

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЭиАС В.Р. Храмшин 13.02.2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ЭЛЕМЕНТЫ СИСТЕМ АСУ ТП ДЛЯ ИНДУСТРИИ 4.0

Направление подготовки (специальность) 11.04.04 Электроника и наноэлектроника

Направленность (профиль/специализация) программы Промышленная электроника Индустрии 4.0

Уровень высшего образования - магистратура

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Электроники и микроэлектроники

Kypc

Семестр / 3

Магнитогорск 2024 год Рабочая программа составлена на основе ФГОС ВО - магистратура по направлению подготовки 11.04.04 Электроника и наноэлектроника (приказ Минобрнауки России от 22.09.2017 г. № 959)

Рабочая программа рассмотрена и одобрена на заседании кафедры Электроники и
микроэлектроники
25.01.2024 г., протокол № 6
Зав. кафедройД.Ю. Усатый
Рабочая программа одобрена методической комиссией ИЭиАС
13.02.2024 г. протокол № 4 Председатель Меня В.Р. Храмшин
В.Г. Арамшин
Рабочая программа составлена: доцент кафедры ЭиМЭ, канд. техн. наук
Рецензент:
Директор СЦ ООО "ТЕХНОАП Инжиниринг, канд.техн.наук Е.С. Суспицын
КОМПЬЮТЕРНОЕ ЗРЕНИЕ И РАСПОЗНАВАНИЕ ОБРАЗ

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2025 - 2026 учебном году на заседании кафедры Электроники и микроэлектроники				
	Протокол от	20 Γ. №		
	Зав. кафедрой	Д.Ю. Усатый		
Рабочая программа пересмоту учебном году на заседании ка	-	=		
	Протокол от	20 г. №		
	Зав. кафедрой	Д.Ю. Усатый		

1 Цели освоения дисциплины (модуля)

Целью дисциплины является овладение студентами необходимым и достаточным уровнем профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению подготовки 11.04.04 Электроника и наноэлектроника

Профиль (специализ.): Промышленная электроника Индустрии 4.0., а также изучение современных компьютерных систем управления технологическими процессами, как основы автоматизированного производства.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Элементы систем АСУ ТП для Индустрии 4.0 входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Иностранный язык в профессиональной деятельности

Интерфейсы и протоколы передачи данных

Компьютерное зрение и распознавание образов

Моделирование элементов и узлов электронной техники

Проектирование и технология электронной компонентной базы

Системная инженерия

Информационная безопасность кибер физических систем

Системы и стандарты радиосвязи

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Выполнение и защита выпускной квалификационной работы

Подготовка к сдаче и сдача государственного экзамена

Производственная - научно-исследовательская работа

Производственная-преддипломная практика

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Элементы систем АСУ ТП для Индустрии 4.0» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции					
_	ПК-2 Способен разрабатывать инновационные схемотехнические решения для составных частей радиоэлектронных средств различного функционального назначения.					
ПК-2.1	Способен определить режимы работы и условия эксплуатации радиоэлектронных средств и составных частей, подлежащих модернизации					
ПК-2.2	Способен экспертно оценивать ТЗ на проектирование модернизируемого радиоэлектронного средства					
ПК-2.3	Разрабатывает архитектуру, функциональные, структурные и принципиальные схемы изделий Интернета вещей (IoT)					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 5 зачетных единиц 180 акад. часов, в том числе:

- контактная работа 58,1 акад. часов:
- аудиторная 54 акад. часов;
- внеаудиторная -4,1 акад. часов;
- самостоятельная работа 86,2 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 35,7 акад. час

Форма аттестации - экзамен

Раздел/ тема	Семестр	конт	удитор: актная _ј акад. ча	работа	Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетенции
дисциплины	Ce	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Элементы АСУ ТП индустрии 4.0	для							
1.1 Место информационной системы в мехатронном комплексе. Функции информационной системы (проводится с использованием ИОТ).	3	6		3	14	Работа с конспектами лекций Оформление отчетов и подготовка к защите практических работ Выполнение семестровой работы Подготовка к экзамену	Выполнение и защита практических работ.	ПК-2.1, ПК-2.2
1.2 Понятие первичного преобразователя. Характеристики преобразователей. Нормирующие преобразователи. Особенности совместной работы источников и приемников электрических сигналов	3	6		3	14	Работа с конспектами лекций Оформление отчетов и подготовка к защите практических работ Выполнение семестровой работы Подготовка к экзамену	Выполнение и защита практических работ.	ПК-2.1, ПК-2.2

				Работа с		
1.3 Виды помех в линиях связи, причины их возникновения и способы борьбы с ними. Модуляция информационных сигналов в системах передачи данных	6	3	14	конспектами лекций Оформление отчетов и подготовка к защите практических работ Выполнение семестровой работы Подготовка к экзамену		ПК-2.1, ПК-2.2
1.4 Цифровые преобразователи. Основные типы, структура и принципы работы	6	3	14	Работа с конспектами лекций Оформление отчетов и подготовка к защите практических работ Выполнение семестровой работы Подготовка к экзамену	Выполнение и защита практических работ.	ПК-2.1, ПК-2.2
1.5 Принципы, методы и способы передачи цифровой информации по линиям связи (проводится с использованием ИОТ).	6	3	14	Работа с конспектами лекций Оформление отчетов и подготовка к защите практических работ Выполнение семестровой работы Подготовка к экзамену	Выполнение и защита практических работ.	ПК-2.1, ПК-2.2
1.6 Понятие интерфейса и протокола связи. Модель OSI. Пример построения цифровой информационной системы.	6	3	16,2	Работа с конспектами лекций Оформление отчетов и подготовка к защите практических работ Выполнение семестровой работы Подготовка к экзамену	Выполнение и защита практических работ.	ПК-2.1, ПК-2.2
Итого по разделу	36	18	86,2			
Итого за семестр	36	18	86,2		экзамен	
Итого по дисциплине	36	18	86,2		экзамен	

5 Образовательные технологии

Проблемная лекция Лекции Проблемная лекция начинается с вопросов, с постановки проблемы, которую в ходе изложения материала необходимо решить. При этом выдвигаемая проблема требует не однотипного решения, готовой схемы которого нет. Данный тип лекции строится таким образом, что деятельность студента по ее усвоению приближается к поисковой, исследовательской. На подобных лекциях обязателен диалог преподавателя и студентов.

Технологии анализа ситуаций для активного обучения Практические занятия и семинары Позволяет студентам соединить теорию и практику, представить примеры принимаемых решений и их последствий, демонстрировать различные позиции, формировать навыки оценки альтернативных вариантов в вероятностных условиях

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

1. Шишов, О. В. Современные средства АСУ ТП : учебник / О. В. Шишов. — Вологда : Инфра-Инженерия, 2021. — 532 с. — ISBN 978-5-9729-0622-2. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/192348 (дата обращения: 23.04.2024). — Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

- 1. Лебедько, Е. Г. Теоретические основы передачи информации : монография / Е. Г. Лебедько. Санкт-Петербург : Лань, 2011. 352 с. ISBN 978-5-8114-1139-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/1543 (дата обращения: 23.04.2024). Режим доступа: для авториз. пользователей.
- 2. Шапкарина, Г. Г. Преобразование и передача технологической информации в системах управления. Ч 1. Преобразование технологической информации в системах управления: учебное пособие / Г. Г. Шапкарина. Москва: МИСИС, 2004. 81 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/1859 (дата обращения: 23.04.2024). Режим доступа: для авториз. пользователей.

в) Методические указания:

1. Тугов, В. В. Проектирование автоматизированных систем управления : учебное пособие для вузов / В. В. Тугов, А. И. Сергеев, Н. С. Шаров. — 3-е изд., стер. — Санкт-Петербург : Лань, 2022. — 172 с. — ISBN 978-5-8114-8987-9. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/186064 (дата обращения: 23.04.2024). — Режим доступа: для авториз. пользователей.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

11		
Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое	бессрочно
Браузер Mozilla Firefox	свободно распространяемое ПО	бессрочно
Браузер Yandex	свободно распространяемое	бессрочно
FAR Manager	свободно распространяемое	бессрочно

Профессиональные базы данных и информационные справочные системы

11	7 1	1_1	1
	Название курса		Ссылка
Федеральное	государственное	бюджетное	
учреждение	«Федеральный	институт	URL: http://www1.fips.ru/
промышленно	й собственности»		
Электронные	ресурсы библиотеки	МГТУ им.	https://host.megaprolib.net/MP0109/Web
Г.И. Носова			Intips.//nost.megaprono.net/wiF0109/web

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа: мультимедийные средства хранения, передачи и представления информации. а. 437. 460

Учебная аудитория для проведения лабораторных работ: лаборатория электроники и общей электротехники (Лабораторные установки для выполнения лабораторных работ: лабораторный стенд «Физические основы электроники», ФОЭ-СРМА; лабораторный стенд «Датчики измерения физических величин», Э-СР; лабораторный стенд «Датчики измерения механических величин»; лабораторный стенд «Промышленная электроника» включающие в свой состав встраиваемую систему на основе Atmel). Лаборатория автоматизации технологических процессов и производств (лабораторный стенд «Промышленные датчики температуры», ПДТ-СК + компьютер с предустановленным ПО от изготовителя; лабораторный стенд «Промышленные датчики давления», ПДД-СК + компьютер с предустановленным ПО от изготовителя, включающие встраиваемые системы на основе STM. а. 450, 460

Помещения для самостоятельной работы обучающихся: персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Учебные аудитории для групповых и индивидуальных консультаций, текущего контроля и промежуточных консультаций: доска, мультимедийный проектор, экран, персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета. а. 460

Помещение для хранения и профилактического обслуживания учебного оборудования: стеллажи для хранения учебно-методический документации. а. 445 Учебные аудитории для групповых и индивидуальных консультаций, текущего контроля и промежуточных консультаций: доска, мультимедийный проектор, экран, персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета. а. 460

Помещение для хранения и профилактического обслуживания учебного оборудования: стеллажи для хранения учебно-методический документации. а. 445Учебные аудитории для групповых и индивидуальных консультаций, текущего контроля и промежуточных консультаций: доска, мультимедийный проектор, экран, персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета. а. 460

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Встраиваемые системы управления» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа обучающихся предполагает выполнение практических работ и доклад по полученным результатам, а также устный опрос о порядке выполнения практической работы, полученным умениям и навыкам.

Примерные вопросы для устного опроса по выполненным практическим работам

Т	ема практической работы	Вопросы для устного опроса
_	Архитектура	1.Программая модель микроконтроллеров AT91SAM7S256.
1.	микроконтроллеров	2. Арифметические команды микроконтроллера
	AT91SAM7S256	АТ91SAM7S256. Пример программы на языке ааемблер
	111)15/11/1/5250	3.Логические операции микроконтроллера. Пример
		программы на языке Ассемблер
		4. Команды сравнения и управления циклом и сдвига в
		микроконтроллере. Пример программы на языке
		Ассемблер.
2	Программарами	•
۷.	Программирование таймеров / счетчиков	1.Принципы программирование таймера общего
	-	назначения микроконтроллера.
	контроллера AT91SAM7S256	2. Принципы программирования счетчика
	A1918AM/8236	микроконтроллера.
		3. Какие регистры предназначены для управления
		таймерами и счетчиками?
2	Пеотеоличествич	1 Hanguay ya aban aya abayya Aliili Mayara a ayaa a
3.	Программирование	1. Порядок программирования АЦП. Какие регистры
	портов АЦП, ЦАП и	микроконтроллера задействуются при настройке АЦП?
	дискретного ввода	2. Программирования ЦАП. Как производится
	вывода	настройка ЦАП микроконтроллера и установка нуля?
		3. Через какие регистры осуществляется доступ к
		дискретным входам микроконтроллера? Приведите пример
		доступа на языке Ассемблер.
4.	Программирование	1. В каком диапазоне возможно управления ШИМ
'	портов формирования	микроконтроллера AT91SAM7S256?
	ШИМ сигналов	2. Какие дискретные выхода задействованы для
	HITTIVI CHI HASIOB	формирования ШИМ сигналов?
		3. Как производится настройка генератора ШИМ?
		Приведите пример настройки на языке Ассемблер.
		Приведите пример настроики на языке Ассемолер.
5.	Программная реализация	1.Как осуществляется программирование циклов
.	и отладка основных	вычислений в микроконтроллере?
	алгоритмов	2. Через какие регистры передаются сигналы от АЦП
	программно-логического	микроконтроллера? Приведите пример передачи сигналов
	управления	от АЦП в цикл вычислений на языке Ассемблер.
	Jubaniemin	3. Через какие регистры передаются сигналы в ЦАП
		контроллера? Приведите пример передачи сигналов в ЦАП
		из цикла вычислений на языке Ассемблер.
		из цикла вычислении на языке Ассемолер.

Встраиваемые системы компьютерного зрения: пример реализации на платформе Raspberry Pi.

Встраиваемые системы управления роботами: пример реализации на платформе Raspberry Pi.

Система управления режимами движения поезда с нечёткой логикой.

Распознавание символов на изображениях с использованием корреляционных и морфологических методов.

Морфологическая искусственная нейронная сеть для классификации объектов заданных форм.

Морфологическая искусственная нейронная сеть для сегментации изображений.

Морфологическая искусственная нейронная сеть для распознавания эмопионального интеллекта

7. Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

	ой аттестации.	
Код	Индикатор достижения	Overvey, ve en exempe
компетенции	компетенции	Оценочные средства
ПК-2: Способен	разрабатывать инновационн	ые схемотехнические решения для составных частей
	ых средств различного функ	·
ПК-2.1:	Способен определить	Вопросы к экзамену:
	режимы работы и условия эксплуатации	1. Принципы, положенные в основу
	радиоэлектронных средств	измерения неэлектрических величин.
	и составных частей,	Характеристики измерительных
	подлежащих модернизации	преобразователей.
		2. Схемотехнических принципы построения
		государственной системы приборов (ГСП).
		Требования к унификации характеристик
		приборов ГСП.
		3. Классификация измерительных
		преобразователей. Классификация
		первичных измерительных
		преобразователей.
		4. Гальваническая изоляция цепей
		источников и приемников электрических
		сигналов.
		5. Основные типы измерительных
		преобразователей параметрического типа.
		Приведите примеры измерительных
		преобразователей этого типа.
		6. Основные типы измерительных
		преобразователей генераторного типа.
		Приведите примеры использования этих
		преобразователей.
		7. Типы, обозначения и конструкция
		термоэлектрических преобразователей.
		Области и диапазоны применения
		термоэлектрических преобразователей
		различных типов.
		8. Расчетные эквиваленты реальных
		источников электрических сигналов.
		Определение параметров расчетного
		эквивалента источника электрического
		сигнала. Приведите пример представления
		мостовой схемы первым расчетным
		эквивалентом.
		9. Функции мостового преобразователя.
		Расчет мостового преобразователя с
		подключенной нагрузкой.
		10. Шунты и делители напряжения.
		Функции делителя напряжения с
		подключенной нагрузкой.
		11. Преобразователи напряжение –

Код компетенции	Индикатор достижения компетенции	Оценочные средства
		напряжение и напряжение — ток. Электрические и эквивалентные схемы преобразователей. Функции преобразователей. 12. Мостовые преобразователи, принципы работы, электрическая схема. Подключение датчиков к измерительным мостовым преобразователям. 13. Сигналы дистанционной связи в информационных системах. Достоинства и недостатки различных систем передачи непрерывных сигналов связи. Погрешности передачи. 14. Особенности совместной работы источников и приемников электрических сигналов. Подключение потребителей токового сигнала с защитой цепи от разрыва. 15. Назначение аналого-цифровых преобразователей. Передаточная характеристика АЦП. 16. Виды помех в линиях связи, причины их возникновения и способы борьбы с ними. Поперечная помеха. 17. Виды помех в линиях связи, причины их возникновения и способы борьбы с ними. Полорольная помеха. 18. Модуляция непрерывных сигналов в системах передачи. 19. Цифровые информационные системы. Общая структура, назначение элементов, входящих в цифровую информационную систему. 20. Режимы ввода-вывода информационную систему. 21. Алгоритм программно-управляемого ввода-вывода. Поясните достоинства и недостатки данного алгоритма. 22. Понятие об интерфейсе связи. Типы интерфейсов. Структуры и порядок обмена информации по интерфейсам связи. 23. Понятие об контроллерах внешних устройств. Структурная схема контроллера внешних устройств, принципы функционирования. 24. Передача цифровых данных по линиям
		связи. Способы передачи слов цифровой информации. Параллельная передача, последовательная синхронная и

Код компетенции	Индикатор достижения компетенции	Оценочные средства
компетенции	компетенции	асинхронная передача. 25. Формат асинхронной последовательной передачи информационного слова. Порядок синхронизации внутренних генераторов. 26. Программная реализация фильтра низких частот. Специальные способы цифровой обработки полезного сигнала 27. Способы борьбы с помехами в каналах передачи цифровых сигналов. Использование кодов Хемминга. 28. Структура и особенность работы АЦП параллельного преобразования. Обобщенная схема АЦП параллельного преобразования и принцип работы.
		29. Аналого-цифровой преобразователь поразрядного уравновешивания. Структурная схема, алгоритм преобразования, время преобразования, диаграммы работы. 30. Аналого-цифровые преобразователи интегрирующего типа. Основные принципы функционирования, алгоритм преобразования, диаграммы работы, область применения. 31. Сигма-дельта АЦП. Структурная схема, диаграмма работы, алгоритм
		преобразования. 32. Цифро-аналоговые преобразователи. Функция и характеристика ЦАП. 33. Технические особенности передачи цифровых данных по линиям связи. 34. Уровни структуры информационной системы. Модель взаимодействия двух узлов. 35. Уровни моделей взаимодействия.
		Модель OSI. Модель OSI для протокола Modbus. Физический уровень. 36. Информационные уровни модели OSI для протокола Modbus. Канальный и прикладной уровень. 37. Спецификация протокола передачи данных в протоколе Modbus. Характеристики кадра данных. 38. Организация управления устройством с
		использование протокола Modbus. Пример системы передачи, форматы запросов и ответов. 39. Принципы передачи сигналов в мехатронных и управляющих системах. Структура нормирующего преобразователя,

Код компетенции	Индикатор достижения компетенции	Оценочные средства
		4.2. Какие причины возникновения поперечной помехи? 4.3. Какие способы борьбы с поперечной помехой используются в нормирующих преобразователях? 4.4. Какие причины возникновения продольной помехи? 4.5. Перечислите способы борьбы с продольной помехой? 4.6. Приведите эквивалентную схемы преобразователя с "плавающим" экраном Практическая работа №5 5.1. Какие виды модуляции сигналов используются в информационных системах? 5.2. Как зависит частота амплитудной модуляции на точность передачи информационного сигнала? 5.3. Что такое скважность импульсов при широтно-импульсной модуляции? 5.4. Каким образом производится демодуляция информационного сигнала? 5.5. Приведите структурную схему ШИМ модулятора Практическая работа №6. 6.1. Какие основные виды АЦП используются в системах передачи информационных сигналов? 6.2. Приведите структуру параллельного АЦП, АЦП последовательно приближения, двойного интегрирования, сигма-дельта АЦП. 6.3. Поясните понятие - "время преобразования" для АЦП. Расположите изучаемые АЦП в порядке увеличения времени преобразования. 6.4. Приведите схему ЦАП. Какой принцип работы ЦАП? 6.5. Поясните алгоритм работы АЦП последовательного приближения, сигма-дельта АЦП нактическая работа №7 7.1. Чем отличается асинхронная передача сигналов от синхронной? 7.2. В чем отличие системы последовательной связи от

Код компетенции	Индикатор достижения компетенции	Оценочные средства
		7.3. Для каких целей используются служебные биты при последовательной асинхронной передачи данных? 7.4. Как вычисляется бит четности? 7.5. Что происходит, если частоты генераторов приемника и передатчика системы асинхронной связи отличаются?
ПК-2.3:	Разрабатывает архитектуру, функциональные, структурные и принципиальные схемы изделий Интернета вещей (ІоТ)	Семестровая работа: Для заданного мехатронного комплекса разработать информационную систему, включающую в себя: 1. Получение информации об объекте управления 2. Преобразование и кодирование информации 3. Контроль за целостностью информации 4. Передачу информации по сетям передачи данных 5. Пользовательский интерфейс информационной системы В семестровой работе решаются следующие задачи: 1. Разработка структурной схемы информационной системы. 2. Выбор датчиков – источников исходной информации о состоянии комплекса 3. Подключение датчиков к устройствам преобразования и нормирующим преобразователям. 4. Расчет устройств преобразования и параметров нормирующих преобразователей. 5. Выбор и определение характеристик цифровых преобразователей. 6. Выбор протокола обмена цифровой информацией, организация требуемых уровней сетевого взаимодействия (OSI) 7. Привести примеры формирования протоколов сетевого взаимодействия при передачи информации с датчиков мехатронного комплекса.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** обучающийся показывает высокий уровень сформированности компетенций, т.е. студент должен показать высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку **«хорошо»** обучающийся показывает средний уровень сформированности компетенций, т.е. студент должен показать знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- на оценку **«удовлетворительно»** обучающийся показывает пороговый уровень сформированности компетенций, т.е. студент должен показать знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку **«неудовлетворительно»** результат обучения не достигнут, студент не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.