МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЭиАС В.Р. Храмшин

04.02.2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ЭЛЕКТРОТЕХНИКА

Направление подготовки (специальность) 21.05.04 Горное дело

Направленность (профиль/специализация) программы Подземная разработка рудных месторождений

Уровень высшего образования - специалитет

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра

Электроснабжения промышленных предприятий

Курс

3

Семестр

Магнитогорск 2025 год Рабочая программа составлена на основе ФГОС ВО - специалитет по специальности 21.05.04 Горное дело (приказ Минобрнауки России от 12.08.2020 г. № 987)

Рабочая программа рассмотрена и одобрена на заседании кафедрь	Ы
Электроснабжения промышленных предприятий $30.01.2025$, протокол № 4	
30.01.2023, протокол № 4 Зав. кафедрой	_ А.В.Варганова
Рабочая программа одобрена методической комиссией ИЭиАС 04.02.2025 г. протокол № 3	
Председатель Уришифур	В.Р. Храмшин
Согласовано:	1
Зав. кафедрой Разработки месторождений полезных ископаемых //	//
Рабочая программа составлена:	С.Е. Гавришев
доцент ЭПП, канд.техн.наукО.И.Петух	ова
Рецензент: зам.начальника ЭТО АО "МАГНИТОГОРСКИЙ ГИПРОМЕЗ".	- Du
А.Ю.Литвинов	
S	

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2026 - 2027 учебном году на заседании кафедры Электроснабжения промышленных предприятий			
	Протокол от	20 г. № А.В.Варганова	
		для реализации в 2027 - 2028 промышленных предприятий	
	Протокол от	20 г. № А.В.Варганова	
		для реализации в 2028 - 2029 промышленных предприятий	
	Протокол от	20 г. № А.В.Варганова	
		для реализации в 2029 - 2030 промышленных предприятий	
	Протокол от	20 г. № А.В.Варганова	
		для реализации в 2030 - 2031 промышленных предприятий	
	Протокол от	20 г. № А.В.Варганова	
		для реализации в 2031 - 2032 промышленных предприятий	
	Протокол от Зав. кафедрой	20 г. № А.В.Варганова	

1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины является теоретическая и практическая подготовка будущих специалистов (горных инженеров) в области электротехники в такой степени, чтобы они могли выбирать необходимые электротехнические, электронные, электроизмерительные устройства, уметь их правильно эксплуатировать и составлять совместно со специалистами-электриками технические задания на разработку электрических частей различных установок и оборудования в своей профессиональной деятельности.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Электротехника входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Физика

Высшая математика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Горные машины и оборудование

Безопасность ведения горных работ

Автоматизация и электрификация горного производства

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Электротехника» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции				
	УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий				
УК-1.1	Анализирует проблемную ситуацию как систему, выявляя ее составляющие и связи между ними				
УК-1.2	Критически оценивает надежность источников информации, работает с противоречивой информацией из разных источников, определяет пробелы в информации, необходимой для решения проблемной ситуации, и проектирует процессы по их устранению				
УК-1.3	Разрабатывает и содержательно аргументирует стратегию решения проблемной ситуации на основе системного и междисциплинарного подходов; строит сценарии реализации стратегии, определяя возможные риски и предлагая пути их устранения				

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 57,2 акад. часов:
- аудиторная 54 акад. часов;
- внеаудиторная 3,2 акад. часов;
- самостоятельная работа -51,1 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 35,7 акад. час

Форма аттестации - экзамен

Раздел/ тема дисциплины	Семестр	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетениии	
диодинялиня	a)	Лек.	лаб. зан.	практ. зан.	Самосл	работы	промежуточной аттестации	Rossiloreniqui
1.								
1.1 Линейные электрические цепи постоянного тока.		2	2	2	5,3	1. Поиск дополнительной информации по заданной теме. 2.Самостоятельн ое изучение учебной литературы. 3. Работа с электронными библиотеками. 4.Подготовка и выполнение л.р.№1.	Коллоквиум по л.р.№1	УК-1.1, УК- 1.2, УК-1.3
1.2 Линейные электрические цепи однофазного синусоидального тока.	5	4	2	4	7	 Работа с электронными библиотеками. Самостоятельное изучение учебной литературы. Подготовка и выполнение л.р.№2 	Коллоквиум по л.р.№2.	УК-1.1, УК- 1.2, УК-1.3
1.3 Трехфазные цепи.		3	2		5	1. Работа с электронными библиотеками. 2.Самостоятельн ое изучение учебной литературы. 3.Подготовка и	Коллоквиум по л.р.№4.	УК-1.1, УК- 1.2, УК-1.3

						выполнение л.р.№4.		
1.4 Трансформаторы.		2	2	2	8	1.Подготовка и выполнение л.р.№21. 2.Самостоятельн ое изучение учебной литературы	Коллоквиум по л.р.№21	УК-1.1, УК- 1.2, УК-1.3
1.5 Электрические машины постоянного тока.	5	3	4	4	7,8	1.Подготовка и выполнение л.р.№23. 2.Самостоятельн ое изучение учебной литературы.	Коллоквиум по л.р.№23.	УК-1.1, УК- 1.2, УК-1.3
1.6 Асинхронные двигатели		4	4	4	12	1.Подготовка и выполнение л.р.№24. 2.Самостоятельн ое изучение учебной литературы.	Коллоквиум по л.р.№24.	УК-1.1, УК- 1.2, УК-1.3
1.7 Электрические приборы и измерения			2	2	6	1.Подготовка и выполнение л.р.№8. 2.Самостоятельн ое изучение учебной литературы.	Коллоквиум по л.р.№8	УК-1.1, УК- 1.2, УК-1.3
Итого по разделу		18	18	18	51,1			
2.								
2.1 Экзамен	5							УК-1.1, УК- 1.2, УК-1.3
Итого по разделу								
Итого за семестр		18	18	18	51,1		экзамен	
Итого по дисциплине		18	18	18	51,1		экзамен	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины используются традиционная технология и технология проблемного обучения. Передача необходимых теоретических знаний и формирование основных представлений может происходить с использованием мультимедийного оборудования.

Лекции проходят в традиционной форме, в форме лекций-консультаций и проблемных лекций. Теоретический материал на проблемных лекциях является результатом усвоения полученной информации посредством постановки проблемного вопроса и поиска путей его решения. На лекциях — консультациях изложение нового материала сопровождается постановкой вопросов и дискуссией в поисках ответов на эти вопросы.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины а) Основная литература:

- 1. Данилов, И. А. Электротехника : учебник для вузов / И. А. Данилов. 2 -е изд., испр. и доп. Москва : Издательство Юрайт, 2025. 412 с. (Высшее образование). ISBN 978-5-534-21153-5. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/559467 (дата обращения: 06.03.2025).
- 2. Иванов, И. И. Электротехника и основы электроники : учебник / И. И. Иванов, Г. И. Соловьев, В. Я. Фролов. 10-е изд., стер. Санкт-Петербург : Лань, 2019. 736 с. ISBN 978-5-8114-0523-7. Текст : электронный // Лань : электронно -библиотечная система. URL: https://e.lanbook.com/book/112073 (дата обращения: 10.03.2025). Режим доступа: для авториз. пользователей.
- 3. 3. Электрические машины : учебник и практикум для вузов / В. И. Киселев, Э. В. Кузнецов, А. И. Копылов, В. П. Лунин ; под общей редакцией В. П. Лунина. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2025. 231 с. (Высшее образование). ISBN 978-5-534-19656-6. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/560763 (дата обращения: 10.03.2025).
- 4. 4. Новожилов, О. П. Электротехника (теория электрических цепей) в 2 ч. Часть 1. : учебник для вузов / О. П. Новожилов. Москва : Издательство Юрайт, 2025. 403 с. (Высшее образование). ISBN 978-5-534-04038-8. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/561737 (дата обращения: 06.03.2025).

б) Дополнительная литература:

1. 1.Электротехника. Электрические и магнитные цепи: учебник и практикум для вузов / В. П. Лунин, Э. В. Кузнецов; под общей редакцией В. П. Лунина. — 2-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2025. —

- 301 с. (Высшее образование). ISBN 978-5-534-19691-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/560566 (дата обращения: 10.03.2025).
- 2. 2. Миленина, С. А. Электротехника: учебник и практикум для среднего профессионального образования / С. А. Миленина; под редакцией Н. К. Миленина. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2025. 245 с. (Профессиональное образование). ISBN 978-5-534-19816-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/562788 (дата обращения: 06.03.2025).
- 3. Введение в теоретическую электротехнику. Курс подготовки бакалавров / Ю. А. Бычков, В. М. Золотницкий, Е. Б. Соловьева, Э. П. Чернышев. Санкт-Петербург: Лань, 2016. 288 с. ISBN 978-5-8114-2406-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/89931 (дата обращения: 10.03.2025). Режим доступа: для авториз. пользователей.
- 4. Аполлонский, С. М., Электротехника : учебник / С. М. Аполлонский. Москва : КноРус, 2023. 292 с. ISBN 978-5-406-11277-9. URL: https://book.ru/book/948617 (дата обращения: 10.03.2025). Текст : электронный.
- 5. Электротехника в упражнениях и задачах : учебное пособие / Е. И. Алгазин, В. В. Богданов, О. Б. Давыденко [и др.]. Новосибирск : НГТУ, 2021. 94 с. ISBN 978-5-7782-4365-1. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/216116 (дата обращения: 10.03.2025). Режим доступа: для авториз. пользователей.

в) Методические указания:

Методические указания для выполнения лабораторных работ приведены в приложении 3.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

программное обеспечение					
Наименование ПО	№ договора	Срок действия лицензии			
7Zip	свободно распространяемое ПО	бессрочно			
Электронные плакаты по дисциплине "Электроника"	К-278-11 от 15.07.2011	бессрочно			
Электронные плакаты по дисциплине "Электротехника"	К-278-11 от 15.07.2011	бессрочно			
FAR Manager	свободно распространяемое ПО	бессрочно			

Профессиональные базы данных и информационные справочные системы

1 1	1
Название курса	Ссылка
Электронные ресурсы библиотеки МГТУ им. Г.И.	https://host.megaprolib.net/M
Носова	P0109/Web
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalogues/
Национальная информационно-аналитическая	URL:
система – Российский индекс научного цитирования	https://elibrary.ru/project_risc.
(РИНЦ)	asp
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа ауд. 365 Мультимедийные средства хранения, передачи и представления информации

Учебная лаборатория для проведения лабораторных работ: лаборатория электрических цепей ауд. 358 Универсальный лабораторный стенд по электрическим цепям, электронике, электроизмерениям -9 шт.

Наглядные пособия-плакаты-12 шт.

Учебная лаборатория для проведения лабораторных работ: лаборатория электрических машин ауд .361 Универсальный лабораторный стенд по электрическим машинам 9 шт.

Наглядные пособия-плакаты-12 шт.

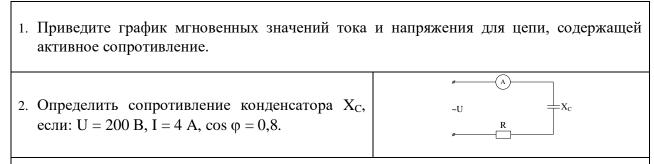
Учебная аудитория для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации ауд. 357, 354, 358, 361 Доска, мультимедийный проектор, экран

Помещение для самостоятельной работы обучающихся ауд. 343 Персональные компьютеры с пакетом MS Office, выходом в Интернет и доступом в электронную информационно-образовательную среду университета

Помещение для хранения и профилактического обслуживания учебного оборудования ауд. 356 Стеллажи, сейфы для хранения учебного оборудования.

Инструменты для ремонта лабораторного оборудования

Приложение 1

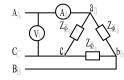

Учебно-методическое обеспечение самостоятельной работы обучающихся

Примерные аудиторные коллоквиумы

Коллоквиум № 1. Линейные цепи постоянного тока. $(\kappa \pi/p$ № 1)

1. Определить величину тока корот-кого замыкания, если: $E=2,1\ B,\ R_0=0,1\ Oм,\ R=2\ Oм.$	R_0
2. Что показывает вольтметр, подключенный к зажимам источника?	B V R
3. Определить сопротивление резистора R2, если: R1 = 3 Ом, а показания амперметров указаны на схеме.	R2 5A A1 -
4. Определить сопротивления R1 и R2, если: $U=60~\mathrm{B},~\mathrm{ток}~\mathrm{в}~\mathrm{неразветвленной}~\mathrm{части}~\mathrm{цепи}$ $I=1,5~\mathrm{A}.~(R_1=2R_2)$	U R1 R2
5. Определить напряжение источника U, если R=6 Ом, I=4A.	R R R R R R R R R R R R R R R R R R R

Коллоквиум № 2. Линейные цепи переменного тока .(к л/р №2)


3. Определить действующее значение тока, напряжения, сдвиг по фазе и характер нагрузки, если мгновенные значения тока и напряжения равны: $i=10 \sin \omega t$, $u=141 \sin (\omega t + 30^\circ)$.

4. Приведите электрическую схему, кото-рой соответствует векторная диаграмма.

5. Определить показания амперметров A_1 и A_2 и реактивную мощность цепи Q, если: U = 120 B.

Коллоквиум № 3. Трехфазные цепи.(к л/р № 4)

- 1. Как получить трехфазную получить систему Э.Д.С.? Дайте определение трехфазной электрической цепи.
- 2. Объяснить построение векторной диаграммы токов и напряжений для трехфазной цепи, соединенной «звездой». Нагрузка симметричная, характер активно индуктивный.
- 3. Линейные токи при соединении нагрузки «звездой»: $I_A = I_B = I_C = 20~A$. Определить ток в нейтральном проводе, если $\phi_a = \phi_b = \phi_c = 30^\circ$.
- 4. Приведите выражение для определения активной и реактивной мощностей при симметричной и несимметричной нагрузках.
- 5. Определить показание вольтметра, если $Z\phi = 10$ Ом, амперметр показывает 10 А.

Коллоквиум № 4. Трансформаторы(к л/р № 21)

- 1. Назовите номинальные величины, указываемые на паспортном щитке трансформатора. Что вы понимаете под номинальной мощностью трансформатора?
- 2. Приведите эл. схему опыта холостого хода. Расскажите порядок проведения этого опыта. Какие величины при этом определяются?
- 3. Приведите внешнюю характеристику трансформатора и объясните ее. При каких условиях снимается внешняя характеристика?

- 4. Почему у обмотки высшего напряжения сечение провода меньше, а у обмотки низшего напряжения больше?
- 5. Дано: $U_{1\text{ном}}$ =220 B, $U_{2\text{ном}}$ =127 B, $S_{\text{ном}}$ =1100 BA.

Определить номинальные токи первичной и вторичной обмоток трансформатора и коэффициент трансформации К.

Почему номинальные токи не равны по величине?

Коллоквиум № 5. Генераторы постоянного тока. (κ л/р №22)

- 1. Расскажите о способах охлаждения машин постоянного тока.
- 2. Устройство и назначение коллектора.
- 3. Какие потери в машинах постоянного тока являются постоянными? Приведите характеристику КПД и объясните ее.
- 4. При каких условиях снимается характеристика холостого хода? Приведите вид характеристики холостого хода. Объясните, почему восходящая ветвь характеристики не совпадает с нисходящей?
- 5. Генератор параллельного возбуждения с номинальным напряжением $U_{\text{ном}}$ =220 В, номинальным током $I_{\text{ном}}$ =110 А имеет следующие потери: P_{o} = P_{c} + P_{mex} =1320 Вт, P_{B} =650 Вт, P_{3} =1300 Вт. Определить КПД генератора.

Коллоквиум № 6. Двигатели постоянного тока.(к л/р №23)

- 1. Устройство и принцип действия двигателя постоянного тока.
- 2. Приведите уравнение электрического равновесия двигателя постоянного тока и объясните его.

- 3. Для двигателя параллельного возбуждения на одном графике приведите две механические передачи: естественную и искусственную (реостатную). Укажите точки, соответствующие номинальному режиму и режиму идеального холостого хода и условия, при которых сняты эти характеристики.
- 4. Какие потери изменяются существенно при изменении нагрузки на валу двигателя и оказывают значительное влияние на К.П.Д.?
- 5. Двигатель постоянного тока параллельного возбуждения имеет паспортные данные: $P_{\text{HOM}}=10~\text{kBt},~U_{\text{HOM}}=220~\text{B},~I_{\text{ЯНОМ}}=50~\text{A},~n_{\text{HOM}}=1000~\text{об/мин},~R_{\text{Я}}=0,4~\text{Ом}.$

Определить частоту вращения якоря двигателя при идеальном холостом ходе.

Коллоквиум № 7.Асинхронные двигатели(к л/р 24)

- 1. Устройство и назначение частей трехфазного асинхронного двигателя с короткозамкнутым ротором.
- 2. Как изменится ток холостого хода (I10) и номинальный коэффициент мощности (соѕф1ном), если воздушный зазор между статором и ротором увеличится?
- 3. Приведите выражение частоты вращения магнитного поля статора и объясните его.
- 4. Что вы понимаете под режимом холостого хода асинхронного двигателя?
- 5. Трехфазный асинхронный двигатель имеет номинальные данные:

Рном=10 кВт, Uном=220/380 B, nном=950 об/мин, η=85%, cosφ=0,681.

Определить номинальную мощность потребления энергии из сети и момент на валу двигателя, если обмотка статора соединена «звездой».

Коллоквиум № 8. Электрические измерения.(к л/р №8)

- 1. Назовите требования, предъявляемые к электроизмерительным приборам.
- 2. Какой ток можно измерить амперметром, сопротивление которого R_A =0,3 Ом, $n_{\text{ном}}$ =150 дел., C_A =0,001 А/дел., если включить его с шунтом, сопротивление которого R_{m} =0,01 Ом?
- 3. Определить цену деления вольтметра, имеющего номинальные данные: $U_{\text{ном}}$ =50 B, $n_{\text{ном}}$ =100 дел., R_{V} =1000 Ом, включенного с добавочным сопротивлением $R_{\text{Д}}$ =3000 Ом. Приведите схему включения вольтметра с добавочным сопротивлением.
- 4. Два ваттметра с номинальными данными І_{ном}=5 A, U_{ном}=150 В со шкалой на 150 делений включены в цепь через измерительные трансформаторы тока и напряжения с коэффициентами трансформации тока К_{ТТ}=50/5 и К_{ТН}=500/100. Определить мощность потребления энергии трехфазной цепью, если стрелка одного ваттметра отклонилась на 15 делений, а другого на 40 делений.
- 5. В чем разница между точностью и чувствительностью прибора?

Примерные домашние расчетно-графические работы

1. Расчет линейных цепей постоянного тока.

Целью работы является закрепление у студентов навыков анализа и расчёта линейной электрической цепи постоянного тока.

2. Расчет параметров и основных характеристик трансформаторов. Целью работы является закрепление у студентов навыков расчёта основных параметров трансформаторов. 3. Расчет параметров и основных характеристик асинхронных двигателей.

Целью работы является закрепление у студентов навыков расчёта основных параметров асинхронных двигателей.

Приложение 2

7. Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации

Код индикатора	Индикатор достижения компетенции	Оценочные средства
УК-1: Спосо	бен осуществлять критический анализ проблемных ситуаций на о	снове системного подхода, вырабатывать стратегию действий
УК-1.1: УК-1.2:	Анализирует проблемную ситуацию как систему, выявляя ее составляющие и связи между ними Критически оценивает надежность источников информации, работает с противоречивой информацией из разных источников, определяет пробелы в информации, необходимой для решения проблемной ситуации, и проектирует процессы по их устранению	 Перечень теоретических вопросов к зачету Понятия электрической, электронной и магнитной цепей. Классификация и примеры цепей. Основные законы электротехники и их применение. Физическая и математическая модели цепи. Источники, проводники и приемники. Идеализированные двухполюсные элементы и их свойства. Линейные электрические цепи постоянного тока. Анализ цепи на основе законов Кирхгофа и Ома. Эквивалентные преобразования участков цепей. Основные методы анализа линейных цепей. Свойства линейных электрических цепей: свойство линейности, принцип наложения, принцип взаимности. Электрическая мощность и энергия постоянного электрического тока. Закон сохранения энергии в электрической цепи с постоянными токами. Баланс мощностей. Основные характеристики и параметры синусоидальных токов и напряжений. Способы получения синусоидальных напряжений и токов. Представление синусоидальных токов и напряжений векторами и комплексными числами. Законы электрических цепей в комплексной форме.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		 Фазовые соотношения между токами и напряжениями в цепи при синусоидальном токе. Сопротивления элементов и участков цепей при синусоидальных токах. Электрическая энергия и мощность в цепях с синусоидальным током. Активная, реактивная и полная мощности. Баланс активных и реактивных мощностей. Трехфазная система напряжений, основные соотношения, способы получения, источники трехфазного напряжения и их эквивалентные схемы. Трехфазная нагрузка. Симметричная и несимметричная нагрузка при соединении фаз в треугольник и звезду. Схемы и расчет эквивалентных параметров нагрузки в трехфазных цепях. Трехфазная трех- и четырехпроводная сеть с симметричной нагрузкой, схемы, расчетные соотношения для определения линейных и фазных токов и напряжений. Мощности трехфазной сети. Измерение активной и реактивной мощности. Однофазный трансформатор со стальным сердечником. Свойства и особенности полупроводниковых диодов различных типов. Назначение и примеры простейших схем выпрямителей, принципы их работы.
		Примерный перечень практических заданий Определить сопротивление резистора R2, если: R1 = 3 Ом, а
		показания амперметров указаны на схеме.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		R2 5A A1
		2. Определить напряжение источника U, если R=6 Ом, I=4A.
		3. Определить сопротивление конденсатора X_C , если: $U = 200$ B, $I = 4$ A, $\cos \varphi = 0.8$.
		4. Определить показания амперметров A ₁ и A ₂ и реактивную
		мощность цепи Q, если: $U = 120 \text{ B}$.
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		5. Линейные токи при соединении нагрузки «звездой»: $I_A = I_B = I_C = 20$ А. Определить ток в нейтральном проводе, если $\phi_a = \phi_b = \phi_c = 30^\circ$.
		6. Определить показание вольтметра, если $Z\phi = 10 \text{ Om}$, амперметр показывает 10 A .

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		7. Определить действующее значение тока, напряжения, сдвиг по фазе и характер нагрузки, если мгновенные значения тока и напряжения равны: i = 10 sin ot, u = 141 sin (ωt + 30°). 8. Какой ток можно измерить амперметром, сопротивление которого R _A =0,3 Ом, п _{ном} =150 дел., C _A =0,001 А/дел., если включить его с шунтом, сопротивление которого R _m =0,01 Ом? 9. Определить цену деления вольтметра, имеющего номинальные данные: U _{ном} =50 B, п _{ном} =100 дел., R _V =1000 Ом, включенного с добавочным сопротивлением R _Д =3000 Ом. Приведите схему включения вольтметра с добавочным сопротивлением. 10. Приведите электрическую схему, которой соответствует векторная диаграмма.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		 Перечень лабораторных работ Электрические приборы и измерения; Исследование свойств цепи постоянного тока; Исследование электрической цепи синусоидального тока; Исследование трехфазных цепей; Исследование полупроводниковых выпрямителей.
УК-1.3:	Разрабатывает и содержательно аргументирует стратегию решения проблемной ситуации на основе системного и междисциплинарного подходов; строит сценарии реализации стратегии, определяя возможные риски и предлагая пути их устранения	Перечень трансформатор со стальным сердечником. Трехфазные трансформаторы: назначение, конструкция, принцип действия, основные эксплуатационные параметры. Получение вращающегося магнитного поля в трехфазной цепи. Асинхронные двигатели: назначение, конструкция, принцип действия. Способы пуска и регулирования скорости асинхронных двигателей. Двигатели постоянного тока: назначение, конструкция, способы возбуждения, основные характеристики. Уравнение движения электропривода. Режимы работы электроприводов. Выбор мощности двигателя электропривода. Выбор вида и типа двигателя. Тиристорное и транзисторное управление

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		электроприводом 12. Общие сведения о полупроводниках. 13. Электронно-дырочный переход. Характеристики, параметры и назначение полупроводниковых диодов, тиристоров. 14. Общие сведения и классификация источников электропитания. 15. Нулевые схемы выпрямления. Однофазные, трехфазные и управляемые выпрямители. Примерный перечень практических заданий 1. Дано: U _{1ном} =220 B, U _{2ном} =127 B, S _{ном} =1100 BA. Определить номинальные токи первичной и вторичной обмоток трансформатора и коэффициент трансформации К. Почему номинальные токи не равны по величине? 2. Однофазный трансформатор номинальной мощностью Sном=600 кВА включен в сеть с напряжением U _{1ном} =10 000 B.
		Напряжение на зажимах вторичной обмотки U _{2ном} =400 В. Определить число витков первичной обмотки W ₁ и коэффициент трансформации k, если число витков вторичной обмотки W ₂ =25. 3. Во вторичной обмотке трансформатора наводится ЭДС

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		E ₂ =100 В с частотой f=50 Гц.
		Определить ЭДС E ₂ , если амплитуда напряжения на первичной обмотке не изменится, а частота возрастет до 400 Гц?
		4. Трансформатор имеет следующие данные: $S_{\text{ном}}$ =10 000 BA, P_0 =200 Bt, P_{κ} =400 Bt. Определить КПД трансформатора при $\cos \varphi$ =0,8 и β =0,5.
		5.Двигатель постоянного тока параллельного возбуждения имеет паспортные данные: Р _{НОМ} =10 кВт, U _{НОМ} =220 В, I _{ЯНОМ} =50 A, n _{НОМ} =1000 об/мин, R _Я =0,4 Ом.
		Определить частоту вращения якоря двигателя при идеальном холостом ходе.
		6. Двигатель постоянного тока независимого возбуждения имеет номинальные данные: P_{HOM} =55 кВт, U_{HOM} =440 В, $I_{\text{ЯНОМ}}$ =140 А, $R_{\text{Я}}$ =0,1 Ом.
		Определить противо - ЭДС и электромагнитную мощность двигателя.
		7. Двигатель постоянного тока параллельного возбуждения имеет номинальные данные: P_{HOM} =10 000 Bt, U_{HOM} =220 B, I_{HOM} =55 A,

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		n _{HOM} =1000 об/мин, R _я =0,4 Ом, R _в =44 Ом.
		Определить КПД
		8. Двигатель параллельного возбуждения имеет номинальные данные: P _{HOM} =1,5 кВт, U _{HOM} =110 В, I _{HOM} =18 А, n _{HOM} =3000 об/мин, R _B =104 Ом, R _Я =0,47 Ом.
		Определить противо – ЭДС двигателя и номинальный момент на валу.
		9. Номинальные данные двигателя параллельного возбуждения: U_{HOM} =110 B, I_{HOM} =14 A, P_{HOM} =1,5 кВт, R_{M} =0,5Ом, R_{B} =220 Ом.
		Определить противо – ЭДС при нагрузке равной $I_{\text{Я}}=1,51_{\text{НОМ}}.$
		10. Трехфазный асинхронный двигатель имеет номинальные данные:
		Рном=10 кВт, Uном=220/380 В, пном=950 об/мин, η=85%, cosφ=0,681.
		Определить номинальную мощность потребления энергии из сети и момент на валу двигателя, если обмотка статора соединена «звездой».
		11 Определить номинальную мощность потребления энергии из сети и полные потери энергии в двигателе, если: pном=4,5 кВт,

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		к.п.д. η=90%. 12 Максимальный момент асинхронного двигателя 13Нм при U1=U1ном. Чему он равен при U1=0,8Uном, если R2=const?
		Перечень лабораторных работ 1.Исследование однофазного трансформатора; 2.Исследование двигателей постоянного тока; 3.Исследование асинхронных двигателей с фазным ротором. 4. Электрические приборы и измерения;

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания

Промежуточная аттестация по дисциплине «Электротехника» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена и в форме зачета с оценкой.

Экзамен (зачет с оценкой) по данной дисциплине проводится в письменно устной форме по экзаменационным билетам, каждый из которых включает 2 практических задания и один теоретический вопрос.

Показатели и критерии оценивания экзамена и зачета с оценкой:

- на оценку «**отлично**» (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку «**хорошо**» (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку «**удовлетворительно**» (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку «**неудовлетворительно**» (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.