МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

> **УТВЕРЖДАЮ** Директор ИММиМ --А.С. Савинов

> > 09.02.2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ПРИКЛАДНАЯ МЕХАНИКА

Направление подготовки (специальность) 15.03.01 Машиностроение

Направленность (профиль/специализация) программы Оборудование и технология сварочного производства

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт металлургии, машиностроения и материалообработки Институт/ факультет

Механики

Кафедра 3

Курс

Магнитогорск 2023 год

Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 15.03.01 Машиностроение (приказ Минобрнауки России от 09.08.2021 г. № 727)

Рабочая программа рассмотрена 11.01.2023, протокол № 7	а и одоорена на заседании кафед	А.С. Савинов
	Зав. кафедрой	А.С. Савинов
Рабочая программа одобрена мо 09.02.2023 г. протокол № 5	етодической комиссией ИММиМ Председатель	А.С. Савинов
	Председатель	
Согласовано: Зав. кафедрой Машины и техно	ологии обработки давлением и ма	шиностроения
	A -	С.И. Платов
Рабочая программа составлена: доцент кафедры Механики, канд. техн. наук	: Jellaprens	М.В. Харченко
Рецензент: Директор ЗАО НПО "ЦХТ", канд. техн. наук	Dyfrif	В.П. Дзюба

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2024 - 2025 учебном году на заседании кафедры Механики						
	Протокол от					
Рабочая программа пересмотр учебном году на заседании ка	рена, обсуждена и одобрена для реализации в 2025 - 2026 федры Механики					
	Протокол от					
Рабочая программа пересмотр учебном году на заседании ка	рена, обсуждена и одобрена для реализации в 2026 - 2027 федры Механики					
	Протокол от					
Рабочая программа пересмотр учебном году на заседании ка	рена, обсуждена и одобрена для реализации в 2027 - 2028 федры Механики					
	Протокол от					
Рабочая программа пересмотр учебном году на заседании ка	рена, обсуждена и одобрена для реализации в 2028 - 2029 федры Механики					
	Протокол от 20 г. № Зав. кафедрой А.С. Савинов					

1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины «Прикладная механика» является успешное владение обучающимися общими понятиями об элементах, применяемых в сооружениях, конструкциях, машинах и механизмах, о современных методах расчёта этих элементов на прочность, жёсткость и устойчивость и служит основой изучения специальных дисциплин.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Прикладная механика входит в обязательую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Физика

Математика для технических специальностей

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Проектная деятельность

Оборудование и технологии сварочного производства

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Прикладная механика» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции
ОПК-1 Способен	применять естественнонаучные и общеинженерные знания, методы
математического ан	нализа и моделирования в профессиональной деятельности;
ОПК-1.1	Решает стандартные профессиональные задачи с применением
	общеинженерных знаний
	Применяет методы моделирования и математического анализа для
	решения задач в профессиональной деятельности

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 7 зачетных единиц 252 акад. часов, в том числе:

- контактная работа 19,3 акад. часов:
- аудиторная 16 акад. часов;
- внеаудиторная 3,3 акад. часов;
- самостоятельная работа 220,1 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 12,6 акад. час
- подготовка к зачёту 12,6 акад. час

Форма аттестации - зачет, экзамен

Раздел/ тема дисциплины		Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетенции	
дисциплины	k	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Раздел 1								
1.1 Введение в курс. Основные задачи курса.	3	0,5			20	Усвоение материала, подготовка к тестированию режиме самоконтроля и обучения	Теоретический опрос	
Итого по разделу		0,5			20			
2. Раздел 2								
2.1 Структурный анализ механизмов	3	0,5			20	Усвоение материала, подготовка к тестированию режиме самоконтроля и обучения. Выполнение контрольной работы. Раздел 1 «Структурный и кинематический анализ механизмов»	Защита контрольной работа	
Итого по разделу		0,5			20			
3. Раздел 3								

3.1 Кинематический анализ механизмов 3	0,5	1	18	Усвоение материала, подготовка к тестированию режиме самоконтроля и обучения. Выполнение контрольной работы. Раздел 1 «Структурный и кинематический анализ механизмов»	Защита контрольной работа
Итого по разделу	0,5	1	18		
4. Раздел 4					•
4.1 Динамический анализ механизмов 3	1	1	30	Усвоение материала, подготовка к тестированию. Выполнение контрольной работы. Раздел 2 «Силовой расчёт механизмов»	Защита контрольной работа
Итого по разделу	1	1	30		
5. Раздел 5					
5.1 Механические передачи трением и 3 зацеплением	0,5	1	40	Усвоение материала, подготовка к тестированию режиме самоконтроля и обучения. Выполнение контрольной работы. Раздел 3 «Расчёт привода технологической машины»	Теоретический опрос
Итого по разделу	0,5	1	40		
6. Раздел 6					
6.1 Валы и оси. Опоры скольжения и качения	0,5	1	40	Усвоение материала, подготовка к тестированию режиме самоконтроля и обучения. Выполнение контрольной работы. Раздел 3 «Расчёт привода технологической машины»	Теоретический опрос Защита контрольной работа
Итого по разделу	0,5	1	40		
 Раздел 7 	. ,-		-		L
, . 1 издел 1					

7.1 Соединения деталей машин	3	0,5	1	40	Усвоение материала, подготовка к тестированию режиме самоконтроля и обучения	Теоретический опрос	
Итого по разделу		0,5	1	40			
8. Раздел 8							
8.1 Упругие элементы, муфты, корпусные детали	3	2	5	12,1	Усвоение материала, подготовка к тестированию режиме самоконтроля и обучения	Теоретический опрос	
Итого по разделу		2	5	12,1			
Итого за семестр		6	10	220,1		экзамен,зачёт	
Итого по дисциплине		6	10	220,1		зачет, экзамен	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Прикладная механика» используются традиционная и модульно - компетентностная технологии.

Образовательные технологии ориентируются на организацию образовательного процесса, предлагающую прямую трансляцию знаний от преподавателя к обучающемуся (преимущественно на основе объяснительно-иллюстративных методов обучения)

Передача необходимых теоретических знаний и формирование основных представлений по курсу «Прикладная механика» происходит с использованием мультимедийного оборудования.

Информационная лекции проходят в традиционной форме (монолог преподавателя), в форме лекций-консультаций и проблемных лекций. Теоретический материал на проблемных лекциях является результатом усвоения полученной информации посредством постановки проблемного вопроса и поиска путей его решения. На лекциях – консультациях изложение нового материала сопровождается постановкой вопросов и дискуссией в поисках ответов на эти вопросы.

При проведении практических занятий используется работа в команде и методы информационных технологий. Часть практических занятий ведутся в интерактивной форме. Интерактивная технология предполагает активное и нелинейное взаимодействие всех участников, достижение на этой основе личностно значимого для них образовательного результата. Учебные занятия с использованием специализированных интерактивных технологий ведутся в форме учебных дискуссий, эвристических бесед, обучение на основе опыта.

Самостоятельная работа стимулирует обучающихся в процессе подготовки контрольной рабоы, при решении задач на практических занятиях, при подготовке к контрольным работам и итоговой аттестации.

- **6** Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.
- **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
- 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Прикладная механика: учебное пособие / В. Т. Батиенков, В. А. Волосухин, С. И. Евтушенко [и др.]. Москва: РИОР: ИНФРА-М, 2019. 2-е изд., доп. и перераб. 339 с. (Высшее образование). https://doi.org/10.12737/24838. ISBN 978-5-16-102469-0. Текст: электронный. URL: https://znanium.com/catalog/product/1021436
- 2. Прикладная механика : учебник для академического бакалавриата / В. В. Джамай, Е. А. Самойлов, А. И. Станкевич, Т. Ю. Чуркина ; под редакцией В. В. Джамая. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2020. 359 с. (Бакалавр. Академический курс). ISBN 978-5-9916-3781-7. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/460148

б) Дополнительная литература:

- 1. Варданян, Г. С. Прикладная механика: применение методов теории подобия и анализа размерностей к моделир. задач механики деформируемого твердого тела: учебное пособие / Варданян Г. С. Москва: НИЦ ИНФРА-М, 2016. 174 с. (ВО: Бакалавриат). ISBN 978-5-16-011532-0. Текст: электронный. URL: https://znanium.com/catalog/product/533262
- 2. Зиомковский, В. М. Прикладная механика: учебное пособие для вузов / В. М. Зиомковский, И. В. Троицкий; под научной редакцией В. И. Вешкурцева. Москва: Издательство Юрайт, 2020. 286 с. (Высшее образование). ISBN 978-5-534-00196-9. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453344.
- 3. Лабораторный практикум по прикладной механике и деталям металлургических машин: учебное пособие / [И. Д. Кадошникова, В. И. Кадошников, Е. В. Куликова и др.]; МГТУ, [каф. ПМиГ]. Магнитогорск, 2011. 63 с.: ил., схемы, табл. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=478.pdf&show=dcatalogues/1/1085 818/478.pdf&view=true. Макрообъект. Текст: электронный. Имеется печатный аналог.
- 4. Огарков, Н. Н. Расчетно-прикладная механика процесса резания : учебное пособие / Н. Н. Огарков, Е. С. Шеметова ; МГТУ. Магнитогорск : МГТУ, 2017. 70 с. : ил., табл., схемы.

 URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3285.pdf&show=dcatalogues/1/113
 7416/3285.pdf&view=true

 Макрообъект. Текст : электронный. Имеется печатный аналог.
- 5. Огарков, Н. Н. Расчеты в прикладной механике процесса резания : лабораторный практикум / Н. Н. Огарков, Е. С. Шеметова ; МГТУ. Магнитогорск : МГТУ, 2018. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3439.pdf&show=dcatalogues/1/1514262/3439.pdf&view=true . Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.

в) Методические указания:

- 1. Дьяченко Д.Я., Наумова Н.И. Практикум по сопротивлению материалов: учеб. пособие. Магнитогорск: ГОУ ВПО «МГТУ», 2010. 117 с.
- 2. Куликова, Е. В. Кинематический анализ механизмов и машин : учебное пособие / Е. В. Куликова, В. И. Кадошников, М. В. Андросенко ; МГТУ. Магнитогорск : МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Текст : электронный.
- 3. Белан, А. К. Проектирование привода технологических машин : учебное пособие [для вузов] / А. К. Белан, М. В. Харченко, О. А. Белан ; МГТУ. Магнитогорск : МГТУ, 2019. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3789.pdf&show=dcatalogues/1/152-9940/3789.pdf&view=true

4. Белан, А. К. Проектирование привода технологических машин: учебное пособие [для вузов] / А. К. Белан, М. В. Харченко, О. А. Белан; МГТУ. - Магнитогорск: МГТУ, 2019. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3789.pdf&show=dcatalogues/1/152 9940/3789.pdf&view=true

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии		
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно		
7Zip	свободно распространяемое	бессрочно		
FAR Manager	свободно распространяемое	бессрочно		

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Информационная система - Единое окно доступа к информационным ресурсам	
Поисковая система Академия Google (Google Scholar)	
Национальная информационно-аналитическая система – Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа. Оснащение: Мультимедийные средства хранения, передачи и представления информации.

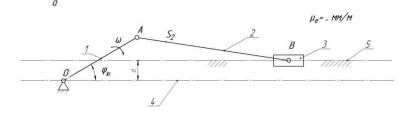
Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: Доска, мультимедийный проектор, экран.

Помещения для самостоятельной работы обучающихся. Оснащение: Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

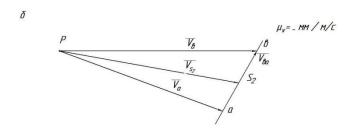
Помещение для хранения и профилактического обслуживания учебного оборудования. Оснащение: Стеллажи для хранения учебно-методических пособий и учебно-методической документации

Приложение 1

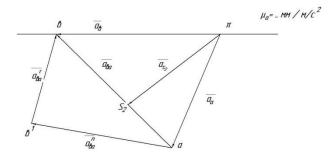
«Учебно-методическое обеспечение самостоятельной работы обучающихся»


По дисциплине «Прикладная механика» предусмотрено выполнение самостоятельной работы обучающихся. Самостоятельная работа обучающихся предполагает решение практических заданий на занятиях.

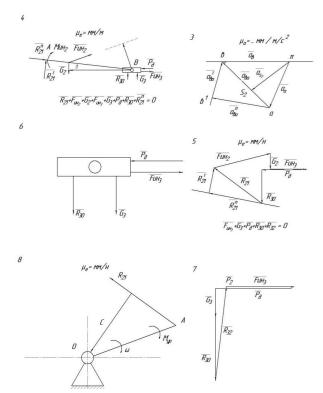
Примерные самостоятельные практические задания:


1.Кинематический анализ кривошипно-ползунных механизмов

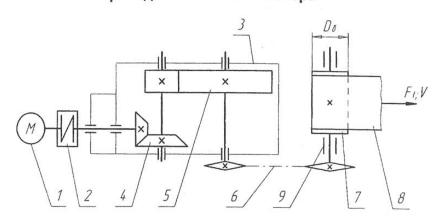
Начертить кинематическую схему механизма в масштабе μ_l . Определить масштаб длин μ_l по формуле $\mu_l = \frac{|0A|}{l_{og}}$ по вариантам.


Номер варианта	α, м	l_1 , м	l_2 , M	$arphi_{10}$, град	ω ₁ , рад/с
1	1,0	2,0	5,0	0	12
2	0,9	1,4	3,5	0	12
3	0,8	1,1	2,6	0	10
4	0,7	1,2	3,0	0	10
5	0,6	0,8	3,5	180	11
6	0,5	1,0	3,0	0	11
7	-0,6	2,0	4,2	180	11
8	-0,7	0,5	4,5	0	12
9	-0,8	0,8	2,0	180	10
10	-0,9	1,4	3,5	0	12
11	-1,0	1,2	3,0	180	12
12	0,9	1,4	3,2	0	12
13	0,8	1,1	4,1	0	12
14	0,7	0,8	2,5	0	10
15	-0,6	0,6	2,0	0	11
16	-0,5	0,5	1,5	180	10
17	0,4	0,2	3,0	0	11
18	-0,5	1,0	2,1	180	10
19	-0,6	1,4	3,5	0	12
20	-0,7	2,0	5,5	0	11

Для имеющегося механизма построить план скоростей в масштабе μ_{ϑ} .



Для имеющегося механизма построить план ускорений в масштабе μ_{α} .


2.Силовой расчёт кривошипно – ползунных механизмов

- -Определение сил, действующих на звенья механизма.
- -Определение реакций в кинематических парах.
- -Определение уравновешивающего момента.
- -Выделить структурную группу Ассура и показать все силы, действующее на неё, а также момент инерции второго звена.
 - -Составить систему уравнений и решить эти уравнения графо-аналитическим методом.

3. Расчёт привода технологической машины

ЗАДАНИЕ 1 Привод ленточного конвейера

1 — двигатель; 2 — муфта; 3 — редуктор; 4 — коническая передача; 5 — цилиндрическая передача; 6 — цепная передача; 7 — барабан; 8 — лента конвейера; 9 — опоры барабана.

Исходные	Варианты										
данные	1	2	3	4	5	6	7	8	9	10	
Окружная сила на бара- бане <i>F_t</i> , кН	0,5	1,2	1,1	1,0	0,8	0,7	1,0	1,0	0,8	0,5	
Окружная скорость ба- рабана V, м/с	3,0	2,0	2,5	3,0	3,0	3,5	2,5	2,0	2,5	2,0	
Диаметр ба- рабана <i>D</i> ₆ , мм	800	800	900	900	800	800	600	600	400	400	
Срок службы привода L _r , лет	6	4	5	5	7	6	5	4	6	7	

«Оценочные средства для проведения промежуточной аттестации»

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Промежуточная аттестация имеет целью определить степень достижения запланированных результатов обучения по дисциплине

«Прикладная механика» проводится за два семестра: в форме экзамена и зачета на третьем курсе.

	Планируемые результаты обучения ен применять естественнонаучные и общего деятельности;	Оценочные средства инженерные знания, методы математического анализа и моделирования в
ОПК-1.1	Решает стандартные профессиональные задачи с применением общеинженерных знаний.	 Перечень теоретических вопросов к экзамену: Кинематические пары и их классификация. Кинематические цепи. Структурная формула кинематической цепи общего вида. Избыточные связи и лишние степени подвижности. Замена в плоских механизмах высших пар низшими. Механизм и его кинематическая схема. Число степеней свободы механизма. Образование плоских и пространственных механизмов. Структурная классификация. Аналоги скоростей и ускорений. Постановка задачи кинематического анализа и методы их решения. Аналитическое исследование кривошипно-ползунного механизма. Построение планов механизмов и определение функций положения. Построение планов скоростей. Построение планов ускорений. Кинематический анализ графическим методом. Основные кинематические соотношения в механизмах 3-х звенных и многоступенчатых зубчатых передач с неподвижными осями. Пример практического задания к экзаменационному билету На рисунке изображён план скоростей кривошипно-ползунного механизма.
		Определить абсолютные скорости

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		DEC DIAB
		Примерное практическое задание для зачета 1. На рисунке показано крепление крышки резервуара болтами с эксцентрично приложенной нагрузкой (болтами с костыльной головкой). Болты затянуты силой F =1,5кH. Определить внутренний диаметр резьбы болта d из условия растяжения и изгиба, принимая допускаемое напряжение растяжения ${}^{[\sigma]}_p = 100 \text{ M}$ Па; величину e -эксцентриситета приложения нагрузки принять равной диаметру болта.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
ОПК-1.2	Применяет методы моделирования и математического анализа для решения задач в профессиональной деятельности	 Перечень теоретических вопросов к экзамену: Кинематика планетарных передач. Кинематика дифференциальных передач. Классификация кулачковых механизмов. Кинематическое исследование кулачкового механизма с вращающимся кулачком и поступательно-движущимся толкателем. Кинематическое исследование кулачкового механизма с вращающимся кулачком и качающимся толкателем. Задачи динамического анализа и классификация сил, действующих на звенья механизма. Определение сил инерции звеньев механизма. Дуга зацепления и коэффициент перекрытия. Скольжение зубьев в зацеплении. Методы изготовления зубчатых колес. Изготовление зубчатых колес со смещением режущего инструмента. Подбор чисел зубьев планетарных передач из условий соосности, соседства и сборки. Определение основных размеров кулачковых механизмов по заданному углу давления. Проектирование кулачковых механизмов с вращательным движением кулачка и поступательным движением толкателя. Проектирование кулачковых механизмов с вращательным движением кулачка и вращательным движением толкателя. Синтез 4-х звенного механизма по двум положениям ведомого звена и коэффициенту изменения средней скорости. Условие существование кривошипа в 4-х звеном механизме. Принцип автоматического управления машин-автоматов. (Управление от копиров, числовое программное управление). Система управления по времени. Кулачковый распредвал.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		Примерное практическое задание для экзамена: На рисунке упрощенно показана кулачковая муфта с пружинным прижимом одной полумуфты и профиль кулачков в зацеплении углом a . Определить максимальный крутящий момент, передаваемый муфтой при следующих исходных параметрах: коэффициент трения на поверхности кулачков f =0,1, угол a =30 0 , трением полумуфты по поверхности вала пренебречь. Усилие прижима пружины P =17 κH
		Пример задания на практическую работу Кинематический анализ кривошипно-ползунных механизмов $\mu_{e}=-\mu_{e}/\mu_{e}$

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		-Начертить кинематическую схему механизма в масштабе μ_l Построить план скоростей в масштабе μ_{ϑ} Определить масштаб плана скоростей μ_{ϑ} по формуле
		$\vec{\vartheta}b=\vec{\vartheta}a+\vec{\vartheta}ab$ Для имеющегося механизма построить план скоростей в масштабе μ_{ϑ} .
		Для имеющегося механизма построить план ускорений в масштабе μ_{α} . $\mu_{\alpha^{=}-\text{MM}}/\text{M/c}^{2}$
		$\overline{a_{ba}}$ $\overline{a_{ba}}$ $\overline{a_{ba}}$ $\overline{a_{ba}}$ $\overline{a_{aa}}$ $\overline{a_{aa}}$ $\overline{a_{aa}}$

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Прикладная механика» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена на третьем курсе.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

Критерии оценки (в соответствии с формируемыми компетенциями и планируемыми результатами обучения):

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

Показатели и критерии оценивания при сдаче зачета:

- **на оценку** «**зачтено**» обучающийся должен показать знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- **на оценку** «**не зачтено**» обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.