управления гидроприводом, содержащим 2 гидроцилиндра и один гидромотор, работающего по следующей диаграмме перемещения:
		При построении использовать счетчик циклов, реле задержки времени, рое давления. Сравнить работу двух схем. Сделать выводы.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Гидропневмопривод и гидропневмоавтоматика горных машин

» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета.

Зачет по данной дисциплине проводится в виде ответов на тестовые задания. Тесты выкладываются на портале МГТУ.

Показатели и критерии оценивания зачета:

«Зачтено» - выставляется при условии, если студент показывает хорошие знания учебного материала по темам курса, знает основные законы гидромханики, устройство и принцип работы гидроаппаратов, умеет составлять принципиальные гидравлические и электрические схемы. При этом студент логично и последовательно излагает материал, раскрывает смысл вопроса, дает удовлетворительные ответы на дополнительные вопросы.

«Не зачтено» - выставляется при условии, если студент владеет отрывочными знаниями по темам курса, дает неполные ответы на вопросы из основной литературы, рекомендованной к курсу.

Методические рекомендации для подготовки к зачету

При подготовке к экзамену у студента должен быть хороший учебник или конспект литературы, прочитанной по указанию преподавателя в течение семестра. Конспектирование должно осуществляться обучающимся только лишь самостоятельно. Просмотр собственных конспектов позволяет обучающемуся быстро восстанавливать в памяти содержание источника.

В начале следует просмотреть весь материал по сдаваемой дисциплине, отметить для себя трудные вопросы. Обязательно в них разобраться. В заключение еще раз целесообразно повторить основные положения, используя при этом опорные конспекты лекций. При этом нужно обратить особое внимание на темы учебных занятий, пропущенных студентом по разным причинам.

Если в процессе самостоятельной работы над изучением теоретического материала или при решении задач у студента возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения у него разъяснений или указаний. В своих вопросах студент должен четко выразить, в чем он испытывает затруднения, характер этого затруднения. За консультацией следует обращаться и в случае, если возникнут сомнения в правильности ответов на вопросы самопроверки.