
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ФИЗИКА С ЭЛЕМЕНТАМИ КВАНТОВОЙ МЕХАНИКИ

Направление подготовки (специальность) 09.03.01 Информатика и вычислительная техника

Направленность (профиль/специализация) программы
Программное обеспечение средств вычислительной техники и автоматизированных систем

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт/ факультет Институт естествознания и стандартизации

Кафедра Физики

Kypc 1, 2

Магнитогорск 2024 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 09.03.01 Информатика и вычислительная техника (приказ Минобрнауки России от 19.09.2017 г. № 929)

	Рабочая программа рассмотрена и одобре 02.02.2024, протокол № 4 Зав. кафе		и кафедры	Физики Д.М. Дол	гушин
	Согласовано:	ссдатель	M	И.ІО.	Мезин
	Зав. кафедрой Вычислительной техники и	программиро	h	_О.С. Ло	гунова
<u>u</u> 1	Рабочая программа составлена: ст. преподаватель кафедры В.В. Риве	Физики,	канд.	фм.	наук
	Рецензент: зав. кафедрой ПМиИ, д-р техн. наук	g	ІО.А. Из	ввсков	

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2025 - 2026 учебном году на заседании кафедры Физики						
	Протокол от Зав. кафедрой	20 г.	№ Д.М. Долгушин			
Рабочая программа пересмот учебном году на заседании ка	-	ена для реали	зации в 2026 - 2027			
	Протокол отЗав. кафедрой	20 г.	№ Д.М. Долгушин			
Рабочая программа пересмот учебном году на заседании ка	-	ена для реали	зации в 2027 - 2028			
	Протокол от Зав. кафедрой	20 г.	№ Д.М. Долгушин			
Рабочая программа пересмот учебном году на заседании ка		ена для реали	зации в 2028 - 2029			
	Протокол отЗав. кафедрой	20 г.	№ Д.М. Долгушин			
Рабочая программа пересмот учебном году на заседании ка		ена для реали	зации в 2029 - 2030			
	Протокол от	20 г.	№ Д.М. Долгушин			

1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины «Физика с элементами квантовой механики» является формирование у обучающихся способности применять основные законы классической и современной физики, а также соответствующий физико-математический аппарат и методы моделирования для решения теоретических, прикладных и практических задач, возникающих в ходе профессиональной деятельности.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Физика с элементами квантовой механики

входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Информатика

Прикладная математика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Моделирование

Обработка экспериментальных данных на ЭВМ

Основы квантовой информатики

Безопасность жизнедеятельности

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Физика с элементами квантовой механики

» обучающийся должен обладать следующими компетенциями:

	men germen centagars eneggicanimi teminerengimini.						
Код индикатора	Индикатор достижения компетенции						
ОПК-1 Способен	применять естественнонаучные и общеинженерные знания, методы						
математического	анализа и моделирования, теоретического и экспериментального						
исследования в про	фессиональной деятельности;						
ОПК-1.1	Решает стандартные профессиональные задачи с применением						
	естественнонаучных и общеинженерных знаний, методов						
	математического анализа и моделирования						
ОПК-1.2	Решает профессиональные задачи с применением методов						
	теоретического и экспериментального исследования						

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 7 зачетных единиц 252 акад. часов, в том числе:

- контактная работа 17,4 акад. часов:
- аудиторная 16 акад. часов;
- внеаудиторная 1,4 акад. часов;
- самостоятельная работа 222,8 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к зачёту 3,9 акад. час
 Форма аттестации зачет, зачет с оценкой

Раздел/ тема дисциплины	Kypc	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетенции		
A	I	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции	
1. Классическая механика									
1.1 Кинематика поступательного и вращательного движения		0,4	0,2		15	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 1	ОПК-1.1	
1.2 Динамика поступательного и вращательного движения	1	0,6	0,3		20	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 1	ОПК-1.1, ОПК-1.2	
1.3 Законы сохранения в механике		1	1,4		24	Проработка лекций, изучение теоретического материала, подготовка к выполнению и обработка результатов лабораторной работы, решение контрольной работы	Отчет по лабораторной работе № 1, контрольная работа № 1	ОПК-1.1, ОПК-1.2	
Итого по разделу		2	1,9		59				
2. Механические колебани волны	и кі								

2.1 Механические колебания		0,6	0,3		20	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 1	ОПК-1.1, ОПК-1.2
2.2 Упругие волны	1	0,6	1,4		24	Проработка лекций, изучение теоретического материала, подготовка к выполнению и обработка результатов лабораторной работы, решение контрольной работы	Отчет по лабораторной работе № 7, контрольная работа № 1	ОПК-1.1, ОПК-1.2
Итого по разделу		1,2	1,7		44			
3. Релятивистская механика								
3.1 Релятивистская кинематика и динамика	1	0,4	0,2		14	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 1	ОПК-1.1
Итого по разделу		0,4	0,2		14			
4. Статистическая физика								
4.1 Элементы статистической физики	1	0,4	0,2		14,4	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 1	ОПК-1.1
Итого по разделу		0,4	0,2		14,4			
Итого за семестр		4	4		131,4		зачёт	
5. Волновая и квантовая опт	ика							
5.1 Электромагнитные волны		0,4	0,2		3	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 2	ОПК-1.1
5.2 Интерференция световых волн	2	0,4	0,2		8,2	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 2	ОПК-1.1, ОПК-1.2

5.3 Дифракция световых волн		0,4	1,3		18,2	Проработка лекций, изучение теоретического материала, подготовка к выполнению и обработка результатов лабораторной работы, решение контрольной работы	Отчет по лабораторной работе № 34, контрольная работа № 2	ОПК-1.1, ОПК-1.2
5.4 Квантовая оптика		0,6	0,2		10	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 2	ОПК-1.1, ОПК-1.2
Итого по разделу		1,8	1,9		39,4			
6. Квантовая механика				1	ı			
6.1 Основные положения и математический аппарат квантовой механики		0,4	0,2		5	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 2	ОПК-1.1
6.2 Уравнение Шрёдингера		0,6	0,3		12	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 2	ОПК-1.1, ОПК-1.2
6.3 Приближенные методы решения квантовомеханических задач	2	0,3	0,1		10	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 2	ОПК-1.1, ОПК-1.2
6.4 Движение в центрально-симметричном поле		0,6	1,3		20	Проработка лекций, изучение теоретического материала, подготовка к выполнению и обработка результатов лабораторной работы, решение контрольной работы	Отчет по лабораторной работе № 42, контрольная работа № 2	ОПК-1.1, ОПК-1.2

6.5 Системы тождественных частиц	0	,3	0,2	5	Проработка лекций, изучение теоретического материала, решение контрольной работы	Контрольная работа № 2	ОПК-1.1, ОПК-1.2
Итого по разделу	2	,2	2,1	52			
Итого за семестр		4	4	91,4		зао	
Итого по дисциплине		8	8	222,8		зачет, зачет с оценкой	

5 Образовательные технологии

В процессе преподавания дисциплины «Физика с элементами квантовой механики» применяются традиционная и модульно-компетентностная технологии.

Используются следующие виды лекций:

вводная лекция — в начале курса и в начале каждого семестра (вводный блок в составе лекции);

лекция-информация – в этой форме излагается основная часть материала;

обзорная лекция – в заключительной части изучения дисциплины, посвященной современной физической картине мира, а также при систематизации и обобщении отдельных разделов;

проблемная лекция – используется как элемент в составе лекции, когда перед студентами ставится некоторая проблема и предлагается найти подходы и пути к ее решению;

лекция-конференция — научно-практическое занятие с системой докладов на заданные темы, подготовленных студентами.

лекция-визуализация — лекции с применением физических демонстраций с объяснением происходящих явлений, а также компьютерных симуляций и учебных фильмов.

Все виды лекций проводятся с использованием мультимедийного оборудования.

Семинарские занятия включают в себя такие методы обучения, как учебная дискуссия, в ходе которой студенты излагают свое мнение и обмениваются взглядами на проблему, эвристическая беседа, стимулирующая коллективное мышление и совместный поиск ответа на сформулированный вопрос или задачу, а также индивидуальное обучение, когда студентам выдаются задания с учетом их индивидуальных особенностей.

При проведении лабораторных занятий практикуется работа в команде (2-4 человека) и использование IT-методов для обработки результатов лабораторных работ.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Кузнецов, С.И. Физика: Механика. Механические колебания и волны. Молекулярная физика. Термодинамика [Электронный ресурс] : Учебное пособие / С.И. Кузнецов. 4-е изд., испр. и доп. М.: Вузовский учебник: НИЦ ИНФРА-М, 2014. 248 с. Режим доступа: http://new.znanium.com/bookread2.php?book=412940 ISBN 978-5-16-101026-6
- 2. Кузнецов, С.И. Физика. Волновая оптика. Квантовая природа излучения. Элементы атомной и ядерной физики [Электронный ресурс] : Учеб. пос. / С.И. Кузнецов, А.М. Лидер 3-е изд., перераб. и доп. М.: Вузов. учеб.: НИЦ ИНФРА-М, 2015 212 с. Режим доступа: http://new.znanium.com/bookread2.php?book=438135 ISBN 978-5-16-100426-5
- 3. Мозолевская, Т.В. Основы квантовой механики и физики атома [Электронный ресурс] : учебное пособие / Т.В. Мозолевская, Ю.В. Филиппенко ; под ред. проф. В.А. Якимова. Москва : ИНФРА-М, 2020. 108 с. Режим доступа: https://new.znanium.com/read?id=346851 ISBN 978-5-16-107648-4

б) Дополнительная литература:

- 1. Гантмахер, Ф.Р. Лекции по аналитической механике [Электронный ресурс] : Учебное пособие для вузов / Ф.Р. Гантмахер ; под ред. Е.С. Пятницкого. 3-е изд. М.: ФИЗМАТЛИТ, 2001. 264 с. Режим доступа: https://new.znanium.com/read?id=199817 ISBN 978-5-9221-0067-0
- 2. Давыдов, А. П. Курс лекций по квантовой механике. Математический аппарат квантовой механики [Электронный ресурс] : учебное пособие / А. П. Давыдов ; МГТУ. [2-е изд., подгот. по печ. изд. 2014 г.]. Магнитогорск : МГТУ, 2015. Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=1444.pdf&show=dcatalogues/1/1123 965/1444.pdf&view=true
- 3. Фирганг, Е.В. Руководство к решению задач по курсу общей физики [Текст]: Учебное пособие / Е.В. Фирганг. 3-е изд., стер. СПб.: Издательство «Лань», 2008. 352 с. ISBN 978-5-8114-0765-1

в) Методические указания:

- 1. Механика. Молекулярная физика и термодинамика [Электронный ресурс] : лабораторный практикум / Е.Н. Астапов, З.Н. Ботнева, Л.С. Долженкова и др. ; МГТУ. Магнитогорск : МГТУ, 2016. Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=2420.pdf&show=dcatalogues/1/1130 121/2420.pdf&view=true
- 2. Физика твердого тела, атома и атомного ядра [Электронный ресурс] : учебное пособие [для вузов] / С.А. Бутаков [и др.] ; Магнитогорский гос. технический ун-т им. Г. И. Носова. Магнитогорск : МГТУ им. Г. И. Носова, 2019. Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3818.pdf&show=dcatalogues/1/1530 254/3818.pdf&view=true

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии		
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно		
7Zip	свободно распространяемое	бессрочно		
FAR Manager	свободно распространяемое	бессрочно		

Профессиональные базы данных и информационные справочные системы

1_11_1	<u>.</u>
Название курса	Ссылка
Поисковая система Академия Google (Google Scholar)	
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	https://elibrary.ru/project_risc.asp
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа. Оснащение: Мультимедийные средства хранения, передачи и представления информации.

Учебная аудитория для проведения лабораторных работ: Лаборатория механики, молекулярной физики и термодинамики. Оснащение: Лабораторные установки, измерительные приборы для проведения лабораторных работ:

- 1. Баллистические маятники.
- 2. Маятник Обербека.
- 3. Физический маятник.
- 4. Доска Гальтона.
- 5. Лабораторная установка для исследования распре-деления термоэлектронов по модулю их скорости.
- 6. Лабораторная установка для определения показателей адиабаты γ методом Клемана и Дезорма.
- 7. Лабораторная установка для проверки закона возрастания энтропии в процессе диффузии газов на модели перемешивания шаров.
- 8. Лабораторная установка для проверки законов возрастания энтропии в процессе теплообмена.
- 9.Установка лабораторная для изучения зависимости скорости звука от температуры "МФ-СЗ-М"
- 10. Установка лабораторная для исследования теплоемкости твердого тела "М Φ -ТЕТ-М".
- 11. Установка лабораторная для определения универсальной газовой постоянной "МФ-ОГП-М".
 - 12.Стенд лабораторный газовые процессы.
 - 13. Мерительный инструмент.

Учебная аудитория для проведения лабораторных работ: Лаборатория электричества и оптики. Оснащение: Лабораторные установки, измерительные приборы для проведения лабораторных работ:

- 1. Лабораторная установка для исследования электростатического поля с помощью одинарного зонда.
 - 2. Установка для шунтирования миллиамперметра.
- 3. Установка лабораторная для определения индуктивности соленоида и магнитной проницаемости.
- 4. Установка лабораторная для изучения резонанса напряжений и определения индуктивности
- 5. Лабораторная установка для изучения длины световой волны и характеристик дифракционной решетки.
- 6. Лабораторная установка для определения радиуса кривизны линзы и длины световой волны с помощью колец Ньютона.
- 7. Лабораторная установка для определения концентрации растворов сахара и постоянной вращения.
 - 8. Источники питания постоянного тока.
 - 9. Магазин емкостей Time Electronics 1071.
 - 10. Магазин емкости Р-513.
 - 11. Магазин индуктивностей Time Electronics 1053.
 - 12. Магазины сопротивлений Р-33.
 - 13. Мультиметры цифровые MAS-838.
 - 14. Мультиметры АРРА 106,203,205.
 - 15. Осциллограф двухканальный GOS-620 FG.
 - 16. Поляриметр СМ.
 - 17. Мерительный инструмент.

Учебная аудитория для проведения лабораторных работ: Лаборатория атома, твердого тела. ядра. Оснашение: Лабораторные установки. измерительные приборы для

проведения лабораторных работ:

- 1. Лабораторная установка для "Изучения внешнего фотоэффекта".
- 2. Установка для изучения спектра атома водорода и определения постоянной Ридберга.
 - 3. Установка лабораторная для определения потенциала возбуждения газа.
 - 4. Установка для определения длины пробега частиц в воздухе.
 - 5. Измеритель скорости счета УИМ2-2.
 - 6. Монохроматоры МУМ-1.
 - 7. Мультиметры АРРА 205, 207.
 - 8. Осциллограф двухканальный GOS-620 FG.
 - 9. Мерительный инструмент.

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: Интерактивная доска, проектор. Доска, мультимедийный проектор, экран.

Помещения для самостоятельной работы обучающихся. Оснащение: Персональные компьютеры с пакетом MS Office, с выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования. Оснащение: Стеллажи для хранения учебно-методической документации, стеллажи и сейфы для хранения учебного оборудования, инструменты для ремонта оборудования.

Приложение 1

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Физика с элементами квантовой механики» для заочной формы обучения предусмотрена внеаудиторная самостоятельная работа обучающихся, которая заключается в проработке лекций, самостоятельном изучении теоретического материала, подготовке к выполнению лабораторных работ, обработке результатов измерений и выполнении двух индивидуальных контрольных работ.

Примерные варианты контрольных работ:

Контрольная работа № 1

- 1. Радиус-вектор частицы изменяется по закону $\vec{r} = t^2 \vec{\iota} + 4t \vec{\jmath} 2\vec{k}$ (м). Найти вектор скорости \vec{v} , вектор ускорения \vec{a} , модуль скорости и ускорения, а также угол между этими векторами в момент времени t = 2 c.
- 2. Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой $m_1 = 100$ г и $m_2 = 110$ г. С каким ускорением будут двигаться грузики, если масса m блока равна 400 г? Трение при вращении блока ничтожно мало.
- 3. Шар скатывается по наклонной плоскости с углом наклона 60°. Какую скорость будет иметь центр шара относительно наклонной плоскости через 2 с, если его начальная скорость была равна нулю?
- 4. Однородный диск радиуса R=13~cm может вращаться вокруг горизонтальной оси, перпендикулярной к его плоскости и проходящей через край диска. Найти период малых колебаний этого диска, если логарифмический декремент затухания $\lambda=1$.
- 5. В трубке длиной l=1,2 м находится воздух при температуре T=300 К. Определить минимальную частоту возможных колебаний воздушного столба ν_{min} в двух случаях: а) труба открыта и б) труба закрыта.
- 6. В собственной системе отсчета имеется прямоугольник с соотношением сторон 4:5. В каком направлении и с какой скоростью должен двигаться этот прямоугольник, чтобы в лабораторной системе отсчета он выглядел, как квадрат?

Контрольная работа № 2

- 1. На стеклянный клин (n = 1,5) падает нормально монохроматический свет с длиной волны λ = 582 нм. Преломляющий угол клина равен 20″. Какое число темных интерференционных полос приходится на единицу длины?
- 2. На дифракционную решетку длиной l=1,5 мм, содержащую N=300 штрихов, падает нормально монохроматический свет с длиной волны λ =550 нм. Определите: 1) число максимумов, наблюдаемых в спектре дифракционной решетки; 2) угол, соответствующий последнему максимуму.
- 3. Определить энергию, приходящуюся на электрон отдачи при эффекте Комптона, если рассеяние фотона происходит на угол $\theta = \pi/3$. Энергия фотона до рассеяния $\varepsilon = 0.58$ МэВ. Под каким углом будет двигаться электрон отдачи?
- 4. Длина волны излучаемого атомом фотона составляет $\lambda=0.6$ мкм. Время жизни атома в возбужденном состоянии $\tau=10^{-8}$ с. Определите отношение естественной ширины энергетического уровня к энергии, излученной атомом

- 5. Электрон налетает на слабопрозрачный прямоугольный потенциальный барьер высотой $U_0 = 7,63$ эB и шириной $l = 3 \cdot 10^{-10}$ м. Энергия частицы в два раза меньше высоты барьера. Определить вероятность, с которой частица пройдет через барьер.
- 6. У какого водородоподобного иона разность длин волн головной линии серии Пашена и коротковолновой границы спектра той же серии составляет 263,7 нм?

Перечень лабораторных работ:

1 курс

- 1. Л. р. № 1 «Применение законов сохранения для определения скорости полета пули»
- 2. Л. р. № 7 «Определение скорости звука в воздухе методом стоячей волны»

2 курс

- 1. Л. р. № 34 «Определение длины световой волны и характеристик дифракционной решетки»
- 2. Л. р. № 42 «Изучение спектра излучения атома водорода. Определение главных квантовых чисел возбужденных состояний атома водорода»

Перечень теоретических вопросов для проработки лекционного материала и самостоятельного изучения:

1 курс

Классическая механика

- 1. Понятие радиус-вектора, скорости и ускорения материальной точки. Средние и мгновенные величины.
- 2. Прямая и обратная задачи механики. Роль начальных условий. Перемещение и пройденный путь.
- 3. Движение по окружности. Угол поворота, угловая скорость и угловое ускорение. Связь угловых и линейных величин.
- 4. Криволинейное движение. Тангенциальное и нормальное ускорение. Полное ускорение. Угол между скоростью и ускорением.
- 5. Инерциальные системы отсчета. Принцип относительности Галилея. Преобразования Галилея.
- 6. Понятие силы, массы и импульса. Принцип суперпозиции. Основной закон динамики поступательного движения. Третий закон Ньютона.
- 7. Момент импульса и момент силы относительно точки. Основное уравнение динамики вращательного движения.
- 8. Вращение вокруг неподвижной оси. Момент инерции твердого тела. Теорема Штейнера.
- 9. Аналогия характеристик и уравнений поступательного и вращательного движения.
- 10. Интегралы движения. Связь законов сохранения с симметриями пространства и времени.
 - 11. Замкнутая система. Закон сохранения полного импульса системы тел.
 - 12. Закон сохранения полного момента импульса системы тел.
- 13. Работа и мощность. Кинетическая энергия поступательного и вращательного движения.
- 14. Консервативные и диссипативные силы. Работа консервативных и диссипативных сил.

- 15. Потенциальная энергия. Закон сохранения полной механической энергии.
- 16. Связь между силой и потенциальной энергией. Два способа описания взаимодействия.
 - 17. Соударение двух тел. Упругий и неупругий удар.

Механические колебания и волны

- 1. Уравнение гармонических колебаний и его решение. Характеристики колебаний.
- 2. Математический и физический маятники.
- 3. Сложение гармонических колебаний одного направления. Биения.
- 4. Сложение перпендикулярных колебаний. Фигуры Лиссажу.
- 5. Уравнение затухающих колебаний и его решение.
- 6. Характеристики затухающих колебаний.
- 7. Энергия гармонических и затухающих колебаний.
- 8. Вынужденные колебания. Резонанс.
- 9. Поперечные и продольные волны. Характеристики бегущей упругой волны.
- 10. Скорость распространения упругих волн.
- 11. Классификация волн по форме волновой поверхности. Плоская, сферическая и цилиндрическая волна.
- 12. Волновое уравнение луча, уравнение плоской волны, волновое уравнение в общем виде.
 - 13. Вектор плотности потока энергии.
 - 14. Наложение упругих волн. Стоячая волна и ее особенности.
 - 15. Колебание натянутой струны.

Специальная теория относительности и элементы статистической физики

- 1. Постулаты Эйнштейна.
- 2. Замедление времени.
- 3. Лоренцево сокращение длины.
- 4. Релятивистские инварианты. Интервал.
- 5. Релятивистский импульс.
- 6. Полная энергия и энергия покоя частицы.
- 7. Связь массы, энергии и импульса.
- 8. Законы сохранения при релятивистских скоростях.
- 9. Макросистема. Статистический и термодинамический подходы к описанию макросистем.
 - 10. Дискретный набор величин. Понятие вероятности и средней величины.
- 11. Непрерывный набор величин. Функция распределения случайной величины и ее свойства.
 - 12. Распределение молекул по проекциям скоростей. Распределение Гаусса.
 - 13. Распределение молекул по модулю скорости. Распределение Максвелла.
 - 14. Наиболее вероятная, средняя и среднеквадратичная скорости.

2 курс

Волновая оптика

- 1. Понятие интерференции. Принцип суперпозиции для световых волн. Наблюдаемые и ненаблюдаемые величины.
- 2. Когерентные и некогерентные волны. Сложение интенсивностей. Условия усиления и ослабления света.
- 3. Оптический путь светового луча. Способы изменения оптического пути световых волн.

- 4. Связь оптической разности хода с разностью фаз. Условия максимума и минимума интерференции.
 - 5. Схема Юнга. Условия наблюдения интерференции.
 - 6. Интерференция в тонких пленках в отраженном и проходящем свете.
 - 7. Схема для наблюдения колец Ньютона.
- 8. Явление дифракции. Особенность дифракции световых волн. Дифракция Френеля и Фраунгофера.
 - 9. Принцип Гюйгенса-Френеля.
 - 10. Дифракция Френеля на круглом отверстии. Зоны Френеля.
 - 11. Дифракция Фраунгофера на узкой прямолинейной щели.
 - 12. Дифракционная решетка. Основные характеристики дифракционной решетки.
 - 13. Угловая дисперсия и разрешающая способность дифракционной решетки.

Квантовая природа излучения и основные положения квантовой механики

- 1. Тепловое излучение абсолютно черного тела. Закон Стефана Больцмана.
- 2. Закон смещения Вина. Гипотеза Планка.
- 3. Энергия и импульс фотона. Давление света.
- 4. Фотоэффект. Законы фотоэффекта. Красная граница фотоэффекта.
- 5. Формула Эйнштейна. Релятивистский и нерелятивистский фотоэффект.
- 6. Тормозное рентгеновское излучение.
- 7. Эффект Комптона. Формула Комптона.
- 8. Корпускулярно-волновой дуализм света. Волновые свойства частиц.
- 9. Длина волны де Бройля и ее экспериментальное подтверждение.
- 10. Принцип неопределенности Гейзенберга. Соотношение неопределенностей.
- 11. Волновая функция и ее свойства. Условие нормировки. Принцип суперпозиции.
- 12. Операторы важнейших физических величин. Действия с операторами.

Квантовая механика

- 1. Основная задача квантовой механики. Уравнение Шрёдингера.
- 2. Свободное движение частицы.
- 3. Частица в потенциальной яме с бесконечными и конечными стенками. Квантование энергии.
 - 4. Прохождение частицы через потенциальный барьер. Туннельный эффект.
 - 5. Общие свойства гармонического осциллятора.
- 6. Квантование момента импульса. Собственные функции и собственные значения оператора момента импульса.
 - 7. Движение частицы в кулоновском поле. Волновая функция атома водорода.
 - 8. Излучение атома водорода и водородоподобных систем. Спектральные серии.
 - 9. Стационарная и нестационарная теория возмущений.
- 10. Принцип тождественности одинаковых частиц. Бозоны и фермионы. Принцип Паули.
 - 11. Спин и спиновая волновая функция. Полный момент импульса электрона.
 - 12. Спин-орбитальное взаимодействие. Тонкая структура атомных спектров.
 - 13. Атом гелия.
 - 14. Заполнение электронных оболочек в многоэлектронных атомах.
 - 15. Молекула. Природа химической связи.

Приложение 2

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатора	Индикатор достижения компетенции	(Оценочные средства
ОПК-1	l – способен применя	=	ные и общеинженерные знания,
			и, теоретического и эксперимен-
	сследования в профес Решает стандартные		
ОПК-1.1	Решает стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования	 С какими утвести передачи и рите несколько Ни одно матер со скоростью, информация не редаваться с либольшой. Скорость перегрупповой скорсть связат фазы волны. В среде, облад кет расплывает ции снижается Для передачи свательность и несет один бит дачи информаттельность импутельность и рите несет один бит дачи информаттельность импутельность импутельность	риальное тело не может двигаться превышающей скорость света. Но ематериальна, поэтому может перобой скоростью, даже бесконечно едачи информации определяется ростью волнового пакета. Фазовая на с перемещением определенной цающей дисперсией, волновой пакея, и скорость передачи информать, и скорость передачи информать. Сообщений используется последомилульсов, каждый из которых г. Чтобы повысить скорость переции, необходимо сокращать длиульсов.

Код	Индикатор дости-		
индикатора	жения компетенции	Оценочні	ые средства
		3. В чем заключатся осно компьютера от обычно	овное отличие квантового го?
		ских масштабах, а кван мира. • Обычный компьютер о	вый гипотетическим. наботает в макроскопиче- итовый в области микро- оперирует битами, спо-
			ачения 0 или 1, а кванто- е могут находиться в су- яний.
		-	е числа записываются в
ОПК-1.2	Решает профессиональные задачи с	Тестовые вопросы к з	ачетам:
	применением методов теоретического и экспериментального исследования	рете те, в основе запи	ителей информации выбеси которых не использу- ве явления (несколько ва-
		перфокарталазерный дискфотографияголограмма	
		грампластинкакарта памятижесткий диск	
		2. Поставьте в соответств	вие компонент современвическое явление, которое икционирования.
		Флэш-накопитель	Изменение и регистрация электрического заряда в кармане полупроводниковой структуры
		Жидкокристаллический монитор	Поворот плоскость по- ляризации проходя- щего света пропорцио- нально приложенному напряжению.
		Винчестер	Изменение ориентации магнитных моментов внутри ферромагнитного материала
		Колонки	Взаимодействие магнитного поля постоянного магнита с проводом катушки

Код индикатора	Индикатор дости- жения компетенции	Оценочные средства
		3. Как можно защититься от электромагнитных помех при передаче информации? Выберите несколько ответов.
		 использовать экранированную витую пару использовать оптоволоконный кабель не прокладывать кабель вблизи линий электропередач использовать один провод для заземления уменьшить полосу пропускания сети

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Согласно учебному плану видами промежуточной аттестации по дисциплине «Физика с элементами квантовой механики» являются зачет и зачет с оценкой. Зачет проводится в виде собеседования по теоретическим вопросам и практическим заданиям.

Показатели и критерии оценивания зачета:

- на оценку «зачтено» (3-5 баллов) обучающийся показывает сформированность компетенций, наличие твердых знаний программного материала, грамотное и логическое изложение материала при ответе, допускаются незначительные ошибки, уверенно исправляемые после дополнительных вопросов, правильные действия при демонстрации умений и навыков.
- на оценку **«не зачтено»** (1-2 балла) обучающийся показывает, что результат обучения не достигнут, компетенции не сформированы, не может предъявить знания на уровне воспроизведения и объяснения информации, даже с помощью наводящих вопросов, не способен продемонстрировать умения и навыки при решении простейших задач.

Показатели и критерии оценивания зачета с оценкой:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при выполнении практических заданий, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.