17 MMS-24-4

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

> **УТВЕРЖДАЮ** Директор ИММиМ А.С. Савинов

> > 09.02.2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) СОВРЕМЕННЫЕ МЕТОДЫ РАСЧЁТОВ НА ПРОЧНОСТЬ

Направление подготовки (специальность) 22.03.02 Металлургия

Направленность (профиль/специализация) программы Информационные технологии в современных литейных процессах

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Механики

Курс 3

Семестр 5

> Магнитогорск 2024 год

Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 22.03.02 Металлургия (приказ Минобрнауки России от 02.06.2020 г. № 702)

Рабочая программа рассмотрена и одобрена г 15.02.2024, протокол № 6	на заседании кафедр	ы Механики
Зав. кафе;	трой	А.С. Савинов
Рабочая программа одобрена методической к 09.02.2023 г. протокол № 4	омиссией ИММиМ	
Председа Согласовано:		А.С. Савинов
Зав. кафедрой Литейных процессов и материа	ловедения	
	- Many	Н.А. Феоктистов
Рабочая программа составлена: зав. кафедрой Механики, д-р техн. наук		А.С. Савинов
Рецензент: Директор ЗАО НПО "ЦХТ" , канд. техн. наук $_$	Oxfr	_В.П. Дзюба

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2025 - 2026 учебном году на заседании кафедры Механики					
	Протокол от Зав. кафедрой	20 г. № А.С. Савинов			
Рабочая программа пересм учебном году на заседании		ена для реализации в 2026 - 2027			
	Протокол от Зав. кафедрой	20 г. № А.С. Савинов			
Рабочая программа пересм учебном году на заседании		ена для реализации в 2027 - 2028			
	и кафедры Механики	ена для реализации в 2027 - 2028 20 г. № А.С. Савинов			
учебном году на заседании	и кафедры Механики Протокол от Зав. кафедрой мотрена, обсуждена и одобр	•			

1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины «Современное методы расчетов на прочность» является получение навыков количественной оценки напряженного состояния литой заготовки под влиянием температурных градиентов и силового взаимодействия отливки с формой.

Задачи дисциплины – дать обучающемуся:

- освоение навыков расчета теплового состояния системы отливка-форма;
- освоение расчета напряженного состояния отливки при ее взаимодействии с формой.

Приобретенные знания способствуют формированию навыков направленных на оценку технологии изготовления литой детали в части ее силового взаимодействия с формой и предупреждения возможного возникновения брака связанного с нарушением сплошности стенки изделия.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Современные методы расчётов на прочность входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Цифровая грамотность

Физика

Учебная - ознакомительная практика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Производственная - технологическая (проектно-технологическая) практика

Производство отливок из цветных сплавов

Технология литейного производства

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Современные методы расчётов на прочность» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции						
ОПК-1 Способен	решать задачи профессиональной деятельности, применяя методы						
моделирования, ма	моделирования, математического анализа, естественнонаучные и общеинженерные знания						
ОПК-1.1	Использует естественнонаучные законы и принципы при решении						
	практических задач						
ОПК-1.2	Решает стандартные профессиональные задачи с применением						
	общеинженерных знаний						
ОПК-1.3	Применяет методы моделирования и математического анализа для						
	решения задач теоретического и прикладного характера						
ОПК-7 Способен	анализировать, составлять и применять техническую документацию,						
связанную с про	офессиональной деятельностью, в соответствии с действующими						
нормативными дон	нормативными документами металлургической отрасли						
ОПК-7.1	Участвует в разработке технической и нормативной документации,						
	связанной с профессиональной деятельностью						
ОПК-7.2	Владеет навыками применения стандартов, норм и правил в						
	металлургической отрасли						

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 зачетных единиц 72 акад. часов, в том числе:

- контактная работа 18,1 акад. часов:
- аудиторная 18 акад. часов;
- внеаудиторная 0,1 акад. часов;
- самостоятельная работа 53,9 акад. часов;
- в форме практической подготовки 0 акад. час;

Форма аттестации - зачет

Раздел/ тема дисциплины	Семестр	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной	Код компетенции	
		Лек.	лаб. зан.	практ. зан.	Самс рабо	1	аттестации	
1. Раздел 1								
1.1 Внешние, внутренние силы, напряжение, видимые напряжения.		2		2	2	Самостоятельное изучение учебной и научно литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3, ОПК-7.1, ОПК-7.2
1.2 Связь напряжений с деформациями. Классификация сил.		2		2	6	Поиск дополнительной информации по заданной теме	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3, ОПК-7.1, ОПК-7.2
1.3 Сопротивление деформации материалов.		2		2	10	Изучение литературы.	Теоретический опрос.	ОПК-1.1, ОПК-1.2, ОПК-1.3, ОПК-7.1, ОПК-7.2
1.4 Геометрические характеристики поперечных сечений стержней.	5	2		2	10	Самостоятельное изучение учебной и научно литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3, ОПК-7.1, ОПК-7.2
1.5 Кручение стержней круглого поперечного сечения. Напряжения и деформации.		2		2	16	Самостоятельное изучение учебной и научно литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3, ОПК-7.1, ОПК-7.2
1.6 Испытание материалов на растяжение, сжатие. Механические характеристики		2		2	10	Самостоятельное изучение учебной и научно литературы	Теоретический опрос, собеседование	ОПК-1.1, ОПК-1.2, ОПК-1.3, ОПК-7.1, ОПК-7.2
1.7 Изгиб.Построение эпюр внутренних силовых факторов.		2		2	12	Самостоятельное изучение учебной и научно литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3, ОПК-7.1, ОПК-7.2

1.8 Температурное напряжение в плоском сечении отливки.	2	2	10	Самостоятельное изучение учебной и научно литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3, ОПК-7.1, ОПК-7.2
Итого по разделу	16	16	76			
Итого за семестр	16	16	76		зачёт	
Итого по дисциплине	16	16	76		зачет	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Современное методы расчетов на прочность» используются традиционные образовательные технологии. Они ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к обучающемуся (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность обучающегося носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция — последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Макаров, Е. Г. Сопротивление материалов использованием вычислительных комплек-сов : учебное пособие для среднего профессионального образования / Е. Г. Макаров. — 2-е изд., испр. и доп. — Москва : Издательство Юрайт, 2024. — 413 с. — (Профессиональное образование). — ISBN 978-5-534-01773-1. — Текст: электронный // Образовательная плат-форма Юрайт [сайт]. https://urait.ru/bcode/539104
- 2. Александров, А. В. Сопротивление материалов в 2 ч. Часть 2 : учебник и практикум для вузов / А. В. Александров, В. Д. Потапов, Б. П. Державин. 9-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 273 с. (Высшее образование). ISBN 978-5-534-02162-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/538187 .

б) Дополнительная литература:

- 1. Валишвили, Н. В. Сопротивление материалов и конструкций: учебник для вузов / Н. В. Валишвили, С. С. Гаврюшин. Москва: Издательство Юрайт, 2024. 429 с. (Высшее образование). ISBN 978-5-9916-8247-3. Текст: электронный // Образова-тельная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/536795.
- 2. Шилов, М. А. Физика прочности и механика разрушения : учебное пособие для вузов / М. А. Шилов. Москва : Издательство Юрайт, 2024. 175 с. (Высшее образова-ние). ISBN 978-5-534-15598-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/544300
- 3. Малинин, Н. Н. Прикладная теория пластичности и ползучести : учебник для вузов / Н. Н. Малинин. 3-е изд., испр. и доп. Москва : Издательство Юрайт, 2024. 402 с. (Высшее образование). ISBN 978-5-534-05330-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/53968 .

в) Методические указания:

1. Асадулина, Е. Ю. Сопротивление материалов: построение эпюр внутренних силовых факторов, изгиб: учебное пособие для вузов / Е. Ю. Асадулина. — 2-е изд., испр. и доп. — Москва: Издательство Юрайт, 2020. — 115 с. — (Высшее

- образование). ISBN 978-5-534-09944-7. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453439 .
- 2. Кривошапко, С. Н. Сопротивление материалов. Практикум: учебное пособие для вузов / С. Н. Кривошапко, В. А. Копнов. 4-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 353 с. (Высшее образование). ISBN 978-5-9916-7117-0. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/450811.
- 3. А.С. Савинов, А.А. Ступак, О.А.Осипова, О.С. Железков, Б.Б. Зарицкий, К.И. Рудь,
- 4. К.С. Элиджарова Задачник по сопротивлению материалов. Построение эпюр ВСФ.: задачник / А.С. Савинов, А.А. Ступак, О.А.Осипова. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им.Г.И.Носова, 2023. 38 с.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое	бессрочно
FAR Manager	свободно распространяемое	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalogues/
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	https://host.megaprolib.net/MP0109/Web
Международная база полнотекстовых журналов Springer Journals	http://link.springer.com/
Архив научных журналов «Национальный электронно-информационный концорциум» (НП НЭИКОН)	https://arch.neicon.ru/xmlui/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа. Оснащение: Мультимедийные средства хранения, передачи и представления информации.

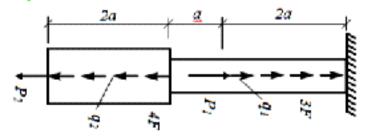
Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: Доска, мультимедийный проектор, экран.

Помещения для самостоятельной работы обучающихся. Оснащение: Персональные компьютеры с пакетом MS Office, вы-ходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования. Оснащение: Стеллажи для хранения учебно-методических пособий и учебно-методической документации

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Современные методы расчетов на прочность» предусмотрено решение задач.


Примерные задачи:

№1 «Построение эпюр $BC\Phi$ в статически определимых стержневых системах»

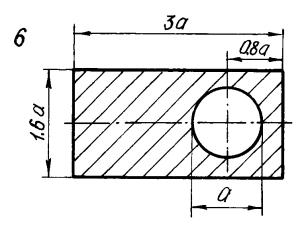
Задача 1. Для статически определимого стержня ступенчато постоянного сечения по схеме при заданных осевых нагрузках и геометрических размерах, требуется:

- 1. Определить опорную реакцию в месте закрепления стержня.
- 2. Вычислить значения продольных сил и нормальных напряжений в характерных сечениях и построить эпюры этих величин.
- 3. Найти величины абсолютных удлинений (укорочений) участков стержня и величину общего удлинения (укорочения) стержня в целом.
- 4. Определить значения осевых перемещений характерных сечений и построить эпюру осевых перемещений.

$$a=2M$$
, $P_1=15$ kH, $P_2=10$ kH, $q_1=2$ kH/M, $q_2=4$ kH/M, $F=10$ cm²

Задача 2. Построить эпюру крутящих моментов углов закручивания; найти наибольший относительный угол закручивания.

$$a=2M$$
, $b=4M$, $c=5M$, $M_1=15$ kHM, $M_2=10$ kHM, $M_3=12$ kHM, $M_4=17$ kHM.

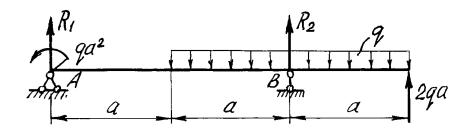

№2 «Геометрические характеристики поперечных сечений стержней»

Для несимметричных сечений по схемам при заданных размерах, требуется:

- 1. определить положение центра тяжести;
- 2. вычислить осевые и центробежные моменты инерции относительно центральных осей;
 - 3. определить положение главных центральных осей инерции и величины

главных моментов инерции;

4. построить круг инерции и определить графически величины главных моментов инерции и направления главных центральных осей. а=10см

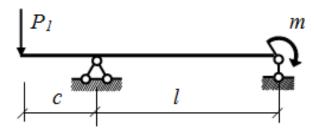


№3 «Прямой поперечный изгиб. Расчеты на прочность»

Рассчитать на прочность по методу предельных состояний двугавровую прокатную балку. Материал балки сталь ВСт 3. Предел текучести $\sigma = 240$ МПа, расчетное сопротивление по пределу текучести R = 210 МПа, расчетное сопротивление при сдвиге R = 130 МПа. Коэффициент условий работы $\gamma c = 0.9$. Коэффициент надежности по нагрузке $\gamma f = 1.2$.

- 1. Подобрать сечение балки из двугавра, используя условие прочности по первой группе предельных состояний.
- 2. Для сечения балки, в котором действует наибольший изгибающий момент, построить эпюру нормальных напряжений и проверить выполнение условия прочности по нормальным напряжениям.

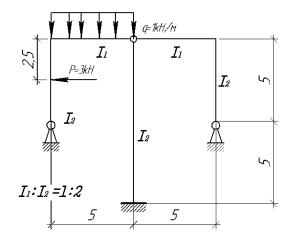
a=2M, q=5 kH/M/


№4. «Определение перемещений в балках и рамах»

Для балки с заданной нагрузкой в пролете и при числовых значениях размеров, требуется:

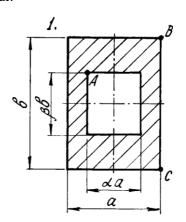
- 1. Построить эпюры изгибающих моментов и поперечных сил от заданных нормативных нагрузок.
- 2. Подобрать сечение балки в виде стального прокатного двугавра по методу предельных состояний, приняв коэффициент надежности по нагрузке равным $\gamma f=1,2$. Расчетное сопротивление стали по пределу текучести $R=210~\text{M}\Pi a$, коэффициент условий работы $\gamma c=1$.
 - 3. Определить с помощью метода начальных параметров значения прогибов v и углов

поворота ϕ поперечных сечений в характерных сечениях балки от нормативных нагрузок. По полученным значениям построить эпюры v и ϕ , указав их особенности (экстремумы, скачки, изломы и точки перегиба). Определить числовые значения прогибов в сантиметрах и углов поворота сечений в радианах, приняв модуль упругости стали $E=2,1\cdot105$ МПа.


4. Определить с помощью метода Мора величины прогибов и углов поворота в характерных сечениях балки. Сравнить результаты расчета, полученные двумя методами.

№5. «Расчет статически неопределимых систем методом сил»

Расчет статически неопределимой системы методом сил


- 1. выявить степень статической неопределимости заданной системы
- 2. предложить три варианта основной системы и выбрать наиболее рациональную (учитывать известные способы упрощения расчета (неединичные неизвестные; группировка неизвестных и т.д);
- 3. показать эквивалентную систему;
- 4. составить систему канонических уравнений метода сил для предложенного варианта;
- 5. для выбранной основной системы построить эпюры изгибающих моментов от единичных сил, приложенных по направлениям неизвестных усилий Xi (эп. Мі):вычислить единичные коэффициенты канонических уравнений;
- 6. выполнить проверку единичных коэффициентов;
- 7. для выбранной основной системы построить эпюры изгибающих моментов от заданной нагрузки (эп. MF); вычислить грузовые коэффициенты канонических уравнений;
- 8. произвести проверку правильности грузовых коэффициентов;
- 9. решить систему канонических уравнений (проверка обязательна!);
- 10. построить окончательную эпюру моментов;
- 11. произвести проверки (статическую и деформационную) правильности окончательной эпюры моментов;
- 12. построить эпюру Q по эпюре М;
- 13. построить эпюру N по эпюре Q;
- 14. вычертить заданную схему, показать полученные усилия и произвести статическую проверку.

№6. «Сложное сопротивление. Продольный изгиб. Динамические задачи»

Для внецентренно сжатого короткого стержня с заданным поперечным сечением и точкой приложения силы требуется:

- 1. Определить площадь поперечного сечения и положение центра тяжести;
- 2. Определить моменты инерции и радиусы инерции относительно главных центральных осей;
 - 3. Определить положение нулевой линии;
- 4. Определить грузоподъемность колонны (величину наибольшей сжимающей силы) из условия прочности по методу предельных состояний, приняв расчетные сопротивления материала при растяжении Rp = 1 МПа, при сжатии Rc = 5 МПа, коэффициент условий работы γc = 1;
- 5. Построить эпюру нормальных напряжений в поперечном сечении от действия найденной расчетной силы.

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Промежуточная аттестация имеет цель определить степень достижения запланированных результатов обучения проводится в форме зачета в 5-м семестре

Код	Индикатор достижения	Оценочные средства					
индикатора	компетенции						
	ОПК-7: Способен анализировать, составлять и применять техническую документацию, связанную с профессиональной деятельностью, в соответствии с действующими						
		ментами металлургической отрасли					
ОПК-7.1	Участвует в разработке	Перечень теоретических вопросов к зачету:					
	технической и нормативной	1. Цель и задачи курса "Основы прочностного расчета в литейном производстве" и его связь с другими дисциплинами.					
	документации, связанной с	2. Свойства, которыми наделяется основная модель твердого деформируемого тела в механике.					
	профессиональной	3. Характерные формы элементов конструкций. Виды основных деформаций стержня.					
	деятельностью	4. Внешние силы. Отличие во взгляде на внешние силы в сопротивлении материалов и в теоретической механике. Внутренние силы. Метод сечений. Понятие о напряжении, его компоненты.					
		5. Закон Гука для материала. Принцип Сен-Венана. Принцип независимости действия сил. Условия его применимости.					
		6. Внутреннее усилие при осевом растяжении (сжатии) прямоосного призматического стержня. Эпюра продольной силы и характерные особенности ее очертания.					
		7. Вывод формулы для нормального напряжения в поперечных сечениях стержня при растяжении (сжатии). Основная					
		гипотеза.					
		8. Условие прочности при растяжении (сжатии) и задачи, решаемые с его помощью. Допускаемое напряжение,					
		коэффициент запаса по прочности.					
		9. Продольная и поперечная деформации при растяжении (сжатии). Упругие постоянные материала. Закон Гука для осево					
		деформации стержня.					
		10. Формула для определения абсолютной деформации при осевом растяжении (сжатии)					
		Примерное практическое задания для зачета:					
		Для схемы балки требуется:					
		P=39.6 кH					
		q=11 kH/pr					
		1. Составить аналитические выражения изменения изгибающего момента M_x и поперечной силы Q_y на всех участков					
		балки;					
		2. Построить эпюры изгибающих моментов M_x и поперечных сил Q_y , указав значения ординат во всех характерных					
		сечениях участков балки;					
		3. Руководствуясь эпюрами изгибающих моментов, вычертить приблизительный вид изогнутой оси балки;					

		4. Определить положения опасных сечений и из условия прочности подобрать поперечный размер балки (круг
		диаметром d при допускаемом напряжении [σ]=280 МПа (сталь))
ОПК-7.2	Владеет навыками применения	Перечень теоретических вопросов к зачету:
	стандартов, норм и правил в	1. Анализ напряженно-деформированного состояния в окрестности точки тела.
	металлургической отрасли	2. Понятие главных напряжений. Экстремальность главных напряжений. Экстремальные значения касательных
		напряжений.
		3. Закон парности касательных напряжений.
		4. Обобщенный закон Гука для изотропного материала.
		5. Понятие о хрупком и вязком разрушении материала. Теории прочности для хрупкого состояния материала (I и II теории).
		Основные гипотезы. Эквивалентные напряжения по первой и второй теориям прочности.
		6. Теории пластического деформирования (III и IV теории). Основные гипотезы. Эквивалентные напряжения по третьей и
		четвертой теориям прочности.
		7. Сдвиг. Чистый сдвиг. Закон Гука при чистом сдвиге. Связь между упругими постоянными изотропного материала.
		8. Кручение. Понятие о кручении вала. Внутренние усилия при кручении. Построение эпюры крутящего момента.
		9. Вывод формулы для касательного напряжения в поперечном сечении вала кругового сечения. Основные гипотезы.
		10. Условие прочности при кручении. Полярный момент сопротивления. Подбор сечения вала по условию прочности.
		Примерное практическое задания для зачета:
		Для балки, изображенной на рис., требуется:
		1. простроить эпюры моментов и поперечных сил;
		2. указать положение опасного сечения (сечение балки с максимальным моментом);
		3. определить прогиб Δ у балки в точке приложения силы P .
		P, m, q,
		KH KHM KH/M
		3 20 12
		$\star P$ m
		3 3 3
ОПК-1: Способ	бен решать запани профессиональной	
ОПК-1.1	Использует естественнонаучные	Перечень теоретических вопросов к зачет:
OHK-1.1	законы и принципы при решении	1. Вывод формулы для определения угла закручивания вала. Условие жесткости при кручении и подбор сечения вала по
	практических задач	условию жесткости.
	практических задач	2. Понятие об изгибе балки. Условия возникновения плоского изгиба. Плоский поперечный и чистый изгибы. Внутренние
		усилия в балках, правило знаков. Эпюры внутренних усилий и характерные закономерности их очертания.
		3. Дифференциальные зависимости между изгибающим моментом, поперечной силой и интенсивностью распределенной
		нагрузки при плоском изгибе.
		4. Вывод формулы для нормального напряжения в поперечных сечениях балки при чистом изгибе. Условие прочности при
		чистом изгибе. Осевой момент сопротивления.
		5. Формула Д.И.Журавского для касательных напряжений в поперечном сечении балки при плоском поперечном изгибе.
		Эпюра касательного напряжения в балке прямоугольного поперечного сечения.
		6. Понятие о рациональной форме поперечных сечений балок, изготовленных из материала одинаково (или по-разному)
		сопротивляющегося растяжению и сжатию.
		7. Деформации при плоском изгибе. Дифференциальное уравнение изогнутой оси балки (точное и приближенное) второго
		порядка.
		8. Общий интеграл приближенного дифференциального уравнения изогнутой оси балки с одним участком. Граничные
		5

		условия. Начальные параметры. 9. Определение перемещений в балках с двумя и более участками. Метод начальных параметров сечения. Примерное практическое задания для зачет: Для балки, поперечное сечение которой составлено из двух швеллеров, требуется выбрать из рациональное расположение поперечного сечения и определить допустимое значение параметра нагрузки F. Дано: материал − Сталь 5; σ _т =280 Мпа; <i>l</i> =50 см; [<i>n</i>]=2, № швеллера − 20, <i>l</i> ₁ / <i>l</i> = 1, <i>M</i> /F <i>l</i> = 2				
ОПК-1.2	Решает стандартные профессиональные задачи с применением общеинженерных знаний	 Перечень теоретических вопросов к зачету: Цель и задачи курса "Основы прочностного расчета в литейном производстве" и его связь с другими дисциплинами. Свойства, которыми наделяется основная модель твердого деформируемого тела в механике. Характерные формы элементов конструкций. Виды основных деформаций стержня. Внешние силы. Отличие во взгляде на внешние силы в сопротивлении материалов и в теоретической механике. Внутренние силы. Метод сечений. Понятие о напряжении, его компоненты. Закон Гука для материала. Принцип Сен-Венана. Принцип независимости действия сил. Условия его применимости. Внутреннее усилие при осевом растяжении (сжатии) прямоосного призматического стержня. Эпюра продольной силы и характерные особенности ее очертания. 				
ОПК-1.3	Применяет методы моделирования и математического анализа для решения задач теоретического и прикладного характера	Примерное практическое задания для зачета: Для балки, изображенной на рис., требуется: 1. простроить эпюры моментов и поперечных сил; 2. указать положение опасного сечения (сечение балки с максимальным моментом); 3. определить прогиб Δу балки в точке приложения силы P. Р, т, ч, кН кНм кН/м кН/м з 20 12				

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Современные методы расчетов на прочность» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета.

Показатели и критерии оценивания зачета:

Для получения зачёта по дисциплине обучающийся должен изучить необходимые разделы в конспектах, учебных пособиях и методических указаниях; работать со справочной литературой, исправлять ошибки.

Промежуточная аттестация включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачёта.

- на оценку «зачтено» обучающийся должен показать знания не только на уровне воспроизведения и объяснения информации, но и на интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам.
- на оценку «не зачтено» обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач