

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

> УТВЕРЖ, ДАЮ Директор ИМ МиМ А.С. Савинов

> > 09.02.2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Направление подготовки (специальность) 21.05.04 Горное дело

Направленность (профиль/специализация) программы Маркшейдерское дело

Уровень высшего образования - специалитет

Форма обучения очная

Институт/ факультет

Институт металлургии, машиностроения и материалообработки

Кафедра

Механики

Курс

2

Семестр

4

Магнитогорск 2023 год

Рабочая программа составлена на основе ФГОС ВО - специалитет по специальности 21.05.04 Горное дело (приказ Минобрнауки России от 12.08.2020 г. № 987)

Рабочая программ: 11.01.2023, проток	а рассмотрена и одобрена на заседании кафед ол № 7	цры Механики
	Зав. кафедрой	А.С. Савино
Рабочая программа 09.02.2023 г. прото	а одобрена методической комиссией ИММи№ кол № 5	M
Согласовано: Зав. кафедрой Геол ископаемых	Председатель погии, маркшейдерского дела и обогащения п	А.С. Савиг ог олезных И.А. Гришин
Рабочая программа ст. преподаватель ка	составлена: афедры Механики — Ошф	О.А. Осипова
Рецензент: директор ЗАО НПО	"ЦХТ", канд. техн. наук	и В.П. Дзюба

Лист актуализации рабочей программы

Рабочая программа пересмот учебном году на заседании к	грена, обсуждена и одобрена для реализации в 2024 - 2025 гафедры Механики
	Протокол от
Рабочая программа пересмот учебном году на заседании к	грена, обсуждена и одобрена для реализации в 2025 - 2026 гафедры Механики
	Протокол от
Рабочая программа пересмот учебном году на заседании к	грена, обсуждена и одобрена для реализации в 2026 - 2027 гафедры Механики
	Протокол от
Рабочая программа пересмот учебном году на заседании к	грена, обсуждена и одобрена для реализации в 2027 - 2028 гафедры Механики
	Протокол от
Рабочая программа пересмот учебном году на заседании к	грена, обсуждена и одобрена для реализации в 2028 - 2029 гафедры Механики
	Протокол от
Рабочая программа пересмот учебном году на заседании к	грена, обсуждена и одобрена для реализации в 2029 - 2030 гафедры Механики
	Протокол от

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины «Сопротивление материалов»: является освоение первоначальных практических и теоретических основ расчёта напряжённого состояния тела при различных деформациях и служит основой изучения специальных дисциплин.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Сопротивление материалов входит в обязательую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Теоретическая механика

Физика

Инженерная и компьютерная графика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Прикладная механика

Подготовка к сдаче и сдача государственного экзамена

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Сопротивление материалов» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции				
ОПК-6 Способен применять методы анализа и знания закономерностей поведения и управления свойствами горных пород и состоянием массива в процессах добычи и переработки твердых полезных ископаемых, а также при строительстве и эксплуатации подземных объектов					
ОПК-6.1	Систематизирует методы предельного напряженного состояния массива горных пород				
ОПК-6.2	Владеет инженерными и технологическими методами управления геомеханическими процессами				

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 55,9 акад. часов:
- аудиторная 54 акад. часов;
- внеаудиторная 1,9 акад. часов;
- самостоятельная работа 52,1 акад. часов;

Форма аттестации - зачёт

Раздел/ тема	Семестр	контакт		диторная ктная работа кад. часах)		Вид самостоятельной	Форма текущего контроля успеваемости и	Код
дисциплины	Cen	Лек.	лаб. зан.	практ. зан.	Самостоятельная работа студента	работы	промежуточной аттестации	компетенции
1. Раздел 1								
1.1 Введение в курс «Сопротивление материалов». Предмет и задачи курса. Основные понятия и определения. Метод сечений. Внутренние силовые факторы (ВСФ).	4	4		2	5	Выполнение расчётно-графической работы (РГР) №1, подготовка к аудиторной контрольной работе (АКР) №1, обучение на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	Аудиторная контрольная работа №1 (АКР№1), изучение материала и прохождение тестов на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	ОПК-6.1, ОПК-6.2
1.2 Центральное растяжение – сжатие. Сдвиг. Кручение.	4	2		2	5	Выполнение расчётно-графической работы (РГР) №1, подготовка к аудиторной контрольной работе (АКР) №1, обучение на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	Аудиторная контрольная работа №1 (АКР№1), изучение материала и прохождение тестов на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	ОПК-6.1, ОПК-6.2

1.3 Построение эпюр при растяжении (сжатии), при кручении, при плоском поперечном изгибе	6	1	14	Выполнение расчётно-графической работы (РГР) №1, подготовка к аудиторной контрольной работе (АКР) №1, обучение на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	Аудиторная контрольная работа №1 (АКР№1), изучение материала и прохождение тестов на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	ОПК-6.1, ОПК-6.2
1.4 Геометрические характеристики поперечных сечений.	4	2	8	Выполнение расчётно-графической работы (РГР) №2, подготовка к аудиторной контрольной работе (АКР) №2, обучение на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	Аудиторная контрольная работа №2 (АКР№2), изучение материала и прохождение тестов на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	ОПК-6.1, ОПК-6.2
1.5 Плоский поперечный изгиб. Определение нормальных и касательных напряжений при поперечном изгибе. Расчёты на прочность при поперечном изгибе.	6	2		обучение на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	прохождение тестов и обучение на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	ОПК-6.1, ОПК-6.2
1.6 Напряжённое и деформированное состояния.	2	1	8	обучение на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	изучение материала и прохождение тестирования на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	ОПК-6.1, ОПК-6.2
1.7 Подбор сечений при поперечном изгибе. Определение грузоподъёмности при поперечном изгибе.	4	2	7	платформе	изучение материала и прохождение тестирования на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	ОПК-6.1, ОПК-6.2

Итого по разделу Итого за семестр	36 36	18 18	52,1 52,1 52,1		зачёт	
I			:			
1.11 Продольно-поперечный изгиб. Устойчивость сжатых стержней.	2	1	1	обучение на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	на платформе «Лекториум» по	
1.10 Удар. Усталость. Расчет по несущей способности	2	1		обучение на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	прохождение тестирования на	ОПК-6.1.
1.9 Сложное сопротивление. Косой изгиб. Внецентренное растяжение — сжатие. Изгиб с кручением круглого вала	2	2	3,1	обучение на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	прохождение тестирования на	ОПК-6.1, ОПК-6.2
1.8 Определение перемещений в балках. Статически неопределимые балки	2	2	1	обучение на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	тестирования на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов»	ОПК-6.1, ОПК-6.2

5 Образовательные технологии

Передача необходимых теоретических знаний и формирование основных представлений по курсу «Сопротивление материалов» происходит с использованием мультимедийного оборудования.

Лекции проходят в традиционной форме, в форме лекций-консультаций и проблемных лекций.

Теоретический материал на проблемных лекциях является результатом усвоения полученной информации посредством постановки проблемного вопроса и поиска путей его решения.

На лекциях-консультациях изложение нового материала сопровождается постановкой вопросов и дискуссией в поисках ответов на эти вопросы.

При рассмотрении тем данной дисциплины необходимо проводить достаточное количество примеров из практической деятельности ведущих горных предприятий города, региона и России.

При проведении практических занятий используются работа в команде и методы IT, используются раздаточные материалы.

Самостоятельная работа стимулирует обучающихся в процессе подготовки расчётно-графических работ, при решении задач на практических занятиях, при подготовке к контрольным работам, обучении на платформе «Лекториум» по курсу «Прикладная механика. Сопротивление материалов» и итоговой аттестации.

- **6** Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.
- **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
- 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Асадулина, Е. Ю. Сопротивление материалов. Конспект лекций: учебное пособие для вузов / Е. Ю. Асадулина. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 254 с. (Высшее образование). ISBN 978-5-534-02566-8. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453440.
- 2. Ибрагимов, Ф. Г. Механика деформируемых стержней: учебное пособие [для вузов] / Ф. Г. Ибрагимов, А. С. Постникова; МГТУ. Магнитогорск: МГТУ, 2019. 1 электрон. опт.
- диск (CD-ROM). Загл. с титул. экрана. URL:

 $\frac{https://magtu.informsystema.ru/uploader/fileUpload?name=3877.pdf\&show=dcatalogues/1/1530}{012/3877.pdf\&view}\,.$

- 3. Статически неопределимые системы: учебное пособие / Д. Я. Дьяченко, О. С. Железков,
- С. В. Конев и др.; МГТУ. Магнитогорск: МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:

https://magtu.informsystema.ru/uploader/fileUpload?name=3174.pdf&show=dcatalogues/1/1136 586/3174.pdf&view .

б) Дополнительная литература:

- 1. Дьяченко, Д. Я. Сопротивление материалов: практикум / Д. Я. Дьяченко; МГТУ. Магнитогорск, 2014. 97 с. : ил., табл. URL:
- $\frac{https://magtu.informsystema.ru/uploader/fileUpload?name=800.pdf\&show=dcatalogues/1/11160}{21/800.pdf\&view} \, .$
- 2. Савинов, А. С. Практикум по сопротивлению материалов: практикум / А. С. Савинов, О. А. Осипова, А. С. Постникова; МГТУ. Магнитогорск: МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3242.pdf&show=dcatalogues/1/1137 007/3242.pdf&view.

в) Методические указания:

- 1. Деформация. Кручение: методические указания к проведению практической и самостоятельной работы по дисциплине "Сопротивление материалов" для студентов очной и заочной формы обучения 150400.62, 150700.62, 151000.62, 140400.62 / сост.: Степанищев А. Е.; МГТУ; Белорецкий филиал. Магнитогорск: МГТУ, 2014. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:
- $\frac{https://magtu.informsystema.ru/uploader/fileUpload?name=3103.pdf\&show=dcatalogues/1/1135}{518/3103.pdf\&view}\,.$
- 2. Деформация, растяжение-сжатие: методические указания к проведению практической и самостоятельной работы по дисциплине "Сопротивление материалов" для студентов очной и заочной формы обучения 150400.62, 150700.62, 151000.62, 140400.62 / сост.: Степанищев А. Е.; МГТУ; Белорецкий филиал. Магнитогорск: МГТУ, 2014. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:
- https://magtu.informsystema.ru/uploader/fileUpload?name=3104.pdf&show=dcatalogues/1/1135522/3104.pdf&view.
- 3. Дьяченко, Д. Я. Прямой поперечный изгиб: сборник заданий / Д. Я. Дьяченко; МГТУ. Магнитогорск: МГТУ, 2010. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:
- https://magtu.informsystema.ru/uploader/fileUpload?name=1257.pdf&show=dcatalogues/1/1123 435/1257.pdf&view .
- 4. А.С. Савинов, А.С. Тубольцева, К.А. Фролушкина, Б.Б. Зарицкий. Построение эпюр внутренних силовых факторов при деформациях растяжение-сжатие, кручение и изгиб: методические указания по дисциплине «Сопротивление материалов» для студентов всех технических специальностей и форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 30с.
- 5. Ф.Г. Ибрагимов. Определение перемещений в стержневых системах: методические указания по дисциплине «Сопротивление материалов» для студентов всех технических специальностей и форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 10с.
- 6. В.Ф. Михайлец Расчёт статически неопределимых систем методом сил: методические указания к практическим занятиям по дисциплине «Сопротивление материалов» для студентов всех технических специальностей и форм обучения. . Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 24с.
- 7. Дьяченко Д.Я. Определение грузоподъёмности балок: Методические указания по дисциплине «Сопротивление материалов» для студентов строительных специальностей. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 17с. ун-та им. Г.И.Носова, 2015. 33с.
- 8. А.С. Савинов, С.В. Конев. Изгиб: сборник контрольных заданий по дисциплине «Сопротивление материалов» для обучающихся всех специальностей всех форм обучения.
- Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2015. 23с.
- 9. А.С. Савинов, С.В. Конев. Геометрические характеристики плоских сечений балок: сборник контрольных заданий по дисциплине «Сопротивление материалов» для обучающихся всех специальностей всех форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2015. 6с.
- 10. В.Ф. Михайлец, Н.В. Скарлыгина Методические указания по итоговому тестированию по дисциплине «Сопротивление материалов» для обучающихся всех специальностей всех форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. . ун-та им. Г.И.Носова, 2015. 33с.

- 11. Дьяченко Д.Я., Ступак А.А. Сборник заданий по теме «Построение эпюр внутренних силовых факторов в статически определимых системах» к выполнению самостоятельной работы по дисциплине «Сопротивление материалов» для обучающихся всех технических направлений подготовки. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2017. 43с.
- 12. А.С. Савинов, А.А. Ступак, О.А.Осипова, О.С. Железков, Б.Б. Зарицкий, К.И. Рудь, К.С. Элиджарова Задачник по сопротивлению материалов. Построение эпюр ВСФ.: задачник /А.С. Савинов, А.А. Ступак, О.А.Осипова. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2023. 38 с.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии		
FAR Manager	свободно	бессрочно		
Браузер Yandex	свободно	бессрочно		
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно		
Zip свободно		бессрочно		

Профессиональные базы данных и информационные справочные системы

11	C
Название курса	Ссылка
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	https://magtu.informsystema.ru/Marc.html?locale=ru
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalogues
Информационная система - Единое окно доступа к информационным	
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа. Оснащение: мультимедийные средства хранения, передачи и представления информации. Оснащение: доска, мультимедийный проектор, экран.

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: доска.

Помещения для самостоятельной работы обучающихся. Оснащение: персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования.

Оснащение: стеллажи для хранения учебно-методических пособий и учебно-методической документации.

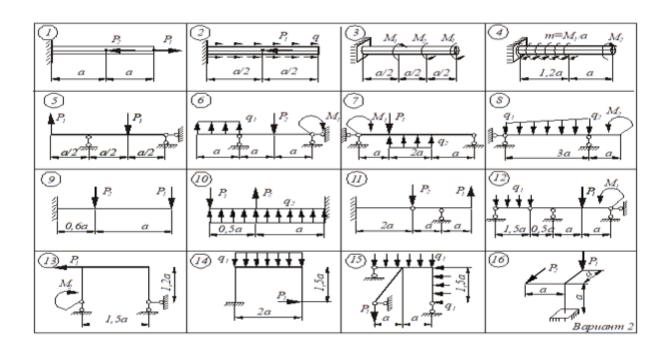
Приложение 1 «Учебно-методическое обеспечение самостоятельной работы обучающихся»

По дисциплине «Сопротивление материалов» предусмотрено выполнение расчётно-графических (РГР) и аудиторных контрольных работ (АКР) обучающихся.

Аудиторная самостоятельная работа обучающихся предполагает решение контрольных задач на практических занятиях.

Примерные расчётно- графические работы (РГР):

РГР №1 «Построение эпюр ВСФ в статически определимых стержневых системах» Задание на РГР №1

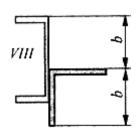

- 1) Требуется построить эпюры
- продольных сил N для стержней (схемы 1, 2);
- крутящих моментов $M_{\kappa p}$ (схемы 3, 4);
- поперечной силы Q и изгибающего момента M :
- а) для балок на двух опорах (схемы 5,6);
- б) для двух консольных балок (схемы 9,10).
 - 2) Найти опасные сечения
 - 3) Для балки на двух опорах (схема 5) подобрать сечения из стали ($[\sigma]$ =160 МПа):
- а) двутавровое;
- δ) прямоугольное (h/b)=2;
- в) квадратное;
- г) круглое;
- д) кольцевое ($\alpha = 0.8$);

Выбрать самое экономичное сечение.

4) Для балки с жёсткой заделкой (схема 9) подобрать швеллер из стали ($[\sigma]$ =180 МПа) или коробчатое сечение, состоящее из двух швеллеров

Таблица числовых значений

а,	$a \cdot \kappa H$	$a \sim \frac{\kappa H}{2}$	P_1 ,	P_2 ,	M_1 ,	M_2 ,
М	21° M	12° M	кН	кН	кНм	кНм
2	10	20	10	20	10	20


РГР №2 «Геометрические характеристики составного сечения. Определение координат центра тяжести составного поперечного сечения, моментов инерции и положения главных центральных осей»

Задание на РГР №2

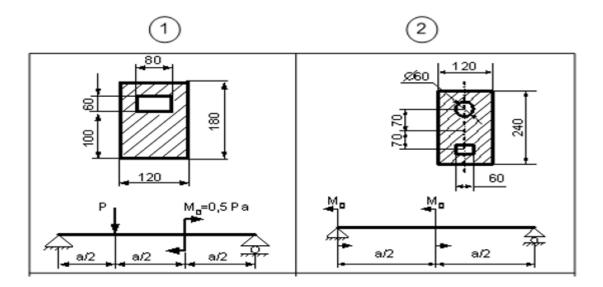
Для заданного несимметричного составного сечения требуется:

- 1. Вычертить в масштабе сечение, состоящее из прокатных профилей. Указать все оси и все размеры.
 - 2. Определить положение центра тяжести составного сечения.
- 3. Вычислить осевые и центробежный моменты инерции относительно центральных осей.
 - 4. Определить положение главных центральных осей.
- Вычислить значения главных центральных моментов инерции сечения относительно главных осей.

Составное сечение состоит из набора прокатных профилей, сваренных между собой. Сложное сечение может состоять из следующих простых сечений, в зависимости от варианта: лист (прямоугольное сечение), двугавр, швеллер, равнобокий уголок.

Номер	Вид сечения	Heennen	Равнобокий уголок	Двутавр
строки	Бид ссчении	шостиср	T dibilioodistiti yrosiok	доутаор
1	I	14	80 x 80 x 8	12
2	II	16	90 x 90 x 7	14
3	III	18	90 x 90 x 8	16

РГР №3 «Прямой поперечный изгиб. Определение грузоподъёмности (расчёт допускаемых нагрузок»


Задание на РГР №3

Для балки заданного поперечного сечения определить допускаемую нагрузку [q], [P], $[M_0]$. Размеры поперечного сечения балки даны в мм.

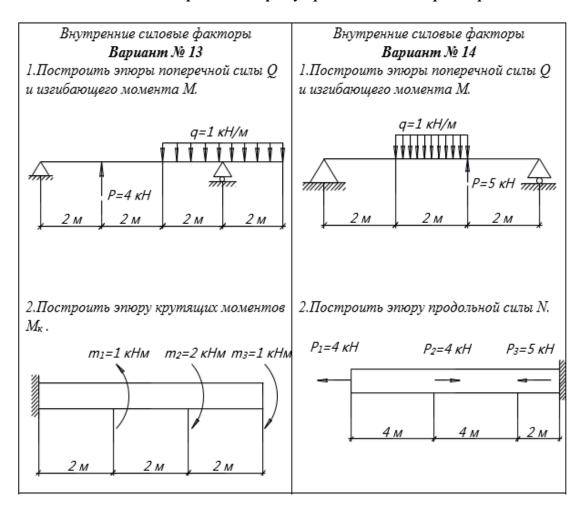
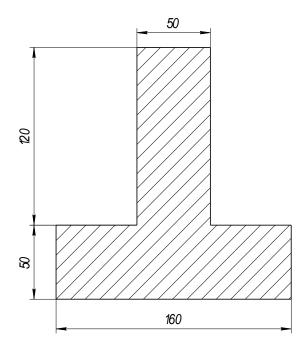

Исходные данные для решения приведены в таблице №1.

Таблица №1

№строки	а, м	[σ] _p , ΜΠα	[σ] _{сж} , МПА
1	1	10	60



Примерные аудиторные контрольные работы (АКР): АКР №1 «Построение эпюр внутренних силовых факторов»

AKP №2 «Нахождение положения центра тяжести и определение геометрических характеристик симметричного сечения»

Определить положение центра тяжести заданной фигуры, осевые моменты инерции и центробежный момент инерции.

Приложение 2 «Оценочные средства для проведения промежуточной аттестации»

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Промежуточная аттестация имеет целью определить степень достижения запланированных результатов обучения по дисциплине «Сопротивление материалов» проводится в форме зачёта на 2 курсе в 4 семестре.

Код индикатора	Индикатор достижения компетенции	Оценочные средства				
ОПК-6 Способен применять методы анализа и знания закономерностей поведения и управления свойствами горных пород и состоянием массива в процессах добычи и переработки твердых полезных ископаемых, а также при строительстве и эксплуатации подземных объектов ОПК-6.1: Систематизирует методы предельного напряженного состояния массива горных пород ОПК-6.2: Владеет инженерными и технологическими методами управления геомеханическими процессами						
Знать	Основные положения, гипотезы сопротивления материалов, методы и практические приёмы расчёта стержней и стержневых систем при различных силовых деформационных воздействиях	 Перечень теоретических вопросов к зачету: Цели и задачи изучения курса "Сопротивление материалов" Модели форм элементов конструкций. Виды основных деформаций бруса. Внешние и внутренние силы. Метод сечений. Внецентренное растяжение - сжатие. Внешние и внутренние силы. Классификация сил. Внутренние силовые факторы. Виды деформаций. Эпюры. Геометрические характеристики плоских сечений. Роль геометрических характеристик в сопротивлении материалов Деформации. Виды деформаций. Динамические нагрузки. Изгиб с кручением. Изгиб. Нахождение внутренних силовых факторов при изгибе. Кручение с изгибом. Кручение. Напряжения при кручении. Метод сечений. Правила знаков для внугренних силовых факторов. Моменты инерции и сопротивления простых фигур. Статические моменты. 				

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		17. Моменты инерции сложных фигур. Моменты сопротивления сечения.
		18. Напряжения при различных видах деформаций.
		19. Напряжённое и деформированное состояние тела.
		20. Нормальные и касательные напряжения при изгибе
		21. Определение деформаций и перемещений при изгибе.
		22. Определение центра тяжести плоского сечения и сечения из прокатных
		профилей.
		23. Осевые и центробежный моменты инерции сечений. Полярный момент
		инерции.
		24. Основные допущения сопротивления материалов.
		25. Основные задачи сопротивления материалов.
		26. Перемещения, виды и способы определения перемещений.
		27. Прокатные профили. Применение. Сортамент.
		28. Прямой поперечный изгиб. Нормальные и касательные напряжения при изгибе. Подбор сечений.
		29. Расчёт балки на прочность при изгибе.
		30. Расчёт на прочность и жёсткость при растяжении – сжатии.
		31. Расчёт на прочность при кручении. Подбор сечения. Угол закручивания.
		32. Рациональные формы поперечного сечения.
		33. Сдвиг. Напряжения при сдвиге. Срез.
		34. Сложное сопротивление. Виды сложного сопротивления.
		35. Статически неопределимые системы.
		36. Теории прочности. Основные понятия.
		37. Удар.
		38. Усталость
		39. Устойчивость сжатых стержней. Гибкость стержня.
		40. Формулы Эйлера и Тетмайера- Ясинского.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
Уметь	грамотно составлять расчётные схемы, определять теоретически и экспериментально внутренние усилия, напряжения, деформации и перемещения	Примерное практическое задание к зачёту Для заданной балки построить эпюры поперечных сил и изгибающих моментов. Найти опасное сечение
Владеть	навыками построения эпюр внутренних усилий, навыками подбора необходимых размеров сечений стержней из условий прочности, жёсткости и устойчивости сечений, навыками выбора рационального и экономичного сечений	Примерное практическое задание к зачёту Для заданной балки построить эпюры поперечных сил и изгибающих моментов. Найти опасное сечение. Подобрать двутавр из стали с $[\sigma]$ =160МПа $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Для получения зачёта по дисциплине «Сопротивление материалов» обучающийся должен изучить необходимые разделы в конспектах, учебных пособиях и методических указаниях; работать со справочной литературой и на образовательном портале, исправлять ошибки, замечания по оформлению расчётно- графических работ (РГР), пройти обучение по курсу «Прикладная механика. Сопротивление материалов» на платформе «Лекториум».

Промежуточная аттестация по дисциплине «Сопротивление материалов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений ОПК -6, проводится в форме зачёта.

Критерии оценки (в соответствии с формируемыми компетенциями и планируемыми результатами обучения).

- на оценку «зачтено» обучающийся должен показать знания не только на уровне воспроизведения и объяснения информации, но и на интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам.
- на оценку **«не зачтено»** обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.