а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации: Промежуточная аттестация имеет целью определить степень достижения запланированных результатов обучения по дисциплине «Теоретическая механика» проводится в форме зачета в 3 семестре

Код индикатора	Индикатор достижения компетенции		Оценочные средства
			омерностей поведения и управления свойствами горных пород и состоянием массива а также при строительстве и эксплуатации подземных объектов
ОПК-6.1	Систематизирует методы предельного		Перечень теоретических вопросов:
	напряженного состояния массива горных		
	пород	2.	Произвольная пространственная система сил. Частные случаи приведения системы к
			простейшему виду. Условия и уравнения равновесия.
		3.	Фермы. Метод вырезания узлов (аналитическая и графическая форма расчета). Метод сечений.
		4.	Момент силы относительно точки и оси. Связь момента силы относительно точки с моментом силы относительно оси.
		5.	Движение точки лежащей на вращающемся теле.
		6.	Сложное движение точки. Теорема о сложении скоростей и теорема о сложении ускорений.
		7.	Трение качения. Коэффициент трения качения
		8.	Произвольная плоская система сил.
		9.	Произвольная система сил. Лемма о параллельном переносе силы. Основная теорема
			статики.
			Трение качения. Коэффициент трения качения.
			Центр тяжести. Способы определения координат центра тяжести
			Классификация связей. Уравнения связей.
		13.	Плоскопараллельное движение твердого тела. Уравнения плоского движения.
		4.4	Определение скоростей точек плоской фигуры.
		14.	Плоскопараллельное движение твердого тела. Мгновенный центр скоростей. Частные
		1.5	случаи нахождения мгновенного центра скоростей.
		15.	Плоскопараллельное движение твердого тела. Определение ускорений точек плоской фигуры.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		 16. Поступательное и вращательное движение твердого тела. 17. Векторный способ задания движения точки. (закон движения, скорость, ускорение точки). 18. Координатный способ задания движения точки (кинематические уравнения, закон движения, скорость, ускорение точки). 19. Естественный способ задания движения точки (закон движения, скорость, ускорение точки). Поступательное движение твердого тела (определение движения, теорема о траекториях, скоростях и ускорениях точек тела) Естественные оси координат, кривизна кривой, радиус кривизны. <i>Примерное практическое задание:</i> Колесо 3 с радиусами R₃ = 30 см и г₃ = 10 см и колесо 2 с радиусами R₂ = 20 см и г₂ = 10 см находятся в зацеплении. На тело 2 намотана, нить с грузом 1 на конце, который движется по закону s₁ = 4 + 90t², см. Определить v_м, a_м в момент времени t₁ = 1c.
ОПК-6.2	Владеет инженерными и технологическими методами управления геомеханическими процессами	 Перечень теоретических вопросов: Плоскопараллельное движение тела. Определение линейной скорости точек тела. Теорема о проекциях скоростей двух точек фигуры на прямую их соединяющую Плоскопараллельное движение. Определение ускорения точки. Определение углового ускорения плоской фигуры. Ускорение Кориолиса. Правило Жуковского. Предмет кинематики. Кинематика точки. Способы задания движения точки.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		5. Общее уравнение динамики.6. Работа силы. Работа переменной силы. Частные случаи определения работы.7. Работа силы. Элементарная работа переменной силы.
		 Аксиомы динамики. Принцип Даламбера для точки и системы. Главный вектор и главный момент сил инерции.
		10. Возможные перемещения точки, тела, системы тел.11. Принцип Даламбера для механической системы.12. Предмет динамики. Аксиомы динамики.
		13. Возможные перемещения. Идеальные связи. Определение сил инерции твердых тел при различных видах движения.
		14. Кинетическая энергия точки и системы.15. Уравнения Лагранжа 2 рода16. Теорема об изменении кинетической энергии в дифференциальной и интегральной
		формах. 17. Принцип возможных перемещений. 18. Кинетическая энергия твердого тела при поступательном, вращательном и плоскопараллельном движениях

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		19. Уравнения Лагранжа 2 рода. Примерное практическое задание: Статически определимая рама, расчетная схема которой показана на рисунке, загружена внешней нагрузкой. Найти реакции опор.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Теоретическая механика» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета в 3-м семестре.

Для получения зачёта по дисциплине обучающийся должен изучить необходимые разделы в конспектах, учебных пособиях и методических указаниях; работать со справочной литературой, исправлять ошибки, замечания по оформлению расчётнографических работ (РГР).

- на оценку «зачтено» обучающийся должен показать знания не только на уровне воспроизведения и объяснения информации, но и на интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам.
- на оценку «не зачтено» обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач