

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЕиС И.Ю. Мезин

30.01.2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ВЫСШАЯ МАТЕМАТИКА

Направление подготовки (специальность) 21.05.04 Горное дело

Направленность (профиль/специализация) программы Взрывное дело

Уровень высшего образования - специалитет

Форма обучения заочная

Институт/ факультет Институт естествознания и стандартизации

Кафедра Прикладной математики и информатики

Курс

Магнитогорск 2023 год

Рабочая программа составлена на основе ФГОС ВО - специалитет по специальности 21.05.04 Горное дело (приказ Минобрнауки России от 12.08.2020 г. №

Рабочая программа рассмотрена и одобрена на заседании кафедры Прикладной математики и информатики 17.01.2023, протокол № 5 Ю.А. Извеков Зав. кафедрой Рабочая программа одобрена методической комиссией ИЕиС 30.01.2023 г. протокол № 5 - Председатель И.Ю. Мезин Согласовано: Зав. кафедрой Разработки месторождений полезных ископаемых С.Е. Гавришев

Рабочая программа составлена: доцент кафедры ПМиИ, канд. пед. наук

Е.В. Сергеева

Рецензент:

доцент

кафедры Физики, канд. физ.-мат.

наук

Д.М.Долгушин

Лист актуализации рабочей программы

смотрена, обсуждена и одоб ии кафедры Прикладной м	брена для реализации в 2024 - 2025 математики и информатики
	20 г. № Ю.А. Извеков
смотрена, обсуждена и одоб ии кафедры Прикладной м	брена для реализации в 2025 - 2026 иатематики и информатики
Протокол от Зав. кафедрой	20 г. № Ю.А. Извеков
смотрена, обсуждена и одоб ии кафедры Прикладной м	брена для реализации в 2026 - 2027 математики и информатики
Протокол от Зав. кафедрой	20 г. № Ю.А. Извеков
смотрена, обсуждена и одоб ии кафедры Прикладной м	брена для реализации в 2027 - 2028 иатематики и информатики
Протокол от Зав. кафедрой	20 г. № Ю.А. Извеков
смотрена, обсуждена и одоб ии кафедры Прикладной м	брена для реализации в 2028 - 2029 иатематики и информатики
Протокол от Зав. кафедрой	20 г. № Ю.А. Извеков
смотрена, обсуждена и одоб ии кафедры Прикладной м	брена для реализации в 2029 - 2030 иатематики и информатики
Протокол от Зав. кафедрой	
смотрена, обсуждена и одоб ии кафедры Прикладной м	брена для реализации в 2030 - 2031 иатематики и информатики
Протокол от Зав. кафедрой	20 г. № Ю.А. Извеков

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины «Математика» является привитие навыков использования математических методов исследования и основ математического моделирования в будущей профессии по инженерному обеспечению деятельности человека в недрах Земли при эксплуатационной разведке, добыче и переработке твердых полезных ископаемых, строительстве и эксплуатации подземных объектов различного назначения.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Высшая математика входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Для изучения дисциплины необходимы знания и умения, сформированные в результате изучении дисциплин: «Алгебра и начала анализа», «Геометрия» в объёме программы средней школы.

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Физика

Теоретическая механика

Сопротивление материалов

Прикладная механика

Электротехника

Теория вероятностей и математическая статистика

Анализ данных

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Высшая математика» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции					
УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий						
УК-1.1	Анализирует проблемную ситуацию как систему, выявляя ее составляющие и связи между ними					
	Критически оценивает надежность источников информации, работает с противоречивой информацией из разных источников, определяет пробелы в информации, необходимой для решения проблемной ситуации, и проектирует процессы по их устранению					
	Разрабатывает и содержательно аргументирует стратегию решения проблемной ситуации на основе системного и междисциплинарного подходов; строит сценарии реализации стратегии, определяя возможные риски и предлагая пути их устранения					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 5 зачетных единиц 180 акад. часов, в том числе:

- контактная работа 8,6 акад. часов:
- аудиторная 6 акад. часов;
- внеаудиторная 2,6 акад. часов;
- самостоятельная работа 162,7 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 8,7 акад. час

Форма аттестации - экзамен

Раздел/ тема дисциплины	Kypc	конт	Аудитор гактная акад. ч лаб. зан.	работа	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
1. Элементы линей алгебры	йной							
1.1 Линейная алгебра: Матрицы и действия над ними. Определители квадратных матриц, ранг матрицы, обратная матрица. Методы решения систем линейных алгебраических уравнений. Теорема Кронекера-Капелли. Однородные системы.	1	0,5		0,5/0,5И	20	самостоятельное изучение литературы, выполнение РГР	РГР ; тестирование	УК-1.1, УК-1.2, УК-1.3
Итого по разделу		0,5		0,5/0,5И	20			
2. Введение в математичес анализ	ский							
2.1 Предел и непрерывность функции одной переменной	1			0,5/0,5И	10,4	самостоятельное изучение литературы, выполнение РГР	тестирование	УК-1.1, УК-1.2, УК-1.3
Итого по разделу				0,5/0,5И	10,4			
3. Дифференциальное исчисление функции одной и многих переменных								
3.1 Определение производной функции в точке. Дифференциал, его геометрический смысл Геометрический и механический смысл производной. Правила дифференцирования и таблица производных.	1			0,5	15	самостоятельное изучение литературы, выполнение РГР	РГР ; тестирование	УК-1.1, УК-1.2, УК-1.3

3.2 Производные и дифференциалы высших						C2MOCTOSTAULUO		
порядков. Осн. теоремы					1.5	самостоятельное изучение	DED	УК-1.1,
дифференциального исчисления. Формула					15	литературы,	РГР	УК-1.2, УК-1.3
Тейлора. Правило						выполнение РГР		3 K-1.3
Лопиталя								
3.3 Применение								
производной и дифференциала: при						самостоятельное изучение		УК-1.1,
исследовании функций и		0,5		0,5/0,2И	15	литературы,	РГР	УК-1.2,
вычислении						выполнение РГР		УК-1.3
приближенных значений								
3.4 Дифференцирование ФНП: понятие частных						самостоятельное		
производных, полного		0.5			1.5	изучение	- РГР ,	УК-1.1,
дифференциала,		0,5			15	литературы,	- тестирование	УК-1.2, УК-1.3
экстремум ФНП,						выполнение РГР		3 K-1.3
элементы теории поля		1		1/0,2И	60			
Итого по разделу 4. Интегральное исчисле	эние	1		1/0,211	00			
функции одной переменно								
4.1 Первообразная								
функция. Постронования и						самостоятельное		VIC 1 1
Неопределенный интеграл и его основные		0,5			6	изучение	- РГР;	УК-1.1, УК-1.2,
свойства. Таблица		0,0			Ü	литературы, выполнение РГР	- тестирование	УК-1.3
неопределенных						выполнение 111		
интегралов от основных 4.2 Основные методы								
интегрирования. Методы						самостоятельное		
непосредственного				0,5/0,4И	6	изучение	- РГР;	УК-1.1, УК-1.2,
интегрирования.				0,3/0,411	U	литературы,	- тестирование	УК-1.2, УК-1.3
Интегрирование заменой переменной и по частям						выполнение РГР		
•						самостоятельное		
4.3 Основные методы интегрирования.					6	изучение	- РГР,	УК-1.1, УК-1.2,
интегрирования. Интегрирование дробей					U	литературы,	- тестирование	УК-1.2, УК-1.3
	1					выполнение РГР		
4.4 Основные методы интегрирования.						самостоятельное		
Интегрирование				0,5	8,3	изучение	- РГР;	УК-1.1, УК-1.2,
тригонометрических и				0,5	0,5	литературы,	- тестирование	УК-1.2, УК-1.3
иррациональных выражений						выполнение РГР		
4.5 Определенный								
интеграл. Формула						самостоятельное		УК-1.1,
Ньютона-Лейбница.				0,5	18	изучение	- РГР;	УК-1.1, УК-1.2,
Свойства. Методы интегрирования.						литературы, выполнение РГР	- тестирование	УК-1.3
Приложения.						Domoniome 111		
4.6 Несобственные						самостоятельное		УК-1.1,
интегралы. Абсолютная					10	изучение	- РГР;	УК-1.1, УК-1.2,
сходимость. Признаки сходимости.						литературы, выполнение РГР	- тестирование	УК-1.3
Итого по разделу		0,5		1,5/0,4И	54,3			
5. Обыкновенные								
дифференциальные уравнения								
(ОДУ): ДУ 1-го и выс								
орядков. Основные понятия, иетоды решения. Системы ДУ								
первого порядка.	Ω,							
			_					

5.1 Обыкновенные дифференциальные уравнения (ОДУ): ДУ 1-го и высших порядков, самостоятельное изучение литературы, выполнение РГР Основные понятия, методы решения. Системы ДУ первого			0,5	18	- самостоятельное изучение литературы, выполнение РГР	- РГР; - тестирование	УК-1.1, УК-1.2, УК-1.3
Итого по разделу			0,5	18			
6. Подготовка к экзамену							
6.1 Теоретическая подготовка к экзамену					Решение типовых примеров и подготовка к итоговому тестированию	Экзамен	УК-1.1, УК-1.2, УК-1.3
Итого по разделу							
Итого за семестр	2		4/1,6И	162,7	_	экзамен	
Итого по дисциплине	2	-	4/1,6И	162,7		экзамен	

5 Образовательные технологии

1. Традиционные образовательные технологии. Организация образовательного процесса, предполагает прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента но-сит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий:

- информационная лекция последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами.
- практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.
- 2. Технологии проектного обучения. Образовательный процесс построен в соответствии с алгоритмом поэтапного решения проблемной задачи или выполнения учебного задания. Проект предполагает совместную учебно-познавательную деятельность группы студентов, направленную на выработку концепции, установление целей и задач, формулировку ожидаемых результатов, определение принципов и методик решения поставленных задач, планирование хо-да работы, поиск доступных и оптимальных ресурсов, поэтапную реализацию плана работы, презентацию результатов работы, их осмысление и рефлексию. Применяется в основном для перехода компетенции на уровень владения.

Основные типы применяемых нами в образовательной деятельности проектов:

Исследовательский проект — структура приближена к формату научного исследования (доказательство актуальности темы, определение научной проблемы, предмета и объекта исследования, целей и задач, методов, источников, выдвижение гипотезы, обобщение результатов, выводы, обозначение новых проблем). Результатом является учебная карта по модулю нашей образовательной программы.

Творческий проект, предполагающий в отличие от предыдущего, конечный продукт в следующих вариантах – газета к исторически значимому «математическому» событию (праздник числа «Пи» и т.п.); «математическая» открытка (своего рода учебная карта, только неформально, красочно оформленная; видеоролик «Я научу вас решать ...» и т.п.

Информационный проект — учебно-познавательная деятельность с ярко выраженной эвристической направленностью (поиск, отбор и систематизация информации о каком-то объекте, ознакомление участников проекта с этой информацией, ее анализ и обобщение и, наконец, презентация по практическому приложению).

- 4. Информационно-коммуникационные образовательные технологии. Организация образовательного процесса с применением специализированных программных сред и технических средств работы с информацией (информационную среду университета МООДУС MOODLE).
 - **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
 - **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
 - 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Шипачев В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. (Высшее образование). ISBN 978-5-16-101787-6. Текст: электронный. URL:

https://new.znanium.com/catalog/product/990716. — Режим доступа: для авториз. пользователей.

2. Ячменев, Л. Т. Высшая математика : учебник / Л. Т. Ячменёв. - Москва : РИОР : Инфра-М, 2020. - 752 с. - (Высшее образование; Бакалавриат). - ISBN 978-5-369-01032-7. - Текст : электронный. - URL: https://znanium.com/catalog/product/1056564 (дата обращения: 28.06.2022). — Режим доступа: по подписке.

б) Дополнительная литература:

- 1. Математика в примерах и задачах: учеб. пособие / О.М. Дегтярева, Л.Н. Журбенко, Г.А. Никонова, Н.В. Никонова, С.Н. Нуриева. Москва: ИНФРА-М, 2019. 372 с. (Высшее об-разование: Бакалавриат). ISBN 978-5-16-102288-7. Текст: электронный. URL: https://new.znanium.com/catalog/product/989802. Режим доступа: для авториз. пользователей.
- 2. Фихтенгольц, Г.М. Основы математического анализа: учебник: в 2 частях / Г.М. Фихтенгольц. 11-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Часть 1 2019. 444 с. ISBN 978-5-8114-0190-1. Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. URL: https://e.lanbook.com/book/112051 (дата обращения: 28.06.2022).- Режим доступа: для авториз. пользователей.
- 3. Фихтенгольц, Г.М. Основы математического анализа: учебник: в 2 частях / Г.М. Фихтенгольц. 10-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Часть 2 2019. 464 с. ISBN 978-5-8114-0191-8. Текст: электронный // Электронно-библиотечная система «Лань» : [сайт]. URL: https://e.lanbook.com/book/115730 (дата обращения: 28.06.2022). Режим доступа: для авториз. пользователей.
- 4. Шипачев В. С. Задачник по высшей математике: учеб. пособие / В.С. Шипачев. 10-е изд., стереотип. Москва: ИНФРА-М, 2020. 304 с. (Высшее образование). ISBN 978-5-16-101831-6. Текст: электронный. URL: https://new.znanium.com/catalog/product/1042456 (дата обращения: 28.06.2022). Режим доступа: для авториз. пользователей.

в) Методические указания:

- 1. Грачева, Л.А. Определенный интеграл: методические указания для студентов Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2010 12 с.
- 2. Грачева, Л.А. Элементы линейной алгебры, векторной алгебры и аналитической геометрии: Учебное пособие. Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2010 63 с.
- 3. Максименко, И.А. События и вероятность. Часть 2: Метод. указ. Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2010.-25 с.
- 4. Маяченко, Е.П. Производная и дифференциал функции. Практикум.-Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2010. – 38 с.
- 5. Маяченко Е.П. Исследование функций и построение графиков. Практикум. Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2011. 20 с.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
-----------------	------------	------------------------

MS Office 2007	№ 135 от 17.09.2007	бессрочно
7Zip	свободно	бессрочно
FAR Manager	свободно	бессрочно

Профессиональные базы данных и информационные справочные системы

	1 1
Название курса	Ссылка
Международная база полнотекстовых журналов Springer Journals	
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	https://magtu.informsystema.ru/Marc.html?locale=ru
Электронная база периодических изданий East View Information	https://dlib.eastview.com/
Информационная система - Единое окно доступа к информационным	
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа.

Доска, мультимедийные средства хранения, передачи и представления информации.

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Доска, мультимедийный проектор, экран, Комплекс методических разработок (раздаточного материала и методических указаний) и\или комплекс тестовых заданий для подготовки и проведения промежуточных и рубежных контролей.

Помещения для самостоятельной работы учащихся.

Персональные компьютеры с пакетом MSOffice, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования.

Шкафы для хранения учебно-методической документации, учебного оборудования и учебно-наглядных пособий.

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Математика» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает решение задач на практических занятиях.

Примерные варианты расчетно-графических работ (РГР):

РГР № 1. «Элементы линейной алгебры и аналитической геометрии в приложениях к прикладным задачам добывающей промышленности»

Задание №1 (уровень компетенции – «знать», «уметь»). При решении задач, воспользуйтесь одним из прикладных пакетов (Mathcad, Microsoft Excel, WolframAlpha Mathematica или др.).

Результат оформите в виде скриншотов страниц с вычислениями в Google Документе (пришлите ссылку преподавателю, в элементе «Задание» на образовательном портале или на доске Miro)

Задача 1. Найдите произведение матриц

$$\begin{pmatrix}
2 & 4 & -1 \\
0 & 3 & 7 \\
0 & 0 & -2
\end{pmatrix}
\cdot
\begin{pmatrix}
1 & 1 & -1 \\
2 & -2 & 0 \\
1 & 1 & -2
\end{pmatrix},$$

$$\begin{pmatrix}
2 & -1 & 1 \\
5 & 0 & -6
\end{pmatrix}
\cdot
\begin{pmatrix}
3 \\
-2 \\
5
\end{pmatrix},$$

$$\begin{pmatrix}
3 & 0 & -4 \\
5 & 7 & 9 \\
-2 & 1 & 6
\end{pmatrix}
\cdot
\begin{pmatrix}
0 & 0 & 1 \\
0 & 4 & 0 \\
1 & 0 & 0
\end{pmatrix},$$

$$\begin{pmatrix}
5 \\
3 \\
-1
\end{pmatrix}
\cdot
(4 & 2 & 0)$$

$$\begin{pmatrix}
5 \\
3 \\
-1
\end{pmatrix}
\cdot
\begin{pmatrix}
4 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
3 \\
-1
\end{pmatrix}
\cdot
\begin{pmatrix}
4 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
3 \\
-1
\end{pmatrix}
\cdot
\begin{pmatrix}
4 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
3 \\
-1
\end{pmatrix}
\cdot
\begin{pmatrix}
4 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
3 \\
-1
\end{pmatrix}
\cdot
\begin{pmatrix}
4 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
3 \\
-1
\end{pmatrix}
\cdot
\begin{pmatrix}
4 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
3 \\
-1
\end{pmatrix}
\cdot
\begin{pmatrix}
4 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
3 \\
-1
\end{pmatrix}
\cdot
\begin{pmatrix}
4 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
3 \\
-1
\end{pmatrix}
\cdot
\begin{pmatrix}
4 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
7 & 8
\end{pmatrix}
\cdot
\begin{pmatrix}
7 & 2 & 3 \\
0 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
6 \\
7 & 8
\end{pmatrix}
\cdot
\begin{pmatrix}
7 & 3 \\
0 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 3 \\
0 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 3 \\
0 & 3
\end{pmatrix}
\cdot
\begin{pmatrix}
7 & 3 & 4 \\
1 & -1 & 1
\end{pmatrix}$$

Задача 2. Вычислите определители

$$\begin{vmatrix}
4 & -1 & 0 \\
0 & 7 & 2 \\
0 & 0 & 3
\end{vmatrix}, \qquad \begin{vmatrix}
2 & -4 & 3 \\
5 & 10 & -1 \\
0 & 4 & 7
\end{vmatrix}, \qquad \begin{vmatrix}
11 & 3 & 6 \\
1 & 4 & 6 \\
-2 & -7 & 2
\end{vmatrix},$$

$$\begin{vmatrix}
1 & 14 & -8 \\
5 & 0 & -4 \\
2 & -7 & 2
\end{vmatrix}, \qquad \begin{vmatrix}
0 & 1 & 2 \\
1 & 0 & 2 \\
1 & 2 & 0
\end{vmatrix}.$$

$$\begin{vmatrix}
1 & 1 & 3 & 6 \\
1 & 4 & 6 \\
-2 & -7 & 2
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 1 & 3 & 6 \\
1 & 4 & 6 \\
-2 & -7 & 2
\end{vmatrix}$$

$$\begin{vmatrix}
0 & 1 & 2 \\
1 & 0 & 2 \\
1 & 2 & 0
\end{vmatrix}$$

Задача 3. Дана матрица
$$A = \begin{pmatrix} 3 & 7 & -2 & 5 \\ 0 & 1 & 4 & 2 \\ 1 & 0 & 2 & -4 \\ 0 & 0 & 5 & 1 \end{pmatrix}$$
. Найдите

1) A_{12} , 2) A_{24} , 3) $\det A$, 4) придумайте самостоятельно определитель 6-го порядка и также вычислите его.

Задача 4. Найдите обратные для матриц

1)
$$\begin{pmatrix} 2 & 7 \\ 5 & 0 \end{pmatrix}$$
, 2) $\begin{pmatrix} 1 & 0 & 0 \\ 2 & 5 & -1 \\ 4 & 7 & 1 \end{pmatrix}$, 3) $A = \begin{pmatrix} 2.1 & -3.4 & 5.2 \\ -5.8 & 6.7 & 8.1 \\ 6.3 & 3.2 & 4.1 \end{pmatrix}$

и проверить, что $AA^{-1} = E$.

Задача 5. Решите систему а) матричным способом и

б) по формулам Крамера.

$$\begin{cases} x + 3y + 2z = -7, \\ 3x + 2y + 5z = 6, \\ 4x + 3y + z = 1. \end{cases}$$

Задача 6. Решите системы методом Гаусса, указывая в каждом случае ранги матриц A и (A/B). В однородных системах выпишите фундаментальную систему решений там,

1.
$$\begin{cases} 2x + 4y + 3z = 5, \\ -x + 2z = -3, \\ 6x + 5y + z = 21. \end{cases}$$
2.
$$\begin{cases} 3x + 7y - 3z = 14, \\ x + 3y + 4z = 2, \\ 2x + 8y + 23z = -4. \end{cases}$$

3.
$$\begin{cases} x + 3y - 2z = 5, \\ 2x + 5y - 4z = 8, \\ 4x + 11y - 8z = 3. \end{cases}$$
4.
$$\begin{cases} x + 2y + z = 0, \\ -x + 3y + z = 0, \\ 2x + 5y + 3z = 0. \end{cases}$$

5.
$$\begin{cases} 3.4x + 5.3y + 6.1z = 9.2 \\ 6.4x + 2.5y + 8.1z = 3.4 \\ 7.2x + 6.2y + 6.9z = 8.2 \end{cases}$$
 6.
$$\begin{cases} 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0, \\ 4x_1 + 7x_2 + 10x_3 - 7x_4 = 0, \\ 2x_1 + 3x_2 + 2x_3 - x_4 = 0, \\ x_1 + 2x_2 + 4x_3 - 3x_4 = 0, \\ x_1 - 8x_3 + 7x_4 = 0. \end{cases}$$
 6. Вадача 7. Определить тип и построить линию на плоскости и поверхно

Задача 7. Определить тип и построить линию на плоскости и поверхность в пространстве:

A)
$$x^2 - 9y^2 + 2x + 18y + 73 = 0$$
,
B) $2x^2 + 3y^2 - 4x + 6y - 7 = 0$,

B)
$$y^2 - 4x - 2y - 3 = 0$$
.

Г) Определить тип поверхности и построить:

1.
$$z = 4 - x^2$$
; 2. $\frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{25} = 1$; 3. $\frac{x^2}{9} - \frac{y^2}{4} + \frac{z^2}{25} = 1$; 4. $\frac{x^2}{9} + \frac{y^2}{4} - \frac{z^2}{25} = -1$; 5. $\frac{x^2}{9} = \frac{y^2}{4} + \frac{z^2}{25}$; 6. $x^2 - y^2 = z$.

Задача 8. Постройте кривую в полярной системе координат по точкам с шагом $\Delta \varphi = \frac{\pi}{8}$ $\rho = 4 + 2\cos 2\varphi$

Задание №2 (уровень компетенции «владение» - КЕЙСОВЫЕ ЗАДАНИЯ для групп)

1. Предприятие выпускает т видов изделий с использованием к видов сырья. Нормы расхода сырья для производства единицы продукции каждого вида даны матрицей $A_{m \times k}$. Стоимость единицы сырья задана матрицей С. Найти затраты каждого вида сырья при заданном плане выпуска Q и суммарные затраты на сырье. Представить результаты с помощью матриц A, C, Q.

$$A = \begin{pmatrix} 3 & 7 & 0 & 1 \\ 2 & 5 & 4 & 3 \\ 0 & 0 & 2 & 1 \end{pmatrix} \qquad C = (2 \quad 3 \quad 1 \quad 5) \qquad Q = (200 \quad 350 \quad 100).$$

2. Имеется п отраслей промышленности, каждая из которых производит свою продукцию. Часть ее идет на внутрипроизводственное потребление данной отраслью и другими отраслями, а другая Y (конечный продукт) предназначена для личного и общественного потребления. Пусть x_i – общий (валовой) объем продукции i –й отрасли $(i = \overline{1,n}); x_{ij}$ – объем продукции i –й отрасли, потребляемой j –й отраслью в процессе производства $(i = \overline{1,n}, j = \overline{1,n})$.

В таблице задан баланс п отраслей промышленности за некоторый промежуток времени.

Построить матрицу прямых затрат $A=(a_{ij})_{m\times n}$, где a_{ij} — коэффициенты прямых затрат (доли продукции i —й отрасли, идущих на производство единицы продукции j —й отрасли) и выяснить, является ли она продуктивной. Найти матрицу полных затрат. Найти X_1 — объем валовой продукции каждой отрасли, если конечный продукт должен быть Y_1 . Указать необходимый процент увеличения валовой продукции по каждой отрасли.

Отрасли	Потребл	ение		Валовой	Конечный
	1	2	3	выпуск Х	продукт Ү1
3. 1	4. 5	5. 10	6. 15	7. 100	8. 60
9. 2	10. 10	11. 10	12. 20	13. 100	14. 80
15. 3	16. 15	17. 5	18. 10	19. 50	20. 30

3. Фирма «Союз» обеспечивает доставку видео- и аудиокассет с четырёх складов, расположенных в разных точках города, в четыре магазина. Запас кассет, имеющихся на складах, объёмы заказов магазинов и тарифы на доставку представлены в таблице.

Склады	N	Лагазі	Запасы,		
	№ 1	№2	№ 3	<u>№</u> 4	тыс.шт.
Склад №1	2	6	4	3	120
Склад №2	5	1	9	2	240
Склад №3	3	2	2	6	80
Склад №4	4	5	10	3	60
Заказы, тыс. шт.	190	170	110	30	

Определите объёмы перевозок, обеспечивающие фирме минимальные затраты.

РГР №2 «Методы дифференциального исчисления функции одной и многих переменных при решении задач прикладного характера»

Задание №1 (знания и умения). При решении задач, воспользуйтесь одним из прикладных пакетов (Mathcad, Microsoft Excel, WolframAlpha Mathematica или др.).

Результат оформите в виде скриншотов страниц с вычислениями в Google Документе (пришлите ссылку преподавателю, в элементе «Задание» образовательном портале или на доске Miro)

1. Найти производные и дифференциалы первого порядка

1)
$$y = \frac{7\cos x}{5x+1}$$
,

2)
$$y = (2 + 5x)^4 - 3\cos 7x$$
,

3)
$$y = \frac{7}{3} - 4x \cdot \arcsin x$$
,

4)
$$y = (\cos x)^{tgx}.$$

2. Найти производную функции, заданной неявно

$$e^{y} - 5xe^{x} - 2xy + 11 = 0$$
.

3.Найти производную функции, заданной параметрически $\begin{cases} x = 3\cos t - 5, \\ y = 4t^3 + 5. \end{cases}$ 4. Найти производные первого порядка функции $y = x^2 e^{2x}$.

$$\begin{cases} x = 3\cos t - 5 \\ y = 4t^3 + 5. \end{cases}$$

5. Найдите
$$\frac{dy}{dx}$$
 и $\frac{d^2y}{dx^2}$ функций: a) $\begin{cases} x = 3t - t^3, \\ y = 3t^2; \end{cases}$, б) $y = 5^{\sqrt{x}}$.

- 6. Напишите уравнение касательной к параболе $y = x^2 4x + 2$ в точке с абсциссой $x_0 = 0$. Постройте график и касательную.
- 7. Постройте график данной функции. Найдите наибольшее и наименьшее значения функции на заданном отрезке: $f(x) = 2x^3 - 6x^2 - 18x + 7$, $x \in [-2, 2]$.
- 8. Постройте график функции $y = \frac{1}{3}x^3 2x^2$ и исследуйте её на экстремум.
- 9. Постройте график функции и укажите по графику её асимптоты: $y = \frac{x^3}{(x+1)^2}$
- 10. Проведите полное исследование функции с помощью построенного предварительно графика $y = \frac{(x-1)^2}{x^2}$.
- 11. Зависимость пути от времени при прямолинейном движении точки задается уравнением $s = \frac{1}{2}t^3 + 2t^2 - 3$, где s — путь в м, а t — время в с. Вычислите ее скорость и ускорение в момент времени t = 4c.

Функции нескольких переменных:

- 1. Построить функцию, выяснить её область определения $z = \frac{\ln(1 x^2 y^2)}{1 \sqrt{y}}$.
- 2. Найти значения частных производных функций в заданной точке:

A)
$$z = x^{\frac{1}{y}}$$
 (1;1) B) $z = \ln(\sqrt{x} + \sqrt{y})$ (1;1).

3. Найти
$$\frac{\partial^2 u}{\partial x^2}$$
, если $u = xy + \sin(x + y)$.

- 4. Вычислить приближённо $\sqrt{5 \cdot e^{0.02} + 2.03^2}$.
- 5. Построить поверхность. Найти экстремумы функции $z = x^2 + 2y^2 4x 6y + 2$.
- 6. Найти экстремальное значение функции $z = 2x + y y^2 x^2$ при условии x + 2y = 1.
- 7. Найти наибольшее значение функции в заданной области:

A)
$$z = x - 2y + 5$$

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x + y \le 1; \end{cases}$$
 B) $z = \ln(x^2 + y^2)$
$$\begin{cases} x + 2y \le 1 \\ x \ge 0 \\ y \ge 0. \end{cases}$$

Задание №2 (уровень компетенции «владение» - КЕЙСОВЫЕ ЗАДАНИЯ для групп)

- 1. Завод выпускает спичечные коробки. Расходы на производство одного коробка 1 руб, а цена продажи равна 5 руб. Сколько нужно производить коробков, чтобы прибыль была наибольшей, если t работников завода может производить в месяц $N=-(t-10)^2+500$ коробков.
- 2. Расходы на производство у автомобилей составляют Q=0,5 y^2 +y+7 миллионов рублей в месяц. Если продавать каждый автомобиль за S тысяч рублей, то при продаже всех произведенных за месяц автомобилей завод получит доход S*y, а заработает на этом прибыль (доходы минус расходы) S*y-Q. Какую наименьшую цену продажи S нужно установить, чтобы за 3 месяца завод получил прибыль 75 миллионов рублей?
- 3. В двух областях есть по 20 рабочих, каждый из которых готов трудиться по 10 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,2 кг алюминия или 0,2 кг никеля. Во второй области для добычи х кг алюминия в день требуется х² человеко-часов труда, а для добычи у кг никеля в день требуется у² человеко-часов труда. Обе области поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 1 кг алюминия приходится 1 кг никеля. При этом области договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод?

(Источник: https://shkolkovo.net/catalog/slozhnye_zadachi_prikladnogo_haraktera/naibolshego_na imenshego_znacheniya_velichiny/page-2

© shkolkovo.net)

4. Решить графическим методом задачу на нахождение оптимального значения функции (плана добычи полезных ископаемых):

$$z = 2x_1 + x_2 \rightarrow \min$$

$$\begin{cases} x_1 + x_2 \le 12 \\ 2x_1 - x_2 \le 12 \\ 2x_1 - x_2 \ge 0 \\ 2x_1 + x_2 \ge 4 \\ x_2 \ge 0 \end{cases}$$

5. Задана таблица значений x и y и указан вид зависимости y = f(x, a, b). Найдите параметры a и b, используя метод наименьших квадратов.

$$f(x,a,b) = ax^2 + b$$

X	0,4	0,6	0,8	1,0	1,2
У	2,3	2,5	5,8	9,8	10,6

РГР №3 «Методы интегрального исчисления при решении прикладных задач»

Задание (уровень компетенции – «знать», «уметь»). При решении задач, воспользуйтесь одним из прикладных пакетов (Mathcad, Microsoft Excel, WolframAlpha Mathematica или др.).

Результат оформите в виде скриншотов страниц с вычислениями в Google Документе (пришлите ссылку преподавателю, в элементе «Задание» образовательном портале или на доске Miro)

1). Вычислить неопределенные интегралы

$$\int_{1.}^{1} \left(\frac{1}{3\sqrt{x}} - \frac{x^{3}\sqrt{x}}{5} + 1 \right) dx \qquad \int_{2.}^{1} \left(\frac{2}{3+x^{2}} - \frac{1}{2\sqrt{x^{2}-3}} \right) dx \qquad \int_{3.}^{1} \left(\frac{3}{\sqrt{2-7x}} - \frac{4}{\sin\left(\frac{2x}{5}-1\right)} \right) dx \\
4. \int_{3}^{1} \frac{\cot g^{3}x - 6}{\sin^{2}x} dx \qquad \int_{5.}^{1} \int_{5.}^{1} x(3x^{2}+1)^{4} dx \qquad \int_{6.}^{1} \frac{2x - 1}{x^{2} + 2x + 10} dx \qquad \int_{7.}^{1} \int_{7.}^{1} \int_{7.}^{1} e^{x} dx \\
8. \int_{7.}^{1} \frac{dx}{(x-2)^{3}} dx, \qquad \int_{9.}^{1} \int_{7.}^{1} xe^{-3} dx, \qquad \int_{10.}^{1} \frac{dx}{x(x^{2}+1)}, \qquad \int_{7.}^{1} \int_{7.}^{1} \frac{dx}{\sqrt{x} + \sqrt[3]{x} + 2\sqrt[4]{x}}, \\
\int_{7.}^{1} \frac{dx}{\cos x \sin^{3}x}, \qquad \int_{7.}^{1} \frac{dx}{(x+1)\sqrt{x^{2}+2x-1}}.$$

2) Вычислить определенные интегралы

1.
$$\int_{1}^{2} (x^{2} + \frac{1}{x^{4}}) dx$$
 2.
$$\int_{2}^{\pi} \ln \sin x dx$$
 3.
$$\int_{3}^{5} \frac{x^{2} - 3x + 7}{x^{4} + 7x^{2} + 8} dx$$
, 4.
$$\int_{1}^{\infty} \frac{x^{2} - 2x + 5}{x^{4} + 8x^{2} + 9} dx$$
.

3). Вычислить площадь фигуры, ограниченной линиями

1)
$$3x - y = 4$$
, $y^2 = 6x$

$$r = \cos 2\varphi, \quad 0 \le \varphi \le \frac{\pi}{6}$$
2)
$$\begin{cases} x = 2\cos t, \\ y = 6\sin t; \end{cases} \qquad y = 3(y \ge 3).$$
4). Вычислить длину дуги кривой, заданной уравнением

3)
$$(y = 0 \sin t)$$
, $y = 3(y \ge 3)$.
4). Вычислить длину дуги кривой, заданной уравнением
1) $y = \ln x$, $\sqrt{3} \le x \le \sqrt{15}$.
2) $\rho = 3e^{3\varphi/4}$, $-\pi/2 \le \varphi \le \pi/2$
 $\begin{cases} x = e^t(\cos t + \sin t), \\ x = e^t(\cos t - \sin t), \end{cases}$ $\pi/2 \le t \le \pi$.
5). Вычислить объем тела, образованного вращением вокруг оси Оу фигуры, ограниченной $x = 2$, $y^2 = x = y^2 + 1$

графиками функций $x = 3 - y^2$, $x = y^2 + 1$

РГР №4 «Дифференциальные уравнения»

Задание. При решении задач, воспользуйтесь одним из прикладных пакетов (Mathcad, Microsoft Excel, WolframAlpha Mathematica или др.).

Результат оформите в виде скриншотов страниц с вычислениями в Google **Документе** (пришлите ссылку преподавателю, в элементе «Задание» образовательном портале или на доске Miro)

1. Найти общий интеграл или общее решение дифференциального уравнения первого порядка (в примерах г), д) решить задачу Коши):

1)
$$\sqrt{4-x^2} y' + xy^2 + x = 0$$
, 2) $20xdx - 3ydy = 3x^2ydy - 5xy^2dx$, 3) $y' = \frac{x^2 + 2xy - 5y^2}{2x^2 - 6xy}$, 4) $\begin{cases} y' - y\cos x = \sin 2x \\ y(0) = -1 \end{cases}$, 5) $\begin{cases} xy' + y = xy^2 \\ y(1) = 1 \end{cases}$, 6) $\frac{y}{x^2}dx - \frac{xy + 1}{x}dy = 0$.

- 2. Найти общее решение дифференциального уравнения:
 - 1) $y'''x \ln x = y''$, 2) $(1+x^2)y'' + 2xy' = 12x^2$.
- 3. Найти решение задачи Коши: $\begin{cases} y'' = 2\sin^3 y \cos y \\ y(1) = \frac{\pi}{2}, \ y'(1) = 1 \end{cases}.$
- 4. Найти общее решение дифференциального уравнения (и если задано- решить задачу Коши):
 - 1) $y'' 2y' + y = xe^x$ 2) $y'' + 4y' + 5y = x^2$

3)
$$y''' - 4y'' + 5y' = 6x^2 + 2x - 5$$
, 4) $y''' + 2y'' - 3y' = (8x + 6)e^x$,
5) $y'' - 4y' + 4y = e^{2x}(\cos x + 3\sin x)$, 6) $y''' - 64y' = 128\cos 8x - 64e^{8x}$,
7)
$$\begin{cases} y'' + y = 1/\sin x \\ y(\pi/2) = 1, \ y'(\pi/2) = \pi/2 \end{cases}$$
 8) $y' = y^3x^2$, $y(0) = 3$.

5. Решите систему ДУ первого порядка двумя способами - подстановки и методом Эйлера

$$\begin{cases} y' = 2x - 5y + e^t \\ x' = y - 6x + e^{-2t} \end{cases}$$

приложение 2

Оценочные средства для проведения промежуточной аттестации а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код	Индикатор					
индика	достижения	Оценочные средства				
тора	компетенции					
УК-1 Сп	УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе					

УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе								
системн	системного подхода, вырабатывать стратегию действий							
УК-1.1	Анализирует проблемную ситуацию как систему, выявляя ее составляющие и связи между ними	Знает возможности прикладных сервисов и пакетов для математического моделирования и решения задач прикладного характера средствами (методами) алгебры, геометрии и математического анализа. Для достижения индикатора: -знает основные определения и понятия алгебры, геометрии						
	сьязи между ними	и математического анализа, используемые для отбора						

Код индика	Индикатор достижения	Оценочные средства				
тора	компетенции	Оценочные средства				
		обработки данных в соответствии с поставленной прикладной задачей; - воспроизводит основные математические модели: распознает математические объекты; понимает связь между различными математическими объектами, позволяющими смоделировать и решить задачу.				
		Оценочные средства достижение индикатора:				
		- Расчетно-графические работы (РГР) по разделам куро (примерные варианты РГР представлены в Приложении 1				
		- Вопросы для самопроверки и подготовки к защите РГР (представлены в Приложении 1): 1. Формулировки основных теорем (свойств, признаков изучаемых понятий, необходимые и достаточные условия) в изучаемых разделах курса, 2. Методы раскрытия неопределенностей, выяснения непрерывности функции одной переменной, 3. Алгоритм приближенного вычисления функции с помощью дифференциала; написания уравнения касательной прямой (плоскости). 4. Алгоритм полного исследования функции. 5. Алгоритм нахождения экстремума функции одной и многих переменных. 6. Методы выяснения классов интегрируемых функций, а также методы интегрирования основных классов функций. 7. Основные приложения определенных интегралов. 8. Способы выяснения сходимости несобственных интегралов.				
		- Представить обзор сервисов, цифровых инструментов для визуализации, изучения свойств, анализа прикладных задач, решаемых средствами линейной алгебры и математического анализа — результат (скриншоты или?) представить как ответ на задание в Moodle, или в Google документе, или на доске Miro.				
УК-1.2	Критически оценивает надежность источников информации, работает с	- использует ресурсы интернета для просмотра, поиска, отбора, визуализации и анализа данных (открытые базы данных, порталы и сайты, напр. Росстат, TAdviser и др.). Оценочные средства достижение индикатора: Примерный вариант задания:				
	противоречивой информацией из разных источников, определяет пробелы в	1) Изучить (узнать) возможности сервисов, цифровых инструментов 1.1. для визуализации, анализа прикладных задач, решаемых средствами линейной и векторной алгебры (напр., транспортной задачи, задачи ЛП – графический метод),				

Код индика тора	Индикатор достижения компетенции	Оценочные средства	
Тори	информации, необходимой для решения проблемной ситуации, и проектирует процессы по их устранению	1.2. для визуализации, изучения свойств кривых и поверхностей 2-го порядка (напр., WolframAlpha и др.) 1.3. и т.д. (в каждом разделе курса — для решения конкретных междисциплинарных прикладных задач) 2) Результат (скриншоты или?) представить как ответ на задание в Moodle, или в Google документе, или на доске Miro.	
УК-1.3	Разрабатывает и содержательно аргументирует стратегию решения проблемной ситуации на основе системного и междисциплинарн ого подходов;	Умеет решать задачи предметной области: выбирать метод и алгоритм для решения конкретной задачи, аргументировать свой выбор; строить простейшие математические модели реальных процессов и ситуаций; применять компьютерные математические программы для решения задач: - обладает навыками отбора и обработки информации, - навыками и методиками обобщения результатов решения задач на основе теоретических положений высшей математики	
	строит сценарии реализации стратегии, определяя возможные риски и предлагая пути их устранения	Примерные задания Задание 1. Для производства двух видов изделий А и В используется три типа технологического оборудования. На производство единицы изделия А используется 3 часа работы оборудования первого вида, 4 часа работы оборудования второго вида и 5 часов часа работы оборудования третьего вида. Для единицы изделия В – используется 6, 3 и 2 часа соответственно. Существуют ограничения на использование оборудования первого вида — 102 часа в месяц, на использование оборудования второго вида — 91 час в месяц и на использование оборудования третьего вида — 105 часов в месяц. Цена реализации единицы готового изделия А составляет 7 у.е., изделия В — 9 у.е. Составьте план производства изделий А и В на месяц, обеспечивающий максимальную выручку от их реализации. Решить задачу с помощью средств МЅ Ехсе!. Выяснить, время работы какого оборудования исчерпано не полностью, в каких пределах может меняться время использования всех трех видов оборудования, что бы «ценность» этого ресурса оставалась прежней. В каких пределах можно изменять цены готовых продуктов А и В, что бы план их производства остался прежним. Проверить целесообразность введения в план производства еще одного изделия С, с затратами на единицу продукции 2, 3, 5 часов работы оборудования первого, второго и третьего видов соответственно, если цена реализации составит 8 у.е. Задание 2. Решить транспортную задачу по перевозке песка с трех карьеров на четыре строительные площадки. В день	

Код индика тора	Индикатор достижения компетенции	Оценочные средства			
		каждый карьер производит 120, 80 и 100 тонн песка, на стройплощадки требуется 85, 65, 90 и 60 тонн соответственно. Известны расстояния между заводами и площадками в километрах: $\begin{pmatrix} 7 & 4 & 15 & 9 \\ 11 & 2 & 7 & 3 \\ 4 & 5 & 12 & 8 \end{pmatrix}$			
		Определить оптимальный план перевозминимизирующий общий километраж перевозок. Задание 3. При построении висячего моста через речку «Тихая» и выяснении надежности сооружения, студенты стройотряда столкнулись с решением следующей задачи Трос, подвешенный за два конца на одинаковой высоте, имеет форму дуги параболы. Расстояние между точками крепления равно 24 м. Глубина прогиба троса на расстоянии 3 м от точки крепления равна 40 см. Определ глубину прогиба троса посередине между креплениями.			

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

2. Проведения промежуточной аттестации

Промежуточная аттестация по дисциплине «Высшая математика» проводится в форме экзамена и включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** обучающийся демонстрирует высокий уровень сформированности компетенции УК-1, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** обучающийся демонстрирует средний уровень сформированности компетенции УК-1: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** обучающийся демонстрирует пороговый уровень сформированности компетенции УК-1: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач или не может показать знания даже на уровне воспроизведения и объяснения информации.