МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Дивектор Фициал в. г. Белорецк БОДР. Хамзина г. Белорецке 06.02.2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МЕТАЛЛУРГИЧЕСКАЯ ТЕПЛОТЕХНИКА

Направление подготовки (специальность) 22.03.02 Металлургия

Направленность (профиль/специализация) программы Обработка металлов и сплавов давлением (метизное производство)

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Филиал в г. Белорецк

Кафедра Металлургии и стандартизации

 Курс
 2

 Семестр
 4

Магнитогорск 2025 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 22.03.02 Металлургия (приказ Минобрнауки России от 02.06.2020 г. № 702)

	Рабочая программа рассмотрена:	и одобрена на за	седании кафед	ры Металлургии и
станда	артизации			
	03.02.2025 г. протокол № 6		u n	
		Зав. кафедрой	Jean	М.Ю. Усанов
	Рабочая программа одобрена мето	одической комис	сией Филиал в	г. Белорецк
	06.02.2025 г. протокол № 6		10)	1
		Председатель	Male	Д.Р. Хамзина
	Рабочая программа составлена:	~ <u>~</u>	-	
	доцент кафедры МиС, канд. техн.	Havk.		С.М. Головизнин
	,, , , , , , , , , , , , , , , , , , , ,			
	Рецензент:		1	
	ити инженер исспедорателя ЛТ	D AO «EME»	/ M	М.Г. Курпепов

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2026 - 2027 учебном году на заседании кафедры Металлургии и стандартизации				
	Протокол от	О. Усанов		
	отрена, обсуждена и одобрена для реализаци кафедры Металлургии и стандартизации	и в 2027 - 2028		
	Протокол от	О. Усанов		
	отрена, обсуждена и одобрена для реализаци кафедры Металлургии и стандартизации	и в 2028 - 2029		
	• • •			
учебном году на заседании Рабочая программа пересм	кафедры Металлургии и стандартизации	О. Усанов		

1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины «Металлургическая теплотехника» является:

развитие у студентов устойчивых навыков применения фундаментальных законов теплообмена и механики газов, современной теории горения и рационального сжигания топлива;

формирование у студентов умения чтения схем, чертежей конструкций и элементов высокотемпературных металлургических печей и устройств;

изучение свойств и требований предъявляемых к материалам, применяемым при сооружении печей;

формирование у студентов на основе рациональной технологии нагрева металла, умений тепловых расчетов;

приобретение навыков тепловых расчетов печей, горелок, форсунок и горения газообразного, жидкого и твердого топлива.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Металлургическая теплотехника входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Теплофизика

Физика

Математика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Моделирование процессов и объектов в металлургии

Проектная деятельность

Методы исследования материалов и процессов

Технологии производства сортового проката

Термическая обработка в обработке металлов давлением

Технологии производства листового проката

Технология производства метизов

Методы оптимизации процессов обработки металлов давлением

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Металлургическая теплотехника» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции
	участвовать в проектировании технических объектов, систем и процессов с учетом экономических, экологических и социальных
ОПК-2.1	Проводит технико-экономическое обоснование и экономическую оценку проектных решений и инженерных задач
ОПК-2.2	Проводит оценку проектных решений и инженерных задач, в том числе экологическую
ОПК-2.3	Анализирует и оценивает работоспособность предприятия (технических объектов, систем и процессов) с учетом социальных ограничений

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 37 акад. часов:
- аудиторная 36 акад. часов;
- внеаудиторная 1 акад. часов;
- самостоятельная работа 71 акад. часов;
- в форме практической подготовки 0 акад. час;

Форма аттестации - зачет

Раздел/ тема дисциплины	Семестр	конт	удитор актная _ј акад. ча	работа	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной	Код компетенции
)	Лек.	лаб. зан.	практ. зан.	Само рабоз	расоты	аттестации	
1. 1 Раздел. Металлургиче печи, теплогенерация в по основы теории горения.								
1.1 Введение. Назначение тепловых процессов и агрегатов. Общая схема металлургической печи.		2			8	Проработка лекционного материала (Тема 1.1, Приложение 1)	Наличие конспектов лекций.	ОПК-2.1, ОПК-2.2, ОПК-2.3
1.2 Теплогенерация в печах. Виды энергии, используемой в печах	4	2		1	9	Проработка лекционного материала; решение задач (Тема 1.2, Приложение 1)	Наличие конспектов лекций; сдача практических задач.	ОПК-2.1, ОПК-2.2, ОПК-2.3
1.3 Основы теории горения, устройства для сжигания топлива, утилизация теплоты продуктов сгорания		2		4	7,8	Проработка лекционного материала; решение задач (Тема 1.3, Приложение 1)	Наличие конспектов лекций; сдача практических задач.	ОПК-2.1, ОПК-2.2, ОПК-2.3
Итого по разделу		6		5	24,8			
2. 2 Раздел. Внешний внутренний теплообмен	і и							
2.1 Внешний и внутренний теплообмен в рабочем пространстве печей	4	1		2	2	Проработка лекционного материала; решение задач (Тема 2.1, Приложение 1)	Наличие конспектов лекций; сдача практических задач.	ОПК-2.1, ОПК-2.2, ОПК-2.3
2.2 Движение жидкости и газов в технологических агрегатах черной и цветной металлургии	4	2		2	2	Проработка лекционного материала; решение задач (Тема 2.2, приложение 1)	Наличие конспектов лекций; сдача практических задач.	ОПК-2.1, ОПК-2.2, ОПК-2.3
Итого по разделу		3		4	4			
3. 3 Раздел. Основные типы промышленных печей								

3.1 Материалы, используемые в конструкциях высокотемпературных агрегатов		2	4	10	Проработка лекционного материала; решение задач (Тема 3.1, Приложение 1)	Наличие конспектов лекций; сдача практических задач.	ОПК-2.1, ОПК-2.2, ОПК-2.3
3.2 Основы технологии нагрева металла, выбор рациональных температурных и тепловых режимов	4	2	2	10	Проработка лекционного материала; решение задач (Тема 3.2, Приложение 1)	Наличие конспектов лекций; сдача практических задач.	ОПК-2.1, ОПК-2.2, ОПК-2.3
3.3 Теплообменные аппараты и их сравнительная оценка		2	3	10	Проработка лекционного материала (Тема 3.3, Приложение 1)	Наличие конспектов лекций.	ОПК-2.1, ОПК-2.2, ОПК-2.3
3.4 Основные типы промышленных печей и важнейшие характеристики их тепловой работы		3		12,2	Проработка лекционного материала (Тема 3.4, Приложение 1)	Наличие конспектов лекций.	ОПК-2.1, ОПК-2.2, ОПК-2.3
Итого по разделу		9	9	42,2			
Итого за семестр		18	18	71		зачёт	
Итого по дисциплине		18	18	71		зачет	

5 Образовательные технологии

Для решения предусмотренных видов учебной работы при изучении дисциплины «Металлургическая теплотехника» в качестве образовательных технологий используются как традиционные, так и модульно-компетентностные технологии.

Целями образовательных и информационных технологий являются:

- активизирование мышления обучающихся;
- формирование интереса к изучаемому материалу;
- развитие интеллекта и творческих способностей обучающихся.

Лекционный материал закрепляется на лабораторных работах, где применяется совместная деятельность студентов в группе, направленная на решение общей задачи путем сложения результатов индивидуальной работы членов группы. Для развития и совершенствования коммуникативных способностей студентов организуются практические занятия в виде дискуссий, анализа реальных проблемных ситуаций и междисциплинарных связей из различных областей в контексте решаемой задачи. Передача необходимых теоретических знаний и формирование представлений по курсу происходит с применением мультимедийного оборудования. На занятиях внедряются такие информационные технологии, как использование электронных изданий (чтение лекций с использованием слайд-презентаций, электронного курса лекций, графических видео- аудио- материалов (через Интернет). Самостоятельная работа стимулирует студентов к самостоятельной проработке тем в процессе написания рефератов, подготовки к дискуссиям, к контрольным работам и тестированию. Этапы познавательной деятельности студентов предполагают последовательно постановку интересующей их проблемы, выдвижение гипотез при ее решении, выражение решения гипотезы научным языком, а также реализация продукта в виде публичного выступления, доклада или презентации. Корректировки образовательного процесса проходят с использованием обратной связи между преподавателем и обучающимися консультациях, а также при текущем и промежуточном контроле.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Металлургическая теплотехника: учебное пособие / В. И. Лукьяненко, Г. Н. Мартыненко, А. В. Исанова, В. В. Черниченко. Вологда: Инфра-Инженерия, 2021. 200 с. ISBN 978-5-9729-0626-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/192517 (дата обращения: 25.05.2023). Режим доступа: для авториз. пользователей.
- 2. Макаров, А. Н. Теплообмен в электродуговых и факельных металлургических печах и энергетических установках : учебное пособие / А. Н. Макаров. Санкт-Петербург : Лань, 2022. 384 с. ISBN 978-5-8114-1653-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/211649
- 3. Мельчаков, М. А. Общая теория печей: учебно-методическое пособие / М. А. Мельчаков. Киров: ВятГУ, 2020. 128 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/201920

б) Дополнительная литература:

- 1. Дзюзер, В.Я. Теплотехника и тепловая работа печей: учебное пособие / В.Я. Дзюзер. 3-е изд., стер. Санкт-Петербург: Лань, 2017. 384 с. ISBN 978-5-8114-1949-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/93750
- 2. Тинькова, С.М. Теплофизика и металлургическая теплотехника : учеб. пособие / С.М. Тинькова. Красноярск: Сиб. федер. ун-т, 2017. 168 с. ISBN 978-5-7638-3751-3. Текст: электронный. URL: https://znanium.com/catalog/product/1032123
- 3. Круглов, Г.А. Теплотехника: учебное пособие / Г.А. Круглов, Р.И. Булгакова, Е.С. Круглова. 2-е изд., стер. Санкт-Петербург: Лань, 2012. 208 с. ISBN 978-5-8114-1017-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/3900
- 4. Брюханов, О.Н. Тепломассообмен: Учебник / О.Н. Брюханов, С.Н. Шевченко. Москва: НИЦ Инфра-М, 2012. 464 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-004803-1. Текст: электронный. URL: https://znanium.com/catalog/product/258657
- 5. Теплотехника: учебное пособие / В.В. Дырдин, А.А. Мальшин, В.Г. Смирнов, Т.Л. Ким. Кемерово: Куз Γ ТУ имени Т.Ф. Горбачева, 2017. 174 с. Режим доступа: URL: https://e.lanbook.com/book/115115.

Матвеева, Г. Н. Экспериментальное исследование процессов теплообмена : учебное пособие / Г. Н. Матвеева, Ю. И. Тартаковский, Б. К. Сеничкин. - 2-е изд., подгот. по печ. изд. 2008 г. - Магнитогорск : МГТУ, 2011. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL: https://host.megaprolib.net/MP0109/Download/MObject/3909 (дата обращения: 24.08.2023). - Макрообъект. - Текст : электронный. - Сведения доступны также на CD-ROM.

Копцев, В. В. Тепловой расчет коксогазовой вагранки : учебное пособие / В. В. Копцев, А. В. Тихонов ; МГТУ. - Магнитогорск : МГТУ, 2015. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL: https://host.megaprolib.net/MP0109/Download/MObject/434 (дата обращения: 15.08.2023). - Макрообъект. - Текст : электронный. - Сведения доступны также на CD-ROM.

Матвеева, Г. Н. Экспериментальное исследование процессов теплообмена : учебное пособие / Г. Н. Матвеева, Ю. И. Тартаковский, Б. К. Сеничкин. - 2-е изд., подгот. по печ. изд. $2008\ r$. - Магнитогорск : МГТУ, 2011. - $1\$ электрон. опт. диск (CD-ROM). - 3агл. с титул. экрана. - URL: https://host.megaprolib.net/MP0109/Download/MObject/3909 (дата обращения: 24.08.2023). - Макрообъект. - Текст : электронный. - Сведения доступны также на CD-ROM.

в) Методические указания:

- 1. Злоказова, Н.Г., Иванов, Д.А. Лабораторный практикум по дисциплинам «Топливо и ТСУ», «Теория и практика теплогенерации». Магнитогорск: Изд-во Магниторск. гос. техн. ун-та им. Г.И.Носова, 2013. 53 с.
- 2. Свечникова, Н. Ю. Практикум по технической термодинамике и теплотехнике : практикум / Н. Ю. Свечникова, С. В. Юдина, А. В. Горохов ; МГТУ. Магнитогорск : МГТУ, 2018. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/2098 (дата обращения: 19.06.2023). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
7Zip	свободно распространяемое	бессрочно
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
Linux Calculate	свободно распространяемое	бессрочно
FAR Manager	свободно распространяемое	бессрочно

Профессиональные базы данных и информационные справочные системы

профессиональные оазы данных и инфо	рмационные справо ные системы
Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
промышленной собственности»	URL: http://www1.fips.ru/
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalogues/
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	https://host.megaprolib.net/MP0109/Web
Международная база полнотекстовых журналов Springer Journals	http://link.springer.com/
Международная реферативная и полнотекстовая справочная база данных научных изданий «Springer Nature»	https://www.nature.com/siteindex
Архив научных журналов «Национальный электронно-информационный концорциум» (НП НЭИКОН)	https://arch.neicon.ru/xmlui/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа. Мультимедийные средства хранения, передачи и представления информации.

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Доска, мел.

Учебные аудитории, помещения для самостоятельной работы обучающихся. Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования. Стеллажи, сейфы для хранения учебного оборудования. Инструменты для ремонта лабораторного оборудования.

Учебно-методическое обеспечение самостоятельной работы обучающихся

Тесты для самопроверки

	Текст вопроса	Варианты ответов	Отметка о выборе эталона	Рейтинг сложности вопросов (1-легкий, 2-средний, 3-сложный)	
		классификация по происхождению и агрегатному состоянию	Эталон		
		химический состав	Эталон		
1	К общей характеристике	теплота сгорания	Эталон	2	
	топлива относятся:	коэффициент расхода воздуха при сжигании количество необходимого для			
		горения воздуха и выход продуктов сгорания			
		углерод и кислород			
	Важнейшие химические элементы топлива	углерод и водород	Эталон	_	
2	органического	кислород и водород		1	
	происхождения:	углерод и азот			
		Al_2O_3	Эталон		
	D×	SiO ₂	Эталон		
3	В состав негорючей минеральной части	CaO	Эталон	1	
	топлива - золы входят	CO ₂			
		SO ₂			
		N ₂ органическая			
	Какая сера, содержащаяся	колчеданная			
4	в топливе, не участвует в	сульфатная	Эталон	2	
	горении?	органическая и колчеданная	JIAH		
		для твердого топлива	Эталон		
		для твердого топлива для жидкого топлива	Эталон		
	Химический анализ	для газообразного топлива	J I WIOII		
5	топлива по элементному	искусственного происхождения		3	
	составу применяют	для газообразного топлива естественного происхождения			
		для смеси газообразных топлив			
		гигроскопическая			
	Какая часть влаги,	внешняя, удерживаемая механически	Эталон	2	
6	содержащейся в топливе, теряется при сушке?	химически связанная		2	
	· F	гигроскопическая и химически связанная			
7	Какая теплота сгорания топлива соответствует	высшая теплота сгорания		2	
	действительному	низшая теплота сгорания	Эталон		

	количеству теплоты, выделяемой при сгорании в печах и топках?	при сжигании с недостатком воздуха при обогащении дутья кислородом при сжигании с избытком воздуха		
8	В каком виде твердого топлива содержание углерода в составе органической массы может достигать 80-96%?	древесина торф бурые угли каменные угли	Эталон	2
	Какому газообразному топливу с теплотой	горючие сланцы доменный (колошниковый) газ коксовый газ	Эталон	
9	сгорания 3,5-4,0 МДж/м 3 соответствует примерный состав: 9-14% CO $_2$; 25-30% CO; 57-58% N $_2$; остальное - CH $_4$ и H $_2$.	коксодоменная смесь природный газ смесь доменного и природного газов смесь коксового и природного газов		2
10	Теплота сгорания условного топлива:	7000 кДж/кг 29,3 МДж/кг 29,3 ккал/кг 35,5 МДж/кг	Эталон	2
11	Интервал значений «пирометрического коэффициента» для ориентировочного определения действительной температуры в печах и топках:	0,55-0,65 0,65-0,85 0,85-0,95 0,95-1,05 0,35-0,45 0,45-0,55	Эталон	3
12	Наибольшее количество теплоты, которое печь может нормально (без недожога топлива в рабочем пространстве) усвоить, называется:	тепловой нагрузкой печи тепловой мощностью печи тепловым режимом печи коэффициентом использования тепла коэффициентом полезного действия	Эталон	3
13	Удельная производительность (напряженность пода печи) характеризует:	интенсивность работы печи интенсивность тепловыделения в печи часовой объем производства % выхода годного продукта размеры рабочего пространства агрегата	Эталон	3
14	Что учитывается в статье «теплота экзотермических реакций» приходной части теплового баланса теплотехнических агрегатов?	все химические реакции, идущие с положительным тепловым эффектом все химические реакции, идущие с положительным тепловым эффектом, кроме реакций горения топлива. теплота, выделяемая при горении	Эталон	2

		топлива			
		теплота, вносимая исходными			
		технологическими материалами			
		теплота, вносимая нагретыми			
		воздухом и топливом			
		печи постоянного действия,	7		
		температура в которых не меняется со временем	Эталон		
		печи периодического действия, с			
	К какому типу печей относятся методические печи?	переменной во времени			
15		температурой		1	
		печи с одинаковой температурой			
		по длине рабочего пространства			
		печи с максимальной			
		температурой при входе заготовок			
		в рабочее пространство коэффициентом полезного			
		теплоиспользования (к.п.т.)	Эталон		
	16	коэффициентом полезного			
	Качество работы печи, ее совершенство как	действия (к.п.д.)			
16	теплового агрегата	количеством теплоты, которое		3	
	характеризуется:	подают в печь			
		(МДж/ч)			
		удельным расходом топлива (т.у.т./т продукции)			
	I/ amazanan amazan	1580 °С	Эталон		
	К огнеупорным относят материалы, огнеупорность		Эталон		
17	которых не ниже (по	1780 °C		3	
	стандартам и	1680 °C			
	терминологии России):	1880 °C			
	Изделия с огнеупорностью	огнеупорные			
18	1770-2000 °C относятся к	высокоогнеупорные	Эталон	3	
10	виду:	высшей огнеупорности			
		теплоизоляционные			
		шамотные			
	В каких огнеупорах в	динасовые	Эталон		
19	качестве основы	высокоглиноземистые		3	
	преобладает SiO ₂ ?	циркониевые			
		форстеритовые			
		кислые			
20	В каких огнеупорах	основные	Эталон	3	
20	основой является MgO?	вспомогательные		3	
		нейтральные			
	Какие из приведенных	магнезитовые			
01	OFHENHODOR HMOIOT	динасовые		2	
21	меньший коэффициент	пеношамотные	Эталон	2	
	теплопроводности?	шамотные			
	Какие огнеупоры	шамотные			
	выдерживают меньшее	динасовые	Эталон	_	
22	количество теплосмен	магнезитовые	O TUNIOII	3	
	(термоударов)?	высокоглиноземистые			
		DDIOOROI JIHHOJOMINO I DIO			

23	Факторы, улучшающие качество теплоизоляции печей, топок, паропроводов	увеличение плотности набивки ваты, асбеста и др. увлажнение пористых теплоизоляторов применение теплоизоляции большей пористости применение теплоизоляции большей плотности применение вакуумно-многослойной теплоизоляции	Эталон	1
24	К какой группе относятся нормализованные горелки типа «труба в трубе» конструкции Стальпроекта?	без предварительного смешения плоскопламенные короткопламенные с предварительным смешением инжекционные	Эталон	2
25	Укажите правильную последовательность убывания концентрации компонентов продуктов горения топлива в печах и топках при сжигании в атмосферном воздухе	CO ₂ , H ₂ O, N ₂ N ₂ , H ₂ O, CO ₂ N ₂ , CO ₂ , H ₂ O H ₂ O, N ₂ , CO ₂ H ₂ O, CO ₂ , N ₂ CO ₂ , N ₂ , H ₂ O	Эталон	3
26	Какие стали обладают меньшим коэффициентом теплопроводности и требуют более медленного нагрева?	малоуглеродистые среднеуглеродистые высокоуглеродистые низколегированные высоколегированные	Эталон	1
37	Какие из перечисленных факторов приводят к потерям давления на местные сопротивления при движении газов по трубам и каналам?	изменения направления потока изменения сечения канала вход потока в канал и выход из него трение о стенки канала слияние и разделение потоков прохождение через плоскую решетку или дроссельную шайбу шероховатость стен труб, каналов	Эталон Эталон Эталон Эталон Эталон	2

Перечень вопросов для самостоятельной работы

Тема 1.1

- 1. Назначение и классификация металлургических печей.
- 2. Назначение и общая схема промышленной печи.

Тема 1.2

- 1. Нагрев дуговой и плазменный. Назначение, области эффективного применения.
- 2. Нагрев индукционный. Назначение, области эффективного применения
- 3. Нагрев электросопротивлением и электроннолучевой. Назначение, области эффективного применения.

Тема 1.3

- 1. Виды топлива и их состав. Условное топливо.
- 2. Основные характеристики топлива.
- 3. Устройства для сжигания топлива.

4. Содержание и последовательность расчетов горения топлива.

Тема 2.1

- 1. Основные закономерности механики печных газов.
- 2. Составление и анализ тепловых балансов печей, основные теплотехнические показатели работы печей и пути энергосбережения.

Тема 2.2

- 1. Свободные и частично ограниченные струйные течения.
- 2. Ограниченные струйные течения. Инжектор и эжектор.
- 3. Виды движения газов в печах.
- 4. Потери энергии при движении газов.

Тема 3.1

- 1. Материалы, применяемые в печах.
- 2. Основные элементы конструкций печей.
- 3. Основные типы плавильных, нагревательных и термических печей.
- 4. Огнеупорные материалы, их основные свойства.
- 5. Теплоизоляционные материалы, их основные свойства.

Тема 3.2

- 1. Основы технологии нагрева металла. Типовые режимы нагрева «тонких» и «массивных» заготовок.
 - 2. Особенности нагрева качественных сталей.
 - 3. Основы расчета нагрева «тонких» и «массивных» заготовок.
 - 4. Влияние условий охлаждения металла на его свойства.
 - 5. Виды брака при нагреве металла и пути снижения потерь металла.
 - 6. Коэффициент теплопроводности сталей и факторы, влияющие на него.

Тема 3.3

- 1. Использование вторичных энергоресурсов. Типы теплообменников, их назначение и сравнительная оценка.
- 2. Основы теории подобия и моделирования теплотехнических и теплоэнергетических процессов и оборудования.
 - 3. Очистка дымовых газов.

Тема 3.4

- 1. Классификация промышленных печей.
- 2. Вспомогательное оборудование печей.

Оценочные средства для проведения промежуточной аттестации

	-	Оценочные средства ктировании технических объектов, систем и технологических процессов с учетом экономических, экологических и
социальны	х ограничений	
Знать ОПК-2.1	Проводит технико-экономическое обоснование и экономическую оценку проектных решений и инженерных задач	Список контрольных вопросов: 1. Виды топлива и их состав. Условное топливо. 2. Основные характеристики топлива. 3. Устройства для сжигания топлива. 4. Содержание и последовательность расчетов горения топлива. 5. Нагрев дуговой и плазменный. Назначение, области эффективного применения. 6. Нагрев индукционный. Назначение, области эффективного применения 7. Нагрев электросопротивлением и электроннолучевой. Назначение, области эффективного применения 8. Основные закономерности механики печных газов. 9. Свободные и частично ограниченные струйные течения. 10. Ограниченные струйные течения. Инжектор и эжектор. 11. Виды движения газов в печах. 12. Потери энергии при движении газов. 13. Коэффициент теплопроводности сталей и факторы, влияющие на него. 14. Влияние условий охлаждения металла на его свойства. 15. Основы теории подобия и моделирования теплотехнических и теплоэнергетических процессов и оборудования.
ОПК-2.2	Проводит оценку проектных решений и инженерных задач, в том числе экологическую	Примеры задач: Пример 1. Определить температуру в центре сляба из малоуглеродистой стали толщиной 6 =0.3м, нагреваемого в методической зоне печи с шагающим подом с $t_{\text{пов}} = 0^{0}$ С до $t_{\text{пов}} = 600^{0}$ С, если температура продуктов сгорания в зоне печи меняется от 800^{0} С до 1300^{0} С в конце зоны. Средний коэффициент теплоотдачи принять 100 BT/m^{2} ·К Пример 2. Рассчитать рекуператор для подогрева воздуха для следующих условий: температура воздуха на входе рекуператора: $0-450^{0}$ С, температура дыма на входе в рекуператор - 1050^{0} С, расход газа на отопление печи B =5.46 M 3/с, количество дыма на входе в рекуператор V = $34.9 M$ 3/с. Состав дымовых газов: N_{2} =72%, CO_{2} =11%, H_{2} O =17%

Структур ный элемент компетен ции	Планируемые результаты обучения	Оценочные средства													
		Прим	ер комп.	пексной з	адачи по	вариантам:	асчет воз	лухонаі	тревател	тя ломенн	ой печи				
			Pacx	Темпе	Тип	Топливо	Темпе	Давл	ревателя доменной печи Влагосодержание, г/м ³			Коэфф	Тепло	Разме	Количест
		23	од дуть	-ратур а	насадк и		ра-тур а	ение Дуть	Дом	Приро	Возду	и-циен			во воздухона
		3ap-	Я,	подог			воздух	я,	енно	дного	xa	расход	ия	И	-гревател
		Номер вар-та	м ³ /м ин	рева воздух			а на входе	Мн/ м ²	го газа	газа		а воздух	смеси		ей в блоке
		Hon	m	а			В	IVI	1 4 3 4			а	В,		
							насадк У						н та р сгоран ячейк воз ия и -гр ей х топли		
	Анализирует и оценивает работоспособность предприятия (технических объектов, систем и процессов) с учетом социальных ограничений	1	3500	1200	Блочн ая	Дом.газ +прир.г	115	0.32	32	19	15	1.23		Ø 41	3
					БНИ-1 2-2	аз									
ОПК-2.3		2	2600	1230	Блочн ая БНИ-1 2-2	Дом.газ +прир.г аз	140	0.34	25	40	25	1.2	8.0	Ø 41	4
		3	3100	1170	Прямо угольн	Дом.газ +прир.г аз	130	0.35	35	25	18	1.25	5.1	60x60	3
		4	3300	1150	Блочн ая БНИ-1 2-2	Дом.газ +прир.г аз	100	0.37	30	35	23	1.22	5.2	Ø 41	3
		5	3500	1220	Фасон ная-Н К-2	Дом.газ +прир.г аз	110	0.39	35	35	19	1.2	5.0	55x55	4
		6	3600	1150	Фасон ная-Н К-2	Дом.газ +прир.г аз	125	0.36	28	32	25	1.24			3
		7	2900	1190	Ребри стая- К-2Н	Дом.газ +прир.г аз	120	0.32	25	30	20	1.24	5.3	65x65	3

Структур ный элемент компетен ции	Планируемые результаты обучения							Ou	еночн	іые ср	едства					
		8	3000	1220	Прямо угольн	Дом.газ +прир.г аз	18	0 0	.33	23	28	20	1.21	5.3	50x60	4
		9	5000	1200	Блочн ая БНИ-1 2-2	Дом.газ +прир.г аз	10	0 0	.43	33.7	13.5	25	1.25	5.1	Ø 41	4
		10	3600	1150	Фасон ная-Н К-2	Дом.газ +прир.г аз	12	5 0	.32	25.2	9.73	25	1.2	5.1	65x65	4
		11	2900	1180	Фасон ная-Н К-2	Дом.газ +прир.г аз	15	0 0	.29	30	25	20	1.25		55x55	3
		12	2700	1250	Фасон ная-Н К-2	Дом.газ +прир.г аз	15	0 0	.35	30	25	18	1.22	5.2	55x55	4
		13	2700	1000	Фасон ная-Н К-2	Дом.газ +прир.г аз	11	0 0	.31	33.7	18.5	14	1.2	4.8	55x65	4
		14	3800	1230	Фасон ная-Н К-2	Дом.газ +прир.г аз	12	0 0	.39	33.7	18.5	18	1.23	4.9	55x55	4
		15	2300	1170	Ребри стая- К-2Н	Дом.газ +прир.г аз	13	0 0	.27	40	30	18	1.22	4.9	55x65	4
							Тепловой расчет регенератора									
		Вари		мперат ура оздуха	Средняя температ ура	Вид топлив		Максі на тепл	ималь ія	Тем	перат ура одукто	Средний коэффици ент	Тип насадки	Разме р ячейк	_	олжительн ь периода, мин.
			на п	входе в енерат	подогрев а воздуха.			нагр печи,	узка	сго	в рания ходе в енерат	расхода воздуха в регенерат оре		и, мм		

Структур ный элемент компетен ции	Планируемые результаты обучения	Оценочные средства											
							op, C						
		1	20	970	Прир.газ+1 5% мазута	46.9	1570	1.44	Каупер	160x1 60	9		
		2	25	1000	Прир.газ+2 0% мазута	44.4	1520	1.46	Петерсе на	120x1 20	10		
		3	30	1050	Прир.газ+2 5% мазута	46.0	1560	1.48	Сименс	165x1 65	11		
		4	35	1110	Прир.газ+3 0% мазута	48	1500	1.50	Брусков ая	140x1 40	12		
		5	40	950	Прир.газ+1 5% мазута	50	1560	1.3	Каупер а	100x1 00	9		
		6	45	1050	Прир.газ+2 0% мазута	48.1	1490	1.34	Петерсе на	120x1 20	10		
		7	50	1100	Прир.газ+2 5% мазута	53.1	1480	1.36	Сименс а	140x1 40	11		
		8	55	1000	Прир.газ+3 0% мазута	55.5	1530	1.38	Брусков ая	100x1 00	12		
		9	20	1150	Прир.газ+1 5% мазута	58.2	1570	1.4	Каупер а	120x1 20	9		
		10	25	950	Прир.газ+2 0% мазута	54.3	1520	1.44	Петерсе на	140x1 40	10		
		11	30	1000	Прир.газ+2 5% мазута	56.5	1560	1.46	Сименс	100x1 00	11		
		12	35	1050	Прир.газ+3 0% мазута	48.1	1500	1.48	Брусков ая	120x1 20	12		
		13	40	1100	Прир.газ+1 5% мазута	53.1	1560	1.50	Каупер а	140x1 40	9		
		14	45	980	Прир.газ+2 0% мазута	55.5	1490	1.3	Петерсе на	100x1 00	10		
		15	50	950	Прир.газ+2 5% мазута	58.2	1480	1.34	Сименс а	120x1 20	11		
		16	20	1000	Прир.газ+3 0% мазута	54.3	1530	1.36	Брусков ая	140x1 40	12		

Структур ный элемент компетен ции	Планируемые результаты обучения	Оценочные средства											
		17	25	1050	Прир.газ+1 5% мазута	56.5	1570	1.38	Каупер а	100x1 00	9		
		18	30	1100	Прир.газ+2 0% мазута	48.1	1520	1.4	Петерсе на	120x1 20	10		
		19	35	980	Прир.газ+2 5% мазута	53.1	1560	1.44	Сименс	140x1 40	11		
		20	40	1000	Прир.газ+3 0% мазута	55.5	1500	1.46	Брусков ая	100x1 00	12		
		21	45	1050	Прир.газ+1 5% мазута	58.2	1560	1.48	Каупер а	120x1 20	9		
		22	50	1100	Прир.газ+2 0% мазута	54.3	1490	1.50	Петерсе на	140x1 40	10		
		23	20	950	Прир.газ+2 5% мазута	56.5	1480	1.3	Сименс	100x1 00	11		
		24	25	1000	Прир.газ+3 0% мазута	44.4	1530	1.34	Брусков ая	120x1 20	12		
		25	30	1050	Прир.газ+1 5% мазута	46.0	1480	1.36	Каупер а	140x1 40	9		

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Металлургическая теплотехника» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена.

Зачет по данной дисциплине проводится в устной форме.

Показатели и критерии оценивания зачета:

- на оценку «зачтено» обучающийся должен показать уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений. Так же должно быть представлено творческое задание, в котором отражены проблемы, касающиеся всех аспектов защиты окружающей среды от выбросов/сбросов объектов энергетики.
- на оценку «не зачтено» обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.