МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ УТВЕРЖДАЮ Д.Р. Хамзина . Белорецк . Белорецк . Белорецк

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ПРОГРАММИРУЕМЫЕ ПРОМЫШЛЕННЫЕ КОНТРОЛЛЕРЫ

Направление подготовки (специальность) 13.03.02 Электроэнергетика и электротехника

Направленность (профиль/специализация) программы Электропривод и автоматика

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт/ факультет Филиал в г. Белорецк

Кафедра Металлургии и стандартизации

Kypc 5

Магнитогорск 2023 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 13.03.02 Электроэнергетика и электротехника (уровень бакалавриата) (приказ Минобрнауки России от 28.02.2018 г. № 144)

Д.О. Тертычный

Рецензент:

Начальник ЦРЭО АО "БМК"

Лист актуализации программы

Программа пересмотрена, обсуждена и одобрена для реализации в 2024 - 2025 учебном году на заседании кафедры Металлургии и стандартизации				
	Протокол от Зав. кафедрой	_20 г.	№ М.Ю. Усанов	
	бсуждена и одобрена для реали Металлургии и стандартизаци		2025 - 2026 учебном	
	Протокол от Зав. кафедрой	_ 20 г.	№ М.Ю. Усанов	
	бсуждена и одобрена для реали Металлургии и стандартизаци		2026 - 2027 учебном	
	Протокол от Зав. кафедрой	_ 20 г.	№ М.Ю. Усанов	
	бсуждена и одобрена для реали Металлургии и стандартизаци		2027 - 2028 учебном	
	Протокол отЗав. кафедрой	_ 20 г.	№ М.Ю. Усанов	
	бсуждена и одобрена для реали Металлургии и стандартизаци		2028 - 2029 учебном	
	Протокол от	_ 20 г.	№ М.Ю. Усанов	

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Программируемые промышленные контроллеры» являются развитие у студентов личностных качеств, а также формирование профессиональных компетенций в соответствии с требованиями $\Phi \Gamma OC$ ВО по направлению 13.03.02 «Электроэнергетика и электротехника»/ профиль «Электропривод и автоматика».

Задачи дисциплины – усвоение студентами:

- основных принципов построения, методик проектирования микропроцессорных систем управления электроприводами на базе программируемых контроллеров;
- теоретических и практических навыков программирования и наладки программируемых контроллеров систем автоматизированного электропривода и технологических комплексов на их основе.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Программируемые промышленные контроллеры входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Силовая электроника

Электрические и электронные аппараты

Алгебра логики и основы дискретной техники

Схемотехника

Основы микропроцессорной техники

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Подготовка к процедуре защиты и защита выпускной квалификационной работы Подготовка к сдаче и сдача государственного экзамена

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Программируемые промышленные контроллеры» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции				
ПК-3 Способность	ПК-3 Способность собирать, обрабатывать и анализировать данные об оборудовании, для				
которого предназначена система электропривода					
	Осуществляет мероприятия по собору, обработке и анализу данных об				
	оборудовании, для которого предназначена система электропривода				

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 15 акад. часов:
- аудиторная 14 акад. часов;
- внеаудиторная 1 акад. часов;
- самостоятельная работа 125,1 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к зачёту 3,9 акад. час
 Форма аттестации зачет

Раздел/ тема дисциплины	Kypc	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	а студента в студента в студента самостоомсто ионалельной	Форма текущего контроля успеваемости и	Код компетенции	
		Лек.	лаб. зан.	практ. зан.	Самос работ	работы	промежуточной аттестации	
1. Аппаратные сред программируемых контроллеров (ПК).	ства							
1.1 Введение: ПК в системах автоматизированных электроприводов. Основные понятия, определения, характеристики и классификация ПК.		1,5	2		29,1	Подготовка к лабораторно- практическому занятию	Текущий контроль успеваемости	ПК-3.1
1.2 Структура программируемых контроллеров. Принцип построения, назначение, классификация, технические характеристики модулей центральных, коммуникационных процессоров; функциональных, сигнальных модулей.	5	1,5	2		32	Подготовка к лабораторно- практическому занятию	Текущий контроль успеваемости	ПК-3.1
Итого по разделу		3	4		61,1			
2. Средства и ост программного обеспеч контроллеров	новы ения							

0.1 H							1
2.1 Понятие проекта,							
структура проекта,							
основные средства							
управления проектами.							
Основы релейной логики.							
Язык программирования							
релейной логики LAD,							
основные понятия и							
определения языка.							
Элементарные логические							
операции релейной							
логики. Принципы							
преобразования и							
составления релейных							
схем. Язык					Подготовка к	v	
программирования STL.		1.5	2	22	лабораторно-	Текущий	ПИ 2.1
Реализация логических		1,5	2	32	практическому	контроль	ПК-3.1
операций на языке STL.					занятию	успеваемости	
Понятие аккумулятора							
процессора, принципы							
работы с аккумулятором.							
Язык программирования							
функциональных блоков							
(FB). Программирование	5						
типовых комбинационных							
(дешифраторов,							
мультиплексоров,							
компараторов и т.д.) и							
последовательностных							
(триггеров, счетчиков,							
таймеров, регистров и							
т.д.) устройств. Операции							
выделения фронта, среза.							
2.2 Организация							
системных шин.							
Организация локальных							
вычислительных сетей:							
стандартные интерфейсы							
(RS232, RS485(482);					Подготовка к		
основные определения,			_		лабораторно-	Текущий	
технические		1,5	2	32	практическому	контроль	ПК-3.1
характеристики,					занятию	успеваемости	
стандарты сетей CAN bus,							
Prof-bus, Ethernet;							
программирование							
интерфейсных и							
коммуникационных							
модулей.							
Итого по разделу		3	4	64			
3. Зачет							
3.1 Контроль	5						ПК-3.1
Итого по разделу							
Итого за семестр		6	8	125,1		зачёт	
Итого по дисциплине		6	8	125,1		зачет	

5 Образовательные технологии

предусмотренных реализации видов учебной работы качестве образовательных технологий В преподавании дисциплины «Программируемые промышленные контроллеры» используются традиционная И модульно компетентностная технологии.

Передача необходимых теоретических знаний и формирование основных представлений по курсу «Основы микропроцессорной техники» происходит с использованием мультимедийного оборудования. Лекции проходят в традиционной форме и в форме лекций-консультаций. На лекциях – консультациях изложение нового материала сопровождается постановкой вопросов и дискуссией в поисках ответов на эти вопросы. Самостоятельная работа стимулирует студентов в процессе подготовки домашних заданий, при решении задач на практических занятиях, при подготовке к контрольным работам и итоговой аттестации.

- **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
- **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Шишов, О. В. Программируемые контроллеры в системах промышленной автоматизации : учебник / О. В. Шишов. Москва : ИНФРА-М, 2020. 365 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-011205-3. Текст : электронный. URL: https://znanium.com/catalog/product/1057224 (дата обращения: 26.04.2023). Режим доступа: по подписке.
- 2. Карнадуд, Е. Н. Современные промышленные контроллеры: учебное пособие / Е. Н. Карнадуд, Р. В. Котляров. Кемерово: КемГУ, 2019. 103 с. ISBN 978-5-8353-2553-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/156124 (дата обращения: 26.04.2023). Режим доступа: для авториз. пользователей

б) Дополнительная литература:

- 1. Шишов, О. В. Технические средства автоматизации и управления : учебное пособие / О. В. Шишов. Москва : ИНФРА-М, 2021. 396 с. + Доп. материалы [Электронный ресурс]. (Высшее образование: Бакалавриат). ISBN 978-5-16-010325-9. Текст : электронный. URL: https://znanium.com/catalog/product/1157118 (дата обращения: 26.04.2023). Режим доступа: по подписке.
- 2. Шишов, О. В. Современные средства АСУ ТП: учебник / О. В. Шишов. Москва; Вологда: Инфра-Инженерия, 2021. 532 с. ISBN 978-5-9729-0622-2. Текст: электронный. URL: https://znanium.com/catalog/product/1831992 (дата обращения: 26.04.2023). Режим доступа: по подписке.
- 3. Фурсенко, С. Н. Автоматизация технологических процессов: учебное пособие / С.Н. Фурсенко, Е.С. Якубовская, Е.С. Волкова. Минск: Новое знание; Москва: ИНФРА-М, 2022. 377 с.: ил. (Высшее образование: Бакалавриат). ISBN 978-5-16-010309-9. Текст: электронный. URL: https://znanium.com/catalog/product/1005495 (дата обращения: 26.04.2023). Режим доступа: по подписке.

в) Методические указания:

- 1. Аверков, К. В. Программирование промышленного логического контроллера: учебно-методическое пособие / К. В. Аверков, А. В. Обрывалин. Омск: ОмГУПС, 2021. 18 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/190149 (дата обращения: 26.04.2023). Режим доступа: для авториз. пользователей.
- 2. Андреев, С. М. Аппаратные средства и программное обеспечение промышленных контроллеров SIMATIC S7: учебное пособие / С. М. Андреев, М. Ю. Рябчиков, Е. С. Рябчикова; МГТУ. Магнитогорск: МГТУ, 2017. 231 с.: ил., схемы, табл., граф. ISBN 978-5-9967-0940-3. Текст: непосредственный.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно

Профессиональные базы данных и информационные справочные системы

Tipoqueenonalibrible outsil Autilibra il miqopiliagnonnible enpubo inible enercialis					
Название курса	Ссылка				
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»					
Поисковая система Академия Google (Google Scholar)					
Информационная система - Единое окно доступа к информационным ресурсам					
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	https://elibrary.ru/project_risc.asp				
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/				

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа (123M, 227M, 023M):

- мультимедийные средства хранения, передачи и представления информации.
- комплекс тестовых заданий для проведения промежуточных и рубежных контролей.

Учебные аудитории для проведения лабораторных занятий, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (023M):

- мультимедийные средства хранения, передачи и представления информации.
- комплекс тестовых заданий для проведения промежуточных и рубежных контролей.

Помещения для самостоятельной работы (227а, 139М):

- персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования:

- шкафы для хранения учебно-методической документации, учебного оборудования и учебно-наглядных пособий.

Приложение 1. Учебно-методическое обеспечение самостоятельной работы обучающихся

Внеаудиторная самостоятельная работа студентов осуществляется в виде чтения с проработкой материала с консультациями преподавателя и оформления выполненных лабораторных работ, с проработкой основных вопросов к лабораторным работам.

Перечень лабораторных работ по дисциплине:

- 1. Создание проекта в ПО Simatic Manager. Конфигурирование и параметрирование промышленного контроллера.
- 2. Изучение команд битовых логических инструкций.
- 3. Изучение команд преобразования и счета.
- 4. Изучение математических инструкций с целыми и действительными числами.
- 5. Таймерные инструкции.
- 6. Системы управления приводом постоянного тока.
- 7. Системы управления приводом переменного тока.

Вопросы для самостоятельной проработки:

- 1. В чем состоит основное отличие микропроцессора(МП) от микро ЭВМ?
- 2. В чем состоит основное отличие микро ЭВМ от программируемого контроллера?
- 3. Какие основные показатели работы характеризуют МП как элемент вычислительного устройства ?
- 4. Какие основные показатели работы характеризуют МП как большую интегральную микросхему?
- 5. Какие основные блоки входят в состав однокристального МП?
- 6. Какое назначение имеет регистр признаков (флагов)?
- 7. Какие основные функции выполняет интерфейс?
- 8. Назовите основные способы обмена информацией между МП и внешними устройствами?
- 9. Назовите основные способы адресации данных ?
- 10. На какие группы по функциональным признакам подразделяются все команды МП ?
- 11. Назовите основные команды пересылки данных ?
- 12. Назовите основные команды обработки данных ?
- 13. Назовите основные команды переходов?
- 14. Что такое язык программирования?
- 15. Какие языки программирования являются простейшими?
- 16. Какие основные способы представления данных?
- 17. Какое основное назначение ПЗУ в составе микро ЭВМ?
- 18. Какое основное назначение ОЗУ в составе микро ЭВМ?
- 19. Какие основные варианты применения микро ЭВМ в системах автоматического управления электроприводами?
- 20. С помощью каких устройств связана микро ЭВМ с электроприводом постоянного тока?
- 21. Что такое цифровой фильтр?
- 22. Принцип построения алгоритма программирования интегрирующего звена?
- 23. Принцип построения алгоритма программирования дифференцирующего звена
- 24. Принцип построения алгоритма программирования апериодического звена?
- 25. Принцип построения алгоритма работы МПС управления электроприводом постоянного тока с подчиненным регулированием координат?

26. Что принимают за интервал дискретности вычислений в МПС управления электроприводом?

Приложение 2. Оценочные средства для проведения промежуточной аттестации

Код	Индикатор достижения	Оценочные средства
индикатора	компетенции	-
		анализировать данные об оборудовании, для которого
предназначена с	система электропривода	1 D
11K-3.1	Осуществляет	1. В чем состоит основное отличие
	мероприятия по собору,	микропроцессора(МП) от микро ЭВМ?
	обработке и анализу	2. В чем состоит основное отличие микро ЭВМ
	данных об	от программируемого контроллера?
	оборудовании, для	3. Какие основные показатели работы
	которого предназначена	характеризуют МП как элемент
	система электропривода	вычислительного устройства?
		4. Какие основные показатели работы
		характеризуют МП как большую интегральную
		микросхему?
		5. Какие основные блоки входят в состав
		однокристального МП?
		6. Какое назначение имеет регистр признаков
		(флагов) ?
		7. Какие основные функции выполняет
		интерфейс?
		8. Назовите основные способы обмена
		информацией между МП и внешними
		устройствами?
		9. Назовите основные способы адресации
		данных ?
		10. На какие группы по функциональным
		признакам подразделяются все команды МП ?
		11. Назовите основные команды пересылки данных?
		12. Назовите основные команды обработки
		данных?
		13. Назовите основные команды переходов?
		14. Что такое язык программирования?
		15. Какие языки программирования являются
		простейшими?
		16. Какие основные способы представления
		данных ?
		17. Какое основное назначение ПЗУ в составе
		микро ЭВМ ?
		18. Какое основное назначение ОЗУ в составе
		микро ЭВМ ?
		19. Какие основные варианты применения
		микро ЭВМ в системах автоматического
		управления электроприводами?
		20. С помощью каких устройств связана микро
		ЭВМ с электроприводом постоянного тока?
		21. Что такое цифровой фильтр?
		22. Принцип построения алгоритма
		программирования интегрирующего звена?
<u> </u>	<u> </u>	r - r - r - r - r - r - r - r - r - r -

23. Принцип построения алгоритма
программирования дифференцирующего
звена?
24. Принцип построения алгоритма
программирования апериодического звена?
25. Принцип построения алгоритма работы
МПС управления электроприводом
постоянного тока с подчиненным
регулированием координат?
26. Что принимают за интервал дискретности
вычислений в МПС управления
электроприводом?

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Изучение учебной дисциплины «Промышленные программируемые контроллеры» завершается зачетом.

Зачет является формой итогового контроля знаний и умений, полученных на лекциях, семинарских, практических занятиях и процессе самостоятельной работы.

Зачет дает возможность преподавателю:

- выяснить уровень освоения обучающимися программы учебной дисциплины;
- оценить формирование определенных знаний и навыков их использования, необходимых и достаточных для будущей самостоятельной работы;
- оценить умение обучающихся творчески мыслить и логически правильно излагать ответы на поставленные вопросы.

Зачет проводится в форме собеседования, в процессе которого обучающийся отвечает на вопросы преподавателя.

Литература для подготовки к зачету рекомендуется преподавателем. Для полноты учебной информации и ее сравнения лучше использовать не менее двух учебников. Обучающийся вправе сам придерживаться любой из представленных в учебниках точек зрения по спорной проблеме (в том числе отличной от преподавателя), но при условии достаточной научной аргументации.

Основным источником подготовки к зачету является конспект лекций, где учебный материал дается в систематизированном виде, основные положения его детализируются, подкрепляются современными фактами и информацией, которые в силу новизны не вошли в опубликованные печатные источники. В ходе подготовки к зачету обучающимся необходимо обращать внимание не только на уровень запоминания, но и на степень понимания излагаемых проблем.

Зачет проводится по вопросам, охватывающим весь пройденный материал. По окончании ответа преподаватель может задать обучающемуся дополнительные и уточняющие вопросы. Положительным также будет стремление студента изложить различные точки зрения на рассматриваемую проблему, выразить свое отношение к ней, применить теоретические знания по современным проблемам экологии. Результаты зачета объявляются студенту непосредственно после окончания его ответа в день сдачи. Критерии оценки: для получения оценки за зачет:

— на оценку «зачтено» — обучающийся должен показать высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений; показать знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;

показать знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;

– на оценку «не зачтено» – обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.