МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

> **УТВЕРЖДАЮ** Директор ИММиМ А.С. Савинов

> > 09.02.2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА И МОДЕЛИРОВАНИЕ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Направление подготовки (специальность) 18.03.01 Химическая технология

Направленность (профиль/специализация) программы Химическая технология природных энергоносителей и углеродных материалов

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт металлургии, машиностроения и материалообработки Институт/ факультет

Металлургии и химических технологий

Кафедра

4 Курс 8 Семестр

> Магнитогорск 2023 год

Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 18.03.01 Химическая технология (приказ Минобрнауки России от 07.08.2020 г. № 922)

Рабочая программа рассмотрен химических технологий	а и одобрена на заседе	ании кафедры	Металлургии и
08.02.2023, протокол № 5	Зав. кафедрой	blem	А.С. Харченко
Рабочая программа одобрена м 09.02.2023 г. протокол № 5	етодической комиссие Председатель	й ИММиМ	А.С. Савинов
Рабочая программа составлена профессор кафедры МиХТ, Д.ф	: þм.н	A.:	Н.Смирнов

Рецензент:

ведущий специалист НТЦ группы по АКДП ПАО "ММК" , канд. техн. наук

Е.Н. Степанов

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2024 - 2025 учебном году на заседании кафедры Металлургии и химических технологий										
	Протокол от	_ 20 г. № А.С. Харченко								
	рена, обсуждена и одобрена д афедры Металлургии и хими	<u>=</u>								
	Протокол от Зав. кафедрой	_ 20 г. № А.С. Харченко								
	рена, обсуждена и одобрена д афедры Металлургии и хими	<u>=</u>								
	Протокол от	_ 20 г. № А.С. Харченко								
1 1 1	рена, обсуждена и одобрена д афедры Металлургии и хими	1								
	Протокол от	_ 20 г. № А.С. Харченко								

1 Цели освоения дисциплины (модуля)

свободное владение основными методами построения, численного решения, реализации (представления) и исследования с помощью ЭВМ математических моделей;

освоение существующих основных математических моделей, используемых при описании химико-технологических процессов.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Планирование эксперимента и моделирование химико-технологических процессов входит в обязательую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Математика

Физическая химия

Химические реакторы

Массообменные процессы химической технологии

Техническая термодинамика и теплотехника

Процессы и аппараты химической технологии

Коллоидная химия

Общая и неорганическая химия

Общая химическая технология

Коксование углей

Подготовка углей для коксования

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Подготовка к процедуре защиты и защита выпускной квалификационной работы

Учебно-исследовательская работа студента

Производственная - преддипломная практика

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Планирование эксперимента и моделирование химико-технологических процессов» обучающийся должен обладать следующими компетенциями:

Код индик	катора	Индикатор достижения компетенции										
ОПК-2 Сп	тособен	использовать математические, физические, физико-химические,										
химические	химические методы для решения задач профессиональной деятельности											
ОПК-2.1		Использует математические, физические, физико-химические,										
		химические методы для решения задач профессиональной										
		деятельности										
ОПК-2.2		Выбирает математические, физические, физико-химические,										
		химические методы для решения задач профессиональной										
		деятельности										
ОПК-5 Сп	особен	осуществлять экспериментальные исследования и испытания по										
заданной м	етодике	е, проводить наблюдения и измерения с учетом требований техники										
безопасност	ги, обра	батывать и интерпретировать экспериментальные данные										
ОПК-5.1		Выбирает и применяет методы и средства измерения для определения										
		свойств материалов и готовой продукции										
ОПК-5.2		Проводит экспериментальные исследования и использует основные										
		приёмы обработки и представления полученных данных										

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 80,95 акад. часов:
- аудиторная 77 акад. часов;
- внеаудиторная 3,95 акад. часов;
- самостоятельная работа 45,35 акад. часов;
- в форме практической подготовки 4 акад. час;
- подготовка к экзамену 17,7 акад. час

Форма аттестации - экзамен

Раздел/ тема дисциплины	Семестр	Аудиторная контактная работа (в акад. часах) лаб. практ.			Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной	Код компетенции
		Лек.	зан.	зан.	Сам раб		аттестации	
1. Раздел "Общие вопр моделирования"	осы							
1.1 Общее понятие модели. Многообразие форм представления модели. Понятие о математическом моделировании. Основные подходы к построению математических моделей. Аналитический подход к моделированию. Экспериментальный подход к моделированию Комбинированный подход к моделированию. Основные этапы построения математических моделей. Триединство процесса моделирования: модель,	8	3		4	10	Выполнение практических работ	Коллоквиум.	ОПК-2.1, ОПК-2.2, ОПК-5.1, ОПК-5.2
1.2 Примеры математического моделирования из различных областей знания (физика, биология).		1			3	Выполнение практических работ	Коллоквиум.	ОПК-2.1, ОПК-2.2, ОПК-5.1, ОПК-5.2
Итого по разделу 2. Раздел "Аналитиче подход к моделирова химико-технологических процессов"		4		4	13			

2.1 Понятие о физико-химическом моделировании. Основные сведения из курса "Физическая химия". Термодинамика химических превращений. Направление химических реакций. Уравнение изотермы химической реакции. Способы описания концентрации реагирующих веществ. Изменение изотермы химической реакции в стандартных условиях. Связь между константами равновесия в зависимости от способа описания состава реакционной смеси. Гетерогенное химическое равновесия: Запись констант равновесия при различных температурах. Понятие о линейной зависимости химических реакций. Метод Тёмкина-Шварцмана для расчёта констант равновесия на основе равновесия на основе равновесия на основе равновесия и расчёта константы равновесия на основе равновесных концентраций реагирующих веществ. Расчёт константы равновесия. Методика расчёта равновесных концентраций при одновременном протекании нескольких реакций (методика моделирования расчёта). Ограничения термодинамического подхода в случае моделирования (расчёта) равновесного состава раствора). Ограничения термодинамического подхода в случае моделирования (расчёта) равновесного состава растирующих веществ. 2.2 Кинетические	8	4	12	5	Выполнение практических работ	Коллоквиум по задачам.	ОПК-2.1, ОПК-2.2, ОПК-5.1, ОПК-5.2
2.2 кинетические особенности протекания химических реакций. Методика составления систем уравнений, описывающих равновесные концентрации веществ, принимающих участие в химических реакциях.		5	8	4	Выполнение практических работ	Коллоквиум по задачам.	ОПК-2.1, ОПК-2.2, ОПК-5.1, ОПК-5.2

				Полготовка к		ОПК-2.1,
5			4 35		Семинарское	ОПК-2.2,
3			7,55		занятие.	ОПК-5.1,
				Summo.		ОПК-5.2
14		20	13,35			
				Выполнение		ОПК-2.1,
5		4	3			ОПК-2.2,
,		_	3			ОПК-5.1,
				μασσι		ОПК-5.2
	5 5	14	14 20	14 20 13,35	14 20 13,35 Выполнение	5 4,35 семинарскому занятию. Семинарское занятие. 14 20 13,35 5 4 3 Выполнение практических

					ı	1
3.2 Планирование и		1		I		
обработка результатов						
однофакторного						
экспериментов.						
Формализация						
экспериментальных						
данных методом						
наименьших квадратов.						
Симметричный и						
равномерный план						
однофакторного						
адекватности						
полученного уравнения и						
его использование для						
оптимизации процесса.						
Получение						
экспоненциальной						
зависимости по		1				
		1				
результатам						
однофакторных		1				
экспериментов.		1				
Двухуровневые планы		1				
многофакторных		1				
экспериментов. Метод						
наименьших квадратов		1				
при обработке						
результатов						
многофакторного						
эксперимента.						
Двухуровневый план					Выполнение	ОПК-2.1,
полного факторного	6		6	8		ОПК-2.2,
	0		O	0	практических	ОПК-5.1,
эксперимента ПФЭ2n.					работ	ОПК-5.2
Уравнения, получаемые						OTHC 5.2
по результатам						
реализации планов						
ПФЭ2n. Статистический						
анализ значимости оценок						
коэффициентов						
уравнения, его						
адекватности и						
работоспособности.						
Дробный факторный		1				
эксперимент ДФЭ2n-n'.		1				
Планирование		1				
_						
		1				
изменяющемся во		1				
времени влиянии на		1				
процесс неучтённых		1				
факторов. Использование						
планов ПФЭ2п ДФЭ2п-п'		1				
для получения уравнения		1				
процесса в виде		1				
		1				
экспоненциальной		1				
зависимости.		1				
Рассмотрение примеров.		1				
Многоуровневые		1				
многофакторные планы,		1				
использующие свойства		1				
латинских квадратов.		1				
		1				
Построение планов.		1				
Получение и		1				
использование для		1				
Итого по эзрани	11	1	10	11		
Итого по разделу			10	11		
4. Раздел "Комбинирован	ный					
метод"	I					

4.1 Особенности комбинированных математических моделей. Рассмотрение математических моделей из области профессиональной компетенции (прогнозирование показателей качества кокса М25 и М10).	8	4	10	8	Подготовка к семинарскому занятию.	Семинарское занятие.	ОПК-2.1, ОПК-2.2, ОПК-5.1, ОПК-5.2
Итого по разделу		4	10	8			
5. Раздел "Экзамен"							
5.1 Экзамен	8				Подготовка к экзамену	Экзамен	ОПК-2.1
Итого по разделу							
Итого за семестр		33	44	45,35		экзамен	
Итого по дисциплине		33	44	45,35		экзамен	

5 Образовательные технологии

Для достижения планируемых результатов обучения, в дисциплине «Моделирование химико-технологических процессов» используются различные образовательные технологии:

- 1. Информационно-развивающие технологии, направленные на овладение большим запасом знаний, запоминание и свободное оперирование ими. Используется лекционно-семинарский метод, самостоятельное изучение литературы, применение новых информационных технологий для самостоятельного пополнения знаний, включая использование технических и электронных средств информации;
- 2. Деятельностные практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений при проведении экспериментальных исследований, обеспечивающих возможность качественно выполнять профессиональную деятельность;
- 3. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие проблемного мышления, мыслительной активности, способности проблемно мыслить, видеть и формулировать проблемы, выбирать способы и средства для их решения. Используются следующие виды проблемного обучения: освещение основных проблем изучаемой дисциплины на лекциях, учебные дискуссии, решение задач повышенной сложности. Преподаватель лишь создает проблемную ситуацию, а разрешают её обучаемые в ходе самостоятельной деятельности;
- 4. Личностно-ориентированные технологии обучения, обеспечивающие в ходе учебного процесса учет различных способностей обучаемых, создание необходимых условий для развития их индивидуальных способностей, развитие активности личности в учебном процессе. Личностно-ориентированные технологии обучения реализуются в результате индивидуального общения преподавателя и студента на консультациях, при выполнении домашних индивидуальных заданий, подготовке индивидуальных отчетов по индивидуальным заданиям, решении задач.

Методическая концепция преподавания дисциплины «Моделирование химико-технологических процессов» предусматривает активную форму усвоения материала, которая обеспечивает максимальную самостоятельность студента в решении технологических задач при выполнении заданий.

Также предусмотрены различные виды лекционных занятий:

- лекция с разбором конкретной задачи, изложенной в устной форме или в виде слайда или видеозаписи, студенты совместно с преподавателем обсуждают и анализируют представленный материал;
- лекция с разбором нерешенных и проблемных вопросов дисциплины анализ и обсуждение возможных вариантов решения этих вопросов.

Самостоятельная работа стимулирует студентов к самостоятельной проработке тем в процессе написания рефератов, выполнения индивидуальных заданий, в процессе подготовки к коллоквиумам и итоговой аттестации.

Интерактивное обучение включает следующие методы:

- работа в команде
- проблемное обучение
- контекстное обучение
- обучение на основе опыта
- междисциплинарное обучение
- эвристическая беседа
- учебная дискуссия.

Для оценки знаний рекомендуется использовать рейтинговую систему, которая обеспечивает диагностику достижения обучаемым заданного уровня компетентности на каждом этапе текущего, промежуточного и рубежного, итогового контроля. Цель

студента — набрать максимальное число баллов. При рейтинговой системе резко возрастает роль текущего контроля. В конце семестра, студенты, набравшие суммарный рейтинг 50% получают допуск к экзамену.

- **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
- **7 Оценочные средства для проведения промежуточной аттестации** Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Гумеров, А. М. Математическое моделирование химико-технологических процессов : учебное пособие / А. М. Гумеров. 2-е изд., перераб. Санкт-Петербург : Лань, 2022. 176 с. ISBN 978-5-8114-1533-5. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/211445.
- 2. Арутюнян, С. А. Моделирование химико-технологических процессов : учебное пособие / С. А. Арутюнян. Красноярск : СибГУ им. академика М. Ф. Решетнёва, 2021. 98 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/195081

б) Дополнительная литература:

Математическое моделирование химико-технологических процессов : учебное пособие / Н. В. Ушева, О. Е. Мойзес, О. Е. Митянина, Е. А. Кузьменко. — Томск : ТПУ, 2014. — 135 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/62934

Самойлов, Н. А. Примеры и задачи по курсу "Математическое моделирование химико-технологических процессов" : учебное пособие / Н. А. Самойлов. — 3-е изд., испр. И доп. — Санкт-Петербург : Лань, 2022. — 176 с. — ISBN 978-5-8114-1553-3. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/213266

С. В. Назаров, П. П. Мельников, Л. П. Смольников и др.; под ред. С. В. Назарова. - Москва: Финансы и статистика, 2007. - 656 с.: ил. - ISBN 978-5-279-02926-6. - Текст: электронный. - URL: https://new.znanium.com/catalog/product/369386

Андреев, С. М. Моделирование объектов и систем управления : учебное пособие / С. М. Андреев ; МГТУ. - Магнитогорск : МГТУ, 2017. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3337.pdf&show=dcatalogues/1/1138 496/3337.pdf&view=true - Макрообъект. - Текст : электронный. - ISBN 978-5-9967-1028-7. - Сведения доступны также на CD-ROM.

. Гартман, Т. Н. Моделирование химико-технологических процессов. Принципы применения пакетов компьютерной математики : учебное пособие / Т. Н. Гартман, Д. В. Клушин. — Санкт-Петербург : Лань, 2020. — 404 с. — ISBN 978-5-8114-3900-3. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/126905

Материальные и тепловые расчеты химико-технологических процессов: учебное пособие / С. А. Крылова, З. И. Костина, И. В. Понурко, А. В. Горохов; МГТУ, [каф. ХТНМиФХ]. - Магнитогорск, 2011. - 50 с. : табл. - URL: https://magtu.informsystema.ru/uploader/fileUpload?name=36.pdf&show=dcatalogues/1/107901 2/36.pdf&view=true - Макрообъект. - Текст: электронный. - Имеется печатный аналог.

Крылова, С. А. Введение в анализ и синтез химико-технологических систем : учебное пособие / С. А. Крылова ; МГТУ. - Магнитогорск : МГТУ, 2016. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL: https://magtu.informsystema.ru/uploader/fileUpload?name=25.pdf&show=dcatalogues/1/113146 4/25.pdf&view=true - Макрообъект. - Текст : электронный. - Сведения доступны также на CD-ROM.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
7Zip	свободно распространяемое ПО	бессрочно
Linux Calculate	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка

Поисковая	система	Академия	Google	(Google	URL: https://scholar.google.ru/
Scholar)					
Национальн	ая и	нформацион	но-анали	тическая	URL:
система – Ре	оссийский	индекс науч	ного цити	ирования	https://elibrary.ru/project_risc.asp
(РИНЦ)					
Электронна	я база пері	иодических	изданий Е	East View	https://dlib.eastview.com/
Information	Services, O	ОО «ИВИС»	•		

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа (Мультимедийные средства хранения, передачи и представления информации)

Учебная аудитория для проведения практических занятий (Персональные компьютеры с пакетом MS Office, вы-ходом в Интернет и с доступом в электронную информационно-образовательную среду университета)

Учебные аудитории для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (Доска, учебные столы, стулья)

Помещения для хранения и профилактического обслуживания учебного оборудования (стеллажи для хранения оборудования, методическая литература для учебных занятий)

Учебно-методическое обеспечение самостоятельной работы обучающихся

Вопросы по разделу «Общие вопросы моделирования»

№ 1.Эксперимент как предмет исследования. Основные понятия и определения. Фактор, уровень фактора, отклик.

№2 Принципы подобия, критерии подобия. Элементарные математические модели. Применение аналогий при построении моделей. Вариационные принципы при построении математических моделей.

Вопросы по разделу «Аналитический подход к моделированию ХТП»

№1. Рассчитать ионно-молекулярный состав в присутствии КСN, растворённого в количестве C=10⁻⁵ моль / л. Задаться значениями рН в интервале 0-14 и численно рассчитать ионно-молекулярный состав данной системы. Результаты представить графически в информативном виде (использовать логарифмическую шкалу выходного параметра). Все расчёты произвести в табличном процессоре.

№2. Рассчитать ионно-молекулярный состав раствора в присутствии растворённой углекислоты воздуха. Задаться значениями рН в интервале 0-14 и численно рассчитать ионно-молекулярный состав данной системы. Результаты представить графически в информативном виде (использовать логарифмическую шкалу выходного параметра). Все расчёты произвести в табличном процессоре.

№3. Значение pH раствора регулируется изменением концентрации соды. Рассчитать концентрацию [CO³-] ионов в растворе, с учётом растворённой углекислоты воздуха. Задаться значениями pH в интервале 0-14 и численно рассчитать ионно-молекулярный состав данной системы. Результаты представить графически в информативном виде (использовать логарифмическую шкалу выходного параметра). Все расчёты произвести в табличном процессоре.

№4. При каком значении рН достигается практически полное осаждение MnS (ПР_{мпS} = 2.5*10⁻¹⁰), содержащегося в растворе в количестве 0,005 моль, при употреблении 50 % избытка осадителя. Расчёт произвести на 1 л исследуемого раствора. Все численные расчёты произвести в табличном процессоре, аналитические записи предоставить в бумажном виде. Из каких соображений находится концентрация марганца [Mn²+], и между какими химическими формами осуществляется материальный баланс по сере избыточной концентрации осадителя?

№5. Пример 5. Рассчитать равновесный состав газовой фазы для установившегося тер-модинамического равновесия получения водяного газа по реакциям:

$$C + H_2O \Leftrightarrow CO + H_2$$
 (1)

$$CO + H_2O \Leftrightarrow CO_2 + H_2$$
 (2)

В данном задании достаточно ограничиться выводом кубического уравнения относительно рсо.

№6. Оценить с физико-химической точки зрения, при каком значении рН происходит переход PbSO₄ в Pb(OH)₂. Изменение рН происходит за счёт NaOH.

В системе предполагается протекание следующих химических реакций:

$$PbSO_{4_{TB.}} \Leftrightarrow Pb^{2+}_{p-p} + SO_{4^{-p-p}}^{2-}$$
 (1)

$$Pb(OH)_{2TP} \Leftrightarrow Pb^{2+}_{p-p} + 2OH^{-}_{p-p}$$
 (2)

$$Pb(OH)_{2_{TB}} \Leftrightarrow H^{+}_{p-p} + HPbO_{2}^{-}_{p-p}$$
 (3)

$$Pb(OH)^{+}_{p-p} \iff Pb^{2+}_{p-p} + OH^{-}_{p-p}$$
 (4)

$$HSO_{4p-p}^{-} \iff H^{+}_{p-p} + SO_{4p-p}^{2-}$$
 (5)

$$H_2O \Leftrightarrow H^+ + OH^-$$
 (6)

Уравнение материального баланса:

$$[Na^+] \Leftrightarrow [OH^-] + [Pb(OH)^+]$$
 (7)

Уравнение электронейтральности:

$$[Na^+] + 2*[Pb^{2+}] + [Pb(OH)^+] + [H^+] \Leftrightarrow 2*[SO_4^{2-}] + [HSO_4^-] + [HPbO_5^-] + [OH^-]$$

Примечание: при решении задачи необходимо по имеющимся уравнениям составить систему нелинейных уравнений, из неё вывести уравнение:

$$2*K_{2}^{2}*K_{4}*K_{5}*[H^{+}]^{4}+K_{2}*K_{5}*K_{w}(2*K_{2}+K_{4}*K_{w})*[H^{+}]^{3}-K_{4}*K_{w}^{2}(K_{1}*K_{w}^{2}+K_{2}*K_{3}*K_{5})*[H^{+}]-2*K_{1}*K_{4}*K_{5}*K_{w}^{4}=0$$

Из справочных данных необходимо определить константы химических реакций $K_1 - K_6$ соответствующих реакций (1)-(6).

Из практических соображений установить, с какой точностью необходимо вычислять значение рН.

Нелинейное уравнение необходимо решить четырьмя методами: графическим, половинного деления, Ньютона, хорд. Сделать вывод о быстроте сходимости каждого из методов при заданной точности получаемого результата, а также пригодности для решения задачи физико-химического моделирования.

Рассмотреть эвристический метод, основанный на специфике решаемой задачи, решения системы нелинейных уравнений.

Все вычисления произвести в табличном процессоре.

№7. Пользуясь результатами задачи №6 исключить из системы нелинейных уравнений уравнение (3). Решить полученную систему уравнений эвристическим методом. Сделать вывод о влиянии уравнения (3) на моделируемую систему и итоговое значение рН.

№8. Пользуясь результатами задачи №6 исключить из системы нелинейных уравнений уравнение (3) и (5). Решить полученную систему уравнений эвристическим методом. Сделать вывод о влиянии уравнения (3) и (5) на моделируемую систему и итоговое значение рН.

№9. Пользуясь результатами задачи №6 исключить из системы нелинейных уравнений уравнение (1), (3), (5). Решить полученную систему уравнений эвристическим методом. Сделать вывод о влиянии уравнения (1) на моделируемую систему и итоговое значение pH.

№13. Для необратимой реакции первого порядка:

$$A \xrightarrow{\kappa_1} B$$

Составить дифференциальное уравнение скорости изменения концентрации А. Решить полученное дифференциальное уравнение методом Эйлера, модифицированным методом Эйлера, Рунге-Кутта. Сделать вывод о точности каждого из методов в сравнении друг с другом. Для расчёта принять следующие значения неизвестных параметров:

$$C_A^0 = 0.7$$
 моль/л; $\kappa_1 = 0.001$ 1/c; $h = 0.1$ (шаг интегрирования).

№14. Для последовательной схемы необратимых химических реакций первого порядка: А

$$A \xrightarrow{\kappa_1} B \xrightarrow{\kappa_2} C$$

Составить систему дифференциальных уравнений и решить её с помощью метода Эйлера, модифицированного Эйлера, Рунге-Кутта 4-ого порядка. Сделать вывод о точности получаемого решения, сравнивая методы между собой. Для расчёта принять следующие значения неизвестных параметров:

$$C_A^0 = 0.5$$
 моль/л; $C_B^0 = C_C^0 = 0$ моль/л; $\kappa_1 = 0.05$ 1/c; $\kappa_2 = 0.07$ 1/c; $h = 0.1$ (шаг интегрирования).

Вопросы по разделу «Экспериментальный подход»

№15. С надёжностью P = 0,95 обеспечить однородность представленных в таблице данных, исключив грубые ошибки.

к	1	2	3	4	5	6	7	8
y _k ,%	54	53	54	30	46	52	55	54
$\Delta y_{k,\%}$	4,2	3,2	4,2	-19,8	-3,8	2,2	5,2	4,2
Δy_k^2 ,%	18	10	18	392	14	4,8	27	18

Решение данной задачи осуществить на основе двух методов: правила 2σ и критерия максимального отклонения r. Расчёты выполнить с использованием табличного процессора.

№16. С помощью анализа однородности средних. Дать заключение о возможности преимущества (P = 0,95) одного аппарата перед другим по производительности.

$y_k \setminus k$	1	2	3	4	5	6	7	8	9	10	Σ

\mathcal{Y}_{k1}	188	192	189	193	190	191	190	188	190	-	1711
y_{k2}	193	192	189	194	195	192	194	198	196	195	1933

Расчёты выполнить с использованием табличного процессора.

№17. Для проверки правильности вольтамперометрической (ВА) методики определения кадмия Сd использовали атомно-абсорбционную (АА) методику, не содержащую систематической погрешности. При анализе одного и того же объекта получены следующие результаты (нг / мл Сd):

BA: 20,5; 22,4; 23,4; 20,8

AA: 23,5; 20,1; 19,9; 19,2; 19,0; 22,8

Содержит ли вольтамперометрическая методика систематическую погрешность?

Расчёты выполнить с использованием табличного процессора без использования специальной надстройки.

№18. Решить задачу №17 используя надстройку табличного процессора.

№19. Используя три различных генерирующих соотношения, составить планы экспериментов ДФЭ2⁵⁻². Записать формулы для расчёта коэффициентов линейной модели.

Вопросы по разделу «Комбинированный подход»

№ 21. По данным работы [Кокс и химия. 1978. № 8. С.12–14] на основе ПФЭ 2⁴ рассчитать значения коэффициентов линейной модели для прогнозирования показателей качества кокса М₂₅ и М₁₀, сравнить их с предложенными в самой научной статье.

Указание к выполнению задания: на листе ТП в информативном виде создать таблицу планирования эксперимента ПФЭ 2^4 , ввести средние значения показателей качества кокса M_{25} и M_{10} и рассчитать коэффициенты линейной модели.

Содержание практического раздела дисциплины

- 1) Алгоритм решения нелинейного уравнения методом хорд;
- 2) Алгоритм решения нелинейного уравнения методом Ньютона;
- 3) Алгоритм решения нелинейного уравнения методом деления отрезка по-полам.
- 4) Алгоритм решения дифференциальных уравнений методом Эйлера.
- 5) Алгоритм решения дифференциальных уравнений модифицированным методом Эйлера.
- 6) Алгоритм решения дифференциальных уравнений методом Рунге-Кута четвёртого порядка.
- 7) Решение систем дифференциальных уравнений методом Эйлера, модифицированным методом Эйлера, Рунге-Кута.
- 8) Использование встроенной надстройки табличного процессора для решения задач математического программирования.

Примеры расчетных заданий:

1. Основное уравнение реакции перехода PbSO₄ в Pb(OH)₂:

$$PbSO_{4_{TB}} + 2OH^{-} \Leftrightarrow Pb(OH)_{2_{p-p}} + SO_{4_{p-p}}^{2-}$$

Реакции установившегося равновесия:

$$PbSO_{4_{TB}} \Leftrightarrow Pb^{2+}_{p-p} + SO_4^{2-}_{p-p}$$
 (1)

$$Pb(OH)_{2_{TR}} \Leftrightarrow Pb^{2+}_{p-p} + 2OH^{-}_{p-p}$$
 (2)

$$Pb(OH)_{2_{TP}} \Leftrightarrow H^{+}_{p-p} + HPbO_{2^{-}p-p}$$
 (3)

$$Pb(OH)^{+}_{p-p} \iff Pb^{2+}_{p-p} + OH^{-}_{p-p}$$
 (4)

$$HSO_{4}^{-}_{p-p} \iff H^{+}_{p-p} + SO_{4}^{2-}_{p-p}$$
 (5)

$$H_2O \Leftrightarrow H^+ + OH^-$$
 (6)

Уравнение материального баланса:

$$[Na^+] \Leftrightarrow [OH^-] + [Pb(OH)^+]$$
 (7)

Уравнение электронейтральности:

$$[Na^{+}] + 2*[Pb^{2+}] + [Pb(OH)^{+}] + [H^{+}] \Leftrightarrow 2*[SO_{4}^{2-}] + [HSO_{4}^{-}] + [HPbO_{2}^{-}] + [OH^{-}]$$
 (8)

Уравнения (1) – (8) составляют систему уравнений. Сведём систему уравнений (1) – (8) к многочлену, перед этим выразим концентрации всех рассматриваемых в системе ионов через концентрацию $[H^+]$:

$$[OH^{-}] = \frac{K_{w}}{[H^{+}]}$$
 (9)

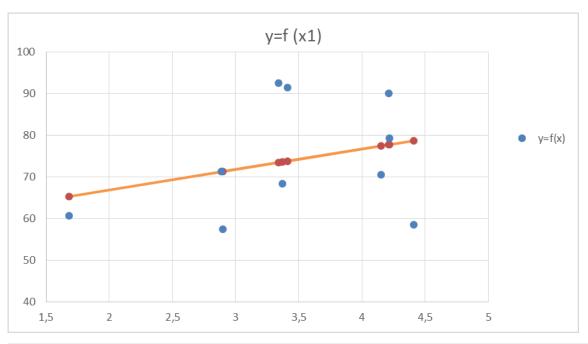
$$[Pb^{2+}] = \frac{K_2}{[OH^-]^2} = \frac{K_2 * [H^+]^2}{K_{--}^2}$$
 (10)

$$[SO_4^{2-}] = \frac{K_1}{[Pb^{2+}]} = \frac{K_1 * K_w^2}{K_2 * [H^+]^2}$$
 (11)

$$[HPbO_{2}^{-}] = \frac{K_{3}}{[H^{+}]}$$
 (12)

$$[Pb(OH)^{+}] = \frac{[Pb^{2+}] * [OH^{-}]}{K_{4}} = \frac{K_{2} * [H^{+}]^{2}}{K_{...}^{2}} * \frac{K_{w}}{[H^{+}]} * \frac{1}{K_{4}} = \frac{K_{2} * [H^{+}]}{K_{4} * K_{.w}}$$
(13)

$$[HSO_4^{-}] = \frac{[H^+] * [SO_4^{2-}]}{K_5} = \frac{[H^+]}{K_5} * \frac{K_1 * K_w^2}{K_2 * [H^+]^2} = \frac{K_1 * K_w^2}{K_2 * K_5 * [H^+]}$$
 (14)


$$[Na^{+}] = \frac{K_{w}}{[H^{+}]} + \frac{K_{2} * [H^{+}]}{K_{4} * K_{w}} = \frac{K_{4} * K_{w}^{2} + K_{2} * [H^{+}]^{2}}{K_{4} * K_{w} * [H^{+}]}$$
(15)

2. Построить графики функций $y = f(x_1)$, $y = f(x_2)$. Найти линейные приближения и коэффициент корреляции для данных зависимостей, используя встроенные возможности MS Excel. Сделать вывод о «тесноте связи» между независимыми переменными x_1, x_2 и зависимой y.

№ варианта	Зависимая (у) и независимые переменные (х ₁ , х ₂)	Числовые значения переменных									
	У	79,31	57,43	60,66	92,55	90,12	71,3	70,5	91,52	68,31	58,56
25	x1	4,22	2,9	1,68	3,34	4,21	2,89	4,15	3,41	3,37	4,41
	x2	6,43	6,1	2,55	7,33	6,72	4,86	5,64	3,87	3,27	4,02

Решение

Построим графики функций $y = f(x_1)$ и $y = f(x_2)$ и найдем их линейное приближение.

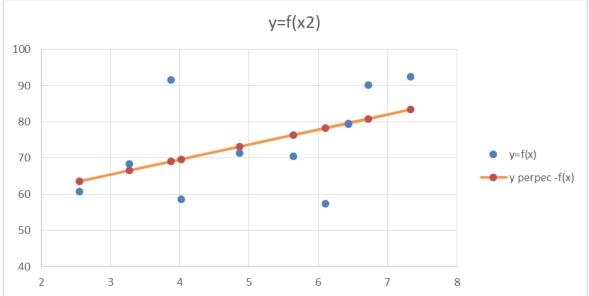


Рисунок 2 - Графики функций $y = f(x_1)$ и $y = f(x_2)$.

При помощи статической формулы посчитаем коэффициент корреляции для каждого графика.

Для зависимости $y = f(x_1) \ K_{\text{кор.}}$ составил 0,30011, для $y = f(x_2)$ составил 0,487

Охарактеризовать силу корреляционной связи можно, прибегнув к шкале Челдока (табл.6), в которой определенному числовому значению соответствует качественная характеристика.

Таблица 6

Коэффициент корреляции $ r $		0,3-0,5	0,5-0,7	0,7-0,9	0,9-0,99	1,0
Характеристи- ка связи	Слабая	Умеренная	Заметная	Тесная	Очень тесная	Функцио- нальная

Соотнеся вышеприведенные результаты вычисления коэффициентов корреляции, приходим к выводу, что «теснота связи» в функции $y = f(x_1)$ между независимой переменной x_I и зависимой y очень слабая ($K_{\text{кор.}} = 0,30011$), а в функции $y = f(x_2)$ – умеренная корреляция между независимой переменной x_2 и зависимой y ($K_{\text{кор.}} = 0,487$).

- 3. Идентифицировать количество корней и вычислить их с точностью до 10^{-3} , используя:
 - 1) графический метод;
 - 2) метод половинного деления;
 - 3) метод Ньютона;
 - 4) метод хорд.

Сделать вывод о быстроте сходимости данных алгоритмов относительно друг друга (на основе количества итераций в каждом методе).

1) Графический метод

Построим график, используя данные уравнения

4*	*x^2-5=4
X	y
-5	91
-4	55
-3	27
-2	7
-1	-5
0	-9
1	-5
2	7
3	27
4	55
5	91

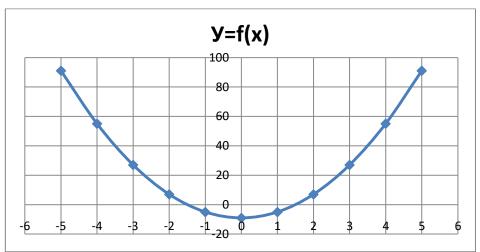


Рис. 1. Зависимость $f(x) = 4*x^2-5=4$. на отрезке [-5;5].

Считая, что корнями уравнения является количество пересечений графика с осью *О-Х*, вычисляем, что их количество на отрезке [-5;5] равно 2. Приближенные значения корней сводим в таблице №1.

Результаты графического метода исследования

Корни уравнения	Значение функции
1,5	0
-1,5	0

2) Метод половинного деления

Используя для расчетов MS Exel, получаем данные, которые сведем в таблице №2.

Таблица №2 Результаты половинного метода исследования

Таблица 1

Итерация	a	b	c = (a+b)/2	f(a)	f©	f(a)*f©	Точность
1	-2	0	-1	7	-5	-35	2
2	-2	-1	-1,5	7	0	0	1
3	-2	-1,5	-1,75	7	3,25	22,75	0,5
4	-1,75	-1,5	-1,625	3,25	1,5625	5,078125	0,25
5	-1,625	-1,5	-1,5625	1,5625	0,765625	1,196289	0,125
6	-1,5625	-1,5	-1,53125	0,765625	0,378906	0,2901	0,0625
7	-1,53125	-1,5	-1,51563	0,378906	0,188477	0,071415	0,03125
8	-1,51563	-1,5	-1,50781	0,188477	0,093994	0,017716	0,015625
9	-1,50781	-1,5	-1,50391	0,093994	0,046936	0,004412	0,007813
10	-1,50391	-1,5	-1,50195	0,046936	0,023453	0,001101	0,003906
11	-1,50195	-1,5	-1,50098	0,023453	0,011723	0,000275	0,001953
12	-1,50098	-1,5	-1,50049	0,011723	0,00586	6,87E-05	0,000977

Искомые корни х* и значение f(х*)				
x*	f(x*)			
-1,50049	0,00586			
Решение найдено за 12 итераций (n _i)				

Перечень вопросов к экзамену

Общие вопросы моделирования:

- 1. Общее представление о модели. Математические модели: определение, достоинства и недостатки, по сравнению с другими формами представления модели. Понятие «моделирование». Классификация математических моделей;
- 2. Сущность аналитического подхода к математическому моделированию. Моделирование XTП при аналитическом подходе;
 - 3. Сущность экспериментального подхода к математическому моделированию;
 - 4. Сущность комбинированного подхода к математическому моделированию;
- 5. Триединство при описании объекта моделирования. Требования к каждой из составной части при описании объекта;
 - 6. Основные этапы моделирования (с поясняющими примерами). Аналитический подход к созданию математических моделей:
- 7. Уравнение изотермы химической реакции при различном способе выражения концентрации. Выражение уравнения изотермы химической реакции в стандартных условиях. Связь между константами равновесия в зависимости от способа описания состава реакционной смеси. Соотношения для констант равновесия K_N , K_m , K_c в идеальном растворе;
- 8. Метод Тёмкина-Шварцмана расчёта констант равновесия химической реакции. Понятие о линейной зависимости и независимости уравнений химических реакций. Основные способы определения линейно независимых уравнений химических реакций;
- 9. Возможности моделирования при термодинамическом подходе к определению равновесных значений участвующих в химических реакциях веществ. Основные достоинства и недостатки при термодинамическом подходе.
- 10. Основные понятия и определения формальной кинетики: скорость химической реакции, способы её выражения, молекулярность реакции, порядок реакции, частный порядок реакции, постулат химической кинетики (уравнение Гульдберга и Вааге), константа скорости химической реакции (правило Вант-Гоффа, уравнение Аррениуса);
- 11. Скорость необратимых реакций первого, второго, n-ого порядков. Обратимая реакция первого порядка;
- 12. Обратимая реакция второго порядка (разобрать только частный случай: отсутствие в начальный момент времени продуктов реакции, начальные концентрации реагирующих веществ равны между собой). Параллельные реакции;
- 13. Последовательные реакции первого порядка (для трёх химических соединений). Разобрать различные случаи соотношения между собой констант химических реакций;
- 14. Общее уравнение динамики и скорости химической реакции, протекающей в потоке в режиме идеального вытеснения. Необратимая реакция первого и второго порядков, протекающих в потоке в режиме идеального вытеснения.
- 15. Обратимая реакция первого и второго порядков, протекающих в потоке в режиме идеального вытеснения. Последовательная реакция первого порядка, протекающая в потоке в режиме идеального вытеснения.
 - 16. Кинетика гомогенных реакций, протекающих в режиме идеального перемешивания.

Экспериментальный подход к созданию математических моделей:

- 17. Статистические методы анализа экспериментальных данных: оценка истинного значения измеряемой величины и её дисперсии; определение грубых ошибок; средневзвешенные оценки дисперсии; анализ однородности исходных оценок дисперсии.
- 18. Определение доверительной ошибки экспериментальной оценки измеряемого параметра. Определение числа повторностей опыта, обеспечивающего получение заданной доверительной ошибки оценки определяемого параметра. Проверка нормальности закона распределения.
- 19. Метод наименьших квадратов. Сущность планирования эксперимента в сравнении с непосредственным применением метода наименьших квадратов. Симметричный и равномерный план однофакторного эксперимента Проверка адекватности полученного уравнения и его использование для оптимизации процесса. Получение экспоненциальной зависимости по результатам однофакторных экспериментов.
- 20. Метод наименьших квадратов при обработке результатов многофакторного эксперимента. Двухуровневый план полного факторного эксперимента ПФЭ2ⁿ. Уравнения, получаемые по результатам реализации планов ПФЭ2ⁿ. Статистический анализ значимости оценок коэффициентов уравнения, его адекватности и работоспособности.
- 21. Дробный факторный эксперимент ДФЭ2^{n-n'}. Планирование эксперимента при изменяющемся во времени влиянии на процесс неучтённых факторов. Использование планов ПФЭ2ⁿ ДФЭ2^{n-n'} для получения уравнения процесса в виде экспоненциальной зависимости.
- 22. Многоуровневые многофакторные планы, использующие свойства латинских квадратов. Построение планов. Получение и использование для оптимизации уравнений различной структуры.
- 23. Применение методов приближённых вычислений при обработке результатов экспериментов. Оценки точности измерений и приближённых вычислений. Оценка точности окончательного результата. Практическое вычисление ошибок.

Численные методы решения задач, возникающих при моделировании:

- 24. Решение нелинейного уравнения методом деления отрезка пополам;
- 25. Решение нелинейного уравнения методом Ньютона;
- 26. Решение нелинейного уравнения методом хорд;
- 27. Решение дифференциального уравнения методом Элейра. Модифицированный метод Эйлера. Адаптация метода Эйлера на случай систем дифференциальных уравнений. Особенности решения систем дифференциальных уравнений при моделировании ХТП;
- 28. Решение дифференциального уравнения методом Рунге-Кута четвёртого порядка. Адаптация метода Рунге-Кута на случай систем дифференциальных уравнений. Особенности решения систем дифференциальных уравнений при моделировании ХТП;

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатора	Индикатор достижения компетенции	Оценочные средства
ОПК-2: Способен испо деятельности	ользовать математические, физические, физико-химические, химичес	кие методы для решения задач профессиональной

ОПК-2.1: Использует математические, физические, физико-химические, химические методы для решения задач профессиональной деятельности	 Общее представление о модели. Математические модели: определение, достоинства и недостатки, по сравнению с другими формами представления модели. Понятие «моделирование». Классификация математических моделей; Основные понятия и определения формальной кинетики: скорость химической реакции, способы её выражения, молекулярность реакции, порядок реакции, частный порядок реакции, постулат химической кинетики (уравнение Гульдберга и Вааге), константа скорости химической реакции (правило Вант-Гоффа, уравнение Аррениуса); Метод наименьших квадратов. Планирования эксперимента в сравнении с непосредственным применением метода наименьших квадратов.
--	--

ОПК-2.2:	Выбирает математические, физические, физико-химические,	Рассиитать ионно-молекупарный состав в присутствии
OTIK 2.2.	химические методы для решения задач профессиональной	
	деятельности	Задаться значениями рН в интервале 0-14 и численно
	деятельности	<u> </u>
		рассчитать ионно-молекулярный состав данной системы.
		Результаты представить графически в информативном
		виде (использовать логарифмическую шкалу выходного
		параметра). Все расчёты произвести в табличном
		процессоре.
		Решение дифференциального уравнения методом
		Элейра. Модифицированный метод Эйлера. Адаптация
		метода Эйлера на случай систем дифференциальных
		уравнений. Особенности решения систем
		дифференциальных уравнений при моделировании XTП;
ОПК-5: Способен осуг	цествлять экспериментальные исследования и испытания по за	данной методике, проводить наблюдения и измерения с
I		-

учетом требований техники безопасности, обрабатывать и интерпретировать экспериментальные данные

ОПК 5.1:	Выбирает и применяет методы и средства измерения для	Решение дифференциального уравнения методом
	определения свойств материалов и готовой продукции	Рунге-Кута четвёртого порядка. Адаптация метода
		Рунге-Кута на случай систем дифференциальных
		уравнений. Особенности решения систем
		дифференциальных уравнений при моделировании XTП
		Для необратимой реакции первого порядка: $A \xrightarrow{\kappa_1} B$
		Составить дифференциальное уравнение скорости изменения концентрации А. Решить полученное дифференциальное уравнение методом Эйлера,
		модифицированным методом Эйлера, Рунге-Кутта.
		Сделать вывод о точности каждого из методов в сравнении
		друг с другом.: $C^0_A = 0.7$ моль/л; $\kappa_1 = 0.001$ 1/c; $h = 0.1$ (шаг интегрирования).

ОПК 5.2:	Проводит экспериментальные исследования и использует	По данным работы [Кокс и химия. 1978. № 8. С.12–14] на
	основные приёмы обработки и представления полученных	основе ПФЭ 2 ⁴ рассчитать значения коэффициентов
	данных	линейной модели для прогнозирования показателей
		качества кокса M_{25} и M_{10} , сравнить их с предложенными в
		самой научной статье.
		При каком значении рН достигается практически полное
		осаждение MnS ($\Pi P_{MnS} = 2.5*10^{-10}$), содержащегося в
		растворе в количестве 0,005 моль, при употреблении 50 %
		избытка осадителя. Расчёт произвести на 1 л исследуемого раствора. Все численные расчёты произвести в табличном
		процессоре, аналитические записи предоставить в
		бумажном виде. Из каких соображений находится
		концентрация марганца [Mn ²⁺], и между какими
		химическими формами осуществляется материальный
		баланс по сере избыточной концентрации осадителя?

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.