МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов

20.02.2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ТЕОРИЯ СВАРОЧНЫХ ПРОЦЕССОВ

Направление подготовки (специальность) 15.03.01 Машиностроение

Направленность (профиль/специализация) программы Оборудование и технология сварочного производства

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет

Институт металлургии, машиностроения и материалообработки

Кафедра

Машины и технологии обработки давлением и машиностроения

Курс

3

Семестр

5,6

Магнитогорск 2024 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 15.03.01 Машиностроение (приказ Минобрнауки России от 09.08.2021 г. № 727)

техно	Рабочая программа рассмотрена и одобрена на заседании кафедры Машины и отогии обработки давлением и машиностроения 07.02.2024, протокол № 6
	Зав. кафедрой С.И. Платов
	Рабочая программа одобрена методической комиссией ИММиМ 20.02.2024 г. протокол № 4
	Председатель А.С. Савинов
	Рабочая программа составлена: доцент кафедры МиТОДиМ, канд. техн. наук
	Рецензент: профессор кафедры ЛПиМ, д-р техн. наук

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2025 - 2026 учебном году на заседании кафедры Машины и технологии обработки давлением и								
	Протокол от	_20 г. № С.И. Платов						
	Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2026 - 2027 учебном году на заседании кафедры Машины и технологии обработки давлением и							
	Протокол от	_20 г. № С.И. Платов						
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2027 - 2028 учебном году на заседании кафедры Машины и технологии обработки давлением и								
	· · ·	*						
	· · ·	ии обработки давлением и						
учебном году на заседании к Рабочая программа пересмот	афедры Машины и технологи	ии обработки давлением и _ 20 г. № С.И. Платов ля реализации в 2028 - 2029						

1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины является изложение широкого круга вопросов, относящихся к теории процессов, происходящих при сварке, обобщение их в стройную систему теоретических знаний, базирующихся на последних достижениях сварочной науки, техники и технологий, привитие студентам умений качественного и количественного анализа изучаемых процессов

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Теория сварочных процессов входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Математика

Физика

Химия

Машиностроительные материалы

Металловедение в сварке

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Остаточные напряжения и деформации при сварке

Сварка специальных сталей и сплавов

Технологические основы сварки плавлением и давлением

Контактная сварка

Подготовка к сдаче и сдача государственного экзамена

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Теория сварочных процессов» обучающийся должен обладать следующими компетенциями:

Код инд	икатора	Индикатор достижения компетенции					
ПК-2	Способ	бен проводить экспертизу конструкторской и					
производо	ственно-т	ехнологической документации на соответствие техническим заданиям и					
норматив	ным доку	ментам					
ПК-2.1	2.1 Анализирует технические требования, предъявляемые к техн						
		производства сварных конструкций (изделий, продукции) любой					
		сложности					
ПК-2.2		Определяет экономическую эффективность проектируемых					
		технологических процессов изготовления сварных конструкций					
		(изделий, продукции) любой сложности					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 7 зачетных единиц 252 акад. часов, в том числе:

- контактная работа 138,45 акад. часов:
- аудиторная 132 акад. часов;
- внеаудиторная 6,45 акад. часов;
- самостоятельная работа 77,85 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 35,7 акад. час

Форма аттестации - зачет, курсовой проект, экзамен

Раздел/ тема дисциплины	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной	Код компетенции		
		Лек.	лао. зан.	практ. зан.	Сам		аттестации	
1. Раздел 1								
1.1 Введение. Физические основы и классификация процессов сварки		6		6	2	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.2 Физико-химические процессы в дуговом разряде. Проводимость твердых тел, жидкостей и газов. Разновидности дуговых разрядов, применяемых в сварочной технике		6		6	3,1	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.3 Термические недуговые источники энергии. Химические источники энергии	5	6		6	13	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.4 Термопрессовые и прессово-механические сварочные процессы. Основные понятия и законы в расчетах тепловых процессов при сварке		6		4	13	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.5 Тепловые процессы при нагреве тел источниками теплоты. Нагрев и плавление металла при сварке		4		6	13	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2

				1				
1.6 Термодинамические, электрохимические и кинетические основы металлургических процессов сварки		4		4	13	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.7 Металлургические процессы при сварке плавлением		4		4	13	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.8 Металлургические процессы при различных видах сварки		2	2	6	7,75	Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.9 Понятие о дефектах кристаллической решетки		2	2	4		Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.10 Термодеформационные процессы при сварке		2	2	4		Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.11 Образование сварных соединений и формирование первичной структуры металла шва	6	2	2	4		Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.12 Химическая неоднородность сварного соединения		2	2	4		Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.13 Природа образования горячих и холодных трещин при сварке		2	2	4		Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
1.14 Фазовые и структурные превращения в металлах в твердом состоянии при сварке		3	3	4		Самостоятельное изучение учебной и справочной литературы по рассматриваемой теме	Наличие конспектов	ПК-2.1, ПК-2.2
Итого по разделу		51	15	66	77,85			
Итого за семестр		15	15	30	7,75		кп,экзамен	

Итого по дисциплине	51	15	66	77,85		зачет, курсовой проект, экзамен	
---------------------	----	----	----	-------	--	---------------------------------	--

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Теория сварочных процессов» используются:

1. Традиционные образовательные технологии ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция — последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

Лабораторная работа – организация учебной работы с реальными материальными и информационными объектами, экспериментальная работа с аналоговыми моделями реальных объектов.

2. Информационно-коммуникационные образовательные технологии — организация образовательного процесса, основанная на применении специализированных программных сред и технических средств работы с информацией.

Формы учебных занятий с использованием информационно-коммуникационных технологий:

Лекция-визуализация — изложение содержания сопровождается презентацией (демонстрацией учебных материалов, представленных в различных знаковых системах, в т.ч. иллюстративных, графических, аудио- и видеоматериалов).

Практическое занятие в форме презентации — представление результатов проектной или исследовательской деятельности с использованием специализированных программных сред.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Михайлицын, С. В. Сварка с использованием высокоинтенсивных источников энергии : учебное пособие / С. В. Михайлицын, М. А. Шекшеев ; МГТУ. Магнитогорск : МГТУ, 2018. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/2177 (дата обращения: 30.08.2023). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 2. Сварка специальных сплавов: учебное пособие / С. В. Михайлицын, С. И. Платов, А. Н. Емелюшин, М. А. Шекшеев; МГТУ. Магнитогорск: МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/20931 (дата обращения: 28.09.2023). Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.
 - 3. Проектирование сборочно-сварочной оснастки: учебное пособие [для вузов] /

М. А. Шекшеев [и др.]; Магнитогорский гос. технический ун-т им. Г. И. Носова. - Магнитогорск: МГТУ им. Г. И. Носова, 2019. - 1 CD-ROM. - Загл. с титул. экрана. - URL: https://host.megaprolib.net/MP0109/Download/MObject/2424 (дата обращения: 06.09.2023). - Макрообъект. - Текст: электронный. - Сведения доступны также на CD-ROM.

б) Дополнительная литература:

- 1. Газотермическая обработка материалов: учебное пособие / С. В. Михайлицын, Д. В. Терентьев, А. Б. Сычков и др.; МГТУ. Магнитогорск: МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/20451 (дата обращения: 13.07.2023). Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.
- 2. Михайлицын, С. В. Разработка сварочных материалов : учебное пособие / С. В. Михайлицын, М. А. Шекшеев ; МГТУ. Магнитогорск : МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/1616 (дата обращения: 30.08.2023). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 3. Скурихина, Е. Б. Резьбовые и сварные соединения : учебное пособие / Е. Б. Скурихина, С. Ю. Собченко ; МГТУ. Магнитогорск : МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/20949 (дата обращения: 02.10.2023). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 4. Нефедьев, С. П. Материаловедение: учебное пособие / С. П. Нефедьев, Р. Р. Дема, О. С. Молочкова; МГТУ. Магнитогорск: МГТУ, 2015. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/3022 (дата обращения: 04.09.2023). Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.

в) Методические указания:

1. Шекшеев М.А., Михайлицын С.В. Лабораторный практикум по дисциплине «Теория сварочных процессов». Магнитогорск: МГТУ, 2023.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/

Федеральное госуд	царственное бюд:		
«Федеральный	институт	промышленной	URL: http://www1.fips.ru/
собственности»			

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

322 Лекционная аудитория - Видеопроектор, экран настенный, компьютер; тестовые задания для текущего контроля успеваемости.

Лаборатория сварки - Комплект печатных и электронных версий методических рекомендаций, учебное пособие, плакаты по темам «Теория сварочных процессов». Сварочные аппараты. Образцы выполненных сварных швов. Сварочная оснастка.

Компьютерные классы университета - Рабочие места студентов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде

Приложение 1

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Теория сварочных процессов» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает решение контрольных задач на практических занятиях.

Для 6 семестра

Примерные аудиторные контрольные работы (АКР):

АКР №1 «Рассчитайте приращение температуры в точке тела при воздействии электрической дуги»

На поверхности массивного тела из низкоуглеродистой стали горит неподвижная дуга, которую можно считать точечным непрерывно действующим неподвижным источником теплоты. Определить приращение температуры в точке на расстоянии R=15мм спустя t=20 сек после начала нагрева при I=200A, U=30B, КПД $\eta=0.7$.

Примерные индивидуальные домашние задания (ИДЗ):

ИДЗ №1 «Рассчитать размер изотермы на поверхности тела при действии электрической дуги»

На поверхности массивного тела движется точечный источник теплоты мощностью 6000Bт. Определить расстояние от источника теплоты до конца изотермы T = 820 °C. Коэффициент теплопроводности металла $\lambda = 0.4$ Bt/(cм·°C).

Примерная тема курсовых проектов (КП):

«Расчет тепловых процессов при сварке»

Примерное задание на курсовой проект:

Рассчитать температурно-временные характеристики точек тела в соответствии с нижеприведенными расчетными схемами. Определить температурное поле тела, скорости охлаждения и термический цикл различных точек тела при действии сварочного источника теплоты.

Часть 1.

$$T(R, x) = T_H + \frac{q}{2 \cdot \pi \cdot \lambda \cdot R} \cdot \exp(-\frac{v}{2 \cdot a} \cdot (R + x)),$$

где R - длина радиус-вектора рассматриваемой точки, см;

 $T_{\rm H}\,$ - начальная температура изделия, °C;

 $q = I*U*\eta$ - эффективная тепловая мощность, Вт;

 λ - коэффициент теплопроводности, Bт/(cм· 0 C);

v - скорость сварки, см/сек;

а - коэффициент температуропроводности, см²/с.

$$R = \sqrt{x^2 + y^2 + z^2}$$
,

где х, у, z - координаты рассматриваемой точки, см.

Часть 2.

$$\omega = -2 \cdot \pi \cdot \lambda \frac{(T - T_H)^2}{q/v},$$

где λ - коэффициент теплопроводности, Bт/(см. °C);

Т - температура при которой определяется скорость охлаждения, ^оС;

 $T_{\rm H}\,$ - начальная температура изделия, ${}^{\rm o}{\rm C};$

q - эффективная тепловая мощность, Вт;

v - скорость сварки, см/сек.

Часть 3.

$$T_{x,y,z} = T_H + \frac{q}{2 \cdot \pi \cdot \lambda \cdot v \cdot t} \cdot e^{-\frac{r^2}{4 \cdot a \cdot t}}$$

$$r = \sqrt{y^2 + z^2}$$

Приложение 2 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

a) IIIIaii	пруемые результаты обучения и оценочные средства для	проведения промежуточной аттестации.
Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
ПК-2: Способе	ен проводить экспертизу конструкторской и производстве	нно-технологической документации на соответствие техническим
заданиям и нор	омативным документам	·
ПК-2.1	Анализирует технические требования, предъявляемые к	Перечень теоретических вопросов к экзамену:
	технологии производства сварных конструкций (изделий,	1. Какие основные источники тепла применяются в сварочной
	продукции) любой сложности	технике. Каким требованиям они должны удовлетворять.
		2. Сварочная дуга и ее свойства.
		3. Что такое тепловая мощность источника тепла. Её
		характеристика и КПД.
		4. Статическая (вольт-амперная) характеристика дуги.
		5. Процессы, протекающие в столбе дуги и их сущность.
		6. Процесс термоэлектронной эмиссии. Сущность и факторы,
		влияющие на этот процесс.
		Перечень теоретических вопросов к зачету: 1. Расчетные схемы нагрева металла дугой. 2. Расчет процесса распространения тепла при наплавке валика на массивное тело и при однопроходной сварке пластин встык. 3. Нагрев мощными быстродвижущимися источниками тепла. Термический цикл и максимальные температуры. 4. Нагрев и плавление электрода и проволоки при дуговой сварке. 5. Нагрев и проплавление основного металла сварочной дугой. Практическая работа № Изучение электрической сварочной дуги 1. Определить разрывную длину дуги, горящей между плавящимися и неплавящимися электродами и пределы значения

тока и напряжения, при которых происходит ее обрыв;

- 2. Сформулировать выводы по работе;
- 3. Составить отчет.

Примеры практических вопросов к зачету:

1. Рассчитать скорость охлаждения при наплавке валика на массивное тело:

$$w = -2\pi\lambda \frac{(T-T_{\rm h})^2}{q/v}$$

2. Рассчитать скорость охлаждения при наплавке валика на пластину:

$$w = -2\pi\lambda c\rho \frac{(T-T_{\parallel})^3}{[q/(\upsilon\delta)]^2}$$

Лабораторная работа №_

Структура металла сварных швов

Цель работы: ознакомиться с характером и особенностями структуры сварных швов, полученных при различных способах сварки.

- 1. Работа заключается в металлографическом изучении структуры наплавленных валиков и швов по подготовленным шлифам;
- 2. Сформулировать выводы по работе;
- 3. Составить отчет.

Примеры практических вопросов к экзамену:

1.Определить размер зоны нагрева в массивном теле:

$$2l = \sqrt{\frac{8q}{\pi evc\rho\Delta T_t}}$$

2. Определить размер зоны нагрева в пластине:

$$2l = \frac{q\sqrt{\frac{2}{\pi e}}}{vc\rho\delta\Delta T_{!}}$$

		нно-технологической документации на соответствие техническим
	ормативным документам	
ПК-2.2	Определяет экономическую эффективность	Перечень теоретических вопросов к экзамену:
	проектируемых технологических процессов изготовления	1. Что выражает собой химический потенциал системы?
	сварных конструкций (изделий, продукции) любой	2. Особенности процессов диффузии протекающих при сварке
	сложности	плавлением.
		3. Как влияет давление и температура на положение константы равновесия реакций?
		4. Какие условия необходимы для растворения газов в жидкой
		фазе? В чем сущность закона распределения Нернста?
		5. Условия плавления метала и существования его в жидком
		состоянии.
		6. Виды переноса электродного металла через дуговой
		промежуток.
		7. Опишите механизм насыщения жидкого металла газами.
		8. Как попадают кислород, азот и водород в реакционное
		пространство при дуговой сварке и как они влияют на свойство
		стали?
		9. Назначение шлаков при сварке. Молекулярная и ионная
		теория шлаков.
		10. Металлургические функции шлаков.
		Перечень теоретических вопросов к зачету:
		11. Процессы окисления, раскисления и легирования при сварке
		плавлением.
		12. Опишите процесс рафинирования стали от серы и фосфора.
		13. Особенности условий рафинирования стали шлаком при
		дуговой сварке по сравнению с мартеновским процессом.
		14. Роль Са и Мп в процессе рафинирования стали от серы.
		15. Непрерывная и периодическая кристаллизация металла шва.
		16. Процессы кристаллизации металла при сварке.
		17. особенности первичной кристаллизации при сварке. Причины
		слоистости и столбчатости строения сварных швов.
		Практическая работа №
		Нагрев и охлаждение металла при наплавке валика

на пластину
Цель работы: изучить методику экспериментального определения
термических циклов основного металла при сварке.
1. Получить и проанализировать экспериментальные данные по
нагреву металла в зависимости от ширины пластины и расстояния
от оси перемещения сварочной дуги;
2. Сформулировать выводы по работе;
3. Составить отчет.
Примеры практических вопросов к зачету:
1. Оценить длину сварочной ванны при наплавке валика на
массивное тело:
$L = \frac{q}{2\pi\lambda \left(T_{nA} - T_{n}\right)}$
$2\pi\lambda\left(T_{\mathrm{n}a}-T_{\mathrm{s}}\right)$
2. Оценить полный тепловой КПД наплавки:
$\eta_{\rm H} = v F_{\rm H} \rho h_{\rm nn} / (UI)$
Лабораторная работа №
Структура металла термически обработанных
сварных соединений
Цель работы: ознакомиться с влиянием различных видов
последующей термообработки на структуру и твёрдость основного
металла, металла шва и различных участков зоны термического
влияния.
1. На шлифах соответствующего комплекта изучить структуру
шва, основного металла и металла различных участков зоны
термического влияния;
2. Сформулировать выводы по работе;
3. Составить отчет.
Примеры практических вопросов к экзамену:
1. Определить время пребывания выше заданной температуры при
наплавке на массивное тело:
$t_{3H} = \tau_{3H} r^2 / (4a)$

	2. Определить время пребывания выше заданной температуры при
	наплавке на пластину: $t_{2n} = \tau_{2n} y^2/(4a)$

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Теория сварочных процессов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета.

Экзамен по данной дисциплине проводится в устной форме по билетам, каждый из которых включает 2 теоретических вопроса и один практический вопрос.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

Итоговая аттестация по дисциплине «Теория сварочных процессов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета.

Зачет по данной дисциплине проводится в устной форме по билетам, каждый из которых включает 2 теоретических вопроса и один практический вопрос.

Показатели и критерии оценивания зачета:

На оценку «зачтено» обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.

Курсовой проект выполняется под руководством преподавателя, в процессе ее написания обучающийся развивает навыки к научной работе, закрепляя и одновременно расширяя знания, полученные при изучении курса «Теория сварочных процессов». При выполнении курсового проекта обучающийся должен показать свое умение работать с литературными источниками, а также возможность систематизировать и анализировать фактический материал и самостоятельно творчески его осмысливать.

Показатели и критерии оценивания курсового проекта:

- на оценку **«отлично»** (5 баллов) проект выполнен в соответствии с заданием, обучающийся показывает высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку «**хорошо**» (4 балла) проект выполнен в соответствии с заданием, обучающийся показывает знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- на оценку **«удовлетворительно»** (3 балла) проект выполнен в соответствии с заданием, обучающийся показывает знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку **«неудовлетворительно»** (2 балла) задание преподавателя выполнено частично, в процессе защиты работы обучающийся допускает существенные ошибки, не может показать интеллектуальные навыки решения поставленной задачи.
- на оценку **«неудовлетворительно»** (1 балл) задание преподавателя выполнено частично, обучающийся не может воспроизвести и объяснить содержание, не может показать интеллектуальные навыки решения поставленной задачи.