Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования
«Магнитогорский государственный технический университет
им. Г. И. Носова»
Многопрофильный колледж

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

ОП.08 ДИСКРЕТНАЯ МАТЕМАТИКА

ПРОГРАММЫ ПОДГОТОВКИ СПЕЦИАЛИСТОВ СРЕДНЕГО ЗВЕНА ПО СПЕЦИАЛЬНОСТИ СПО

09.02.01 Компьютерные системы и комплексы базовой полготовки

ОДОБРЕНО

Предметно-цикловой комиссией «Информатики и вычислительной тахники»

Председатель Зер- И.Г. Зорина

Протокол № 7 от 14 марта 2017 г.

Методической комиссией МпК

Протокол № 4 от «23» марта 2017г.

Разработчик (п):

преподаватель ФГБОУ ВО «МГТУ им. Г.И. Носова» МпК Елена Александровна Васильева

Комплект контрольно-оценочных средств для текущего контроля и промежуточной аттестации по учебной дисциплине составлен на основе ФГОС СПО по специальности 09.02.01 Компьютерные системы и комплексы, утвержденного «28» июля 2014 г. № 849, и рабочей программы учебной дисциплины «Дискретная математика»

общие положения

Учебная дисциплина «Дискретная математика» относится к общепрофессиональным дисциплинам.

В результате освоения дисциплины обучающийся должен уметь:

- У.1. Формулировать задачи логического характера и применять средства математической логики для их решения.
- У.2.Применять законы алгебры логики.
- У.3. Определять типы графов и давать их характеристики.
- У.4. Строить простейшие автоматы.

В результате освоения дисциплины обучающийся должен знать:

- 3.1. Основные понятия и приемы дискретной математики.
- 3.2. Логические операции, формулы логики, законы алгебры логики.
- 3.3. Основные классы функций, полнота множества функций, теорема Поста.
- 3.4. Основные понятия теории множеств, теоретико- множественные операции и их связь с логическими операциями.
- 3.5. Логика предикатов, бинарные отношения и их виды.
- 3.6. Элементы теории отображений и алгебры подстановок.
- 3.7. Метод математической индукции.
- 3.8. Алгоритмическое перечисление основных комбинаторных объектов.
- 3.9. Основные понятия теории графов, характеристики и виды графов.
- 3.10. Элементы теории автоматов.

Содержание дисциплины ориентировано на подготовку студентов к освоению профессионального модуля ПМ.01 ППССЗ по специальности и овладению профессиональными компетенциями:

- ПК 1.1. Выполнять требования технического задания на проектирование цифровых устройств.
- ПК 1.3. Использовать средства и методы автоматизированного проектирования при разработке цифровых устройств.

В процессе освоения дисциплины у студентов должны формироваться общие компетенции:

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- OК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- OK 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.

- ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.
- OK 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- OК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе освоения материала: опросы в устной и письменной форме, промежуточное тестирование, оценка самостоятельной работы обучающихся.

В качестве форм и методов текущего контроля используются домашние контрольные работы, практические занятия, тестирование и др.

Промежуточная аттестация в форме дифференцированного зачета.

Оценка индивидуальных образовательных достижений по результатам текущего контроля и промежуточной аттестации производится в соответствии с универсальной шкалой:

Процент результативности	Качественная оценка индивидуальных образовательных достижений			
(правильных ответов)	балл (отметка)	вербальный аналог		
90 ÷ 100	5	отлично		
80 ÷ 89	4	хорошо		
70 ÷ 79	3	удовлетворительно		
менее 70	2	не удовлетворительно		

Паспорт оценочных средств

		Контролиру	Контролиру	Наименовани	ie
No	Контролируемые разделы (темы)	емые	емые	оценочного сред	ства
JN⊡	учебной дисциплины	умения,	компетенци	Текущий контроль	Промежуточная
		знания	И	текущии контроль	аттестация
1.	Введение		ОК.1	Тест входного контроля	Вопросы для
		У.3, 3.1, 3.4,	OK 1-9	TC C	дифференциров
	Раздел 1. Множества	3.5, 3.6, 3.8,	ПК.1.1,	Контрольная работа по теме «Основы теории множеств»	анного зачета
		3.9	ПК.1.3	«Основы теории множеств»	
2.	Тема 1.1. Основы теории	3.1, 3.4, 3.5,	ПК.1.1,	Индивидуальное домашнее	
	множеств	3.6, 3.8	ПК.1.3	задание по теме 1.1	
3.	T 100	W2 21 20	ПК.1.1,	Индивидуальное домашнее задание по теме 1.2	
	Тема 1.2. Основы теории графов	У.3, 3.1, 3.9	ПК.1.3	Тестирование	
	D 2.16	W1W2 22	OK 1-9	Контрольная работа по теме	
	Раздел 2. Математическая	У.1-У.2, З.2- 3.7	ПК.1.1,	«Булевы функции».	
	логика	3.7	ПК.1.3		
4.	Тема 2.1. Законы логики.	У.1-У.2, З.2,	ПК.1.1,	Индивидуальное домашнее	
	Функции алгебры логики	3.4	ПК.1.3	задание по теме 2.1	
5.	Тема 2.2. Функционально	У.1-У.2, 3.3	ПК.1.1,	Индивидуальное домашнее задание по теме 2.2	
	замкнутые классы	3.1-3.2, 3.3	ПК.1.3	Задание по теме 2.2 Индивидуальное домашнее	
6.	Тома 2.2. Порима продимата	У.1-У.2, 3.5,	ПК.1.1,	задание по теме 2.3	
	Тема 2.3. Логика предикатов	3.6, 3.7	ПК.1.3	Тестирование	
	Раздел 3. Элементы теории	У.4, З.1, З.10	ОК 1-9	Тестирование	

	автоматов		ПК.1.1,		
			ПК.1.3		
7.	Тема 3.1. Конечные автоматы	У.4, 3.1, 3.10	ПК.1.1, ПК.1.3	Защита рефератов	

1. ВХОДНОЙ КОНТРОЛЬ

Спецификация

Входной контроль проводится с целью определения готовности обучающихся к освоению учебной дисциплины, базируется на дисциплинах, предшествующих изучению данной учебной дисциплины:

- математика;
- информатика.

По результатам входного контроля планируется осуществление в дальнейшем дифференцированного и индивидуального подхода к обучающимся. При низком уровне знаний проводятся корректирующие курсы, дополнительные занятия, консультации.

Примеры заданий входного контроля

1. 3	Закон	чи	ге	предло	жение.	В	ЭВ	M	все	опера	ции	над	pas	злич	ны	ИИ
даннь	ІМИ	_	чис	слами,	логиче	ски	МИ	3Н8	ачени	ями,	текс	тами	И	T.	Д.	_
произ	води	т														

- а) процессор;
- б) ОЗУ;
- в) ПЗУ.
- 2. Ответьте на вопрос. Эквивалентны ли следующие выражения: $3^{n+1} 3^n$ и $2 \cdot 3^n$
- 3. Для измерения количества информации применяют следующие единицы измерения: байт, бит. Какая из них больше?
 - а) Бит, так как 1 бит =16 байт;
 - б) Байт, так как 1 байт = 10 бит;
 - в) Байт, так как 1 байт = 8 бит.
- 4. Выберите правильный ответ. Число 9 в двоичной системе счисления выглядит так:
 - a) 1001;

в) 1111;

б) 1011;

r) 0011.

- 5. Закончите предложение. Двоичная система счисления имеет основание...
 - a) d = 2;
 - $\mathfrak{G}) \quad d = 0;$
 - B) d = 1.
- 6. Выберите то, что не является множеством:

- {1,2,3}; a)
- б) 34;
- {0}. в)
- Установите соответствие между кривыми и их функциональными зависимостями:
 - 1) окружность; a)
 - x + 4y = 6; 2) $2x^{2} y = 1$; 3) $x^{2} + y^{2} = 4$ б) прямая;
 - парабола; в)
- Какие знаки имеют координаты точки, если она принадлежит III 8. координатной четверти (выбери правильный ответ):
 - a) (+;+);

б) (-:+):

- в) (-;-); г) (+;-).
- На прямой, параллельной оси ОУ, взяты две точки. У одной из них абсцисса равна 3. Чему равна абсцисса другой точки?
 - 0; a)
 - 3: б)
 - B) -3.
- 10. Из точки А(2;3) опущен перпендикуляр на ось ОХ. Какие координаты имеет точка в основании перпендикуляра?
 - (0;3);a)
 - б) (3;0);
 - в) (2;0);
 - L) (0;2).

Критерии оценки

За каждый правильный ответ – 1 балл.

За неправильный ответ – 0 баллов.

Процент результативности	Качественная оценка индивидуальных образовательных достижений			
(правильных ответов)	балл (отметка)	вербальный аналог		
90 ÷ 100	5	отлично		
80 ÷ 89	4	хорошо		
70 ÷ 79	3	удовлетворительно		
менее 70	2	не удовлетворительно		

2. ТЕКУЩИЙ КОНТРОЛЬ

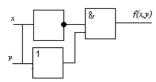
Текущий контроль успеваемости осуществляется в ходе повседневной учебной работы по курсу дисциплины по инициативе преподавателя. Данный вид контроля стимулирует у обучающихся стремление к систематической самостоятельной работе по изучению учебной дисциплины, овладению профессиональными и общими компетенциями, позволяет отслеживать положительные/отрицательные результаты и планировать предупреждающие/ корректирующие мероприятия.

Спецификация

Текущий контроль успеваемости осуществляется в виде фронтального опроса учащихся по теме предыдущего занятия и в результате проверки самостоятельной работы.

Текущий контроль успеваемости так же осуществляется в виде тестирования по вопросам, по завершению изучения темы.

После изучения разделов 1, 2 проводится контрольная работа.


2.1 Тестирование

- 1. Операция ИЛИ имеет результат «истина», если ...
 - а) оба операнда истинны;
 - б) оба операнда ложны;
 - в) хотя бы один ложный;
 - г) хотя бы один истинный.
- 2. Эквивалентность это функция обратная функции ...
 - а) конъюнкция;
 - б) штрих Шеффера;
 - в) сумма Жегалкина;
 - г) импликация.
- 3. Логическое выражение А&(В& \overline{B} \Rightarrow \overline{C}) принимает значение ...
 - a) 0010;
 - б) 0011;
 - в) 0101;
 - г) 1011.
- 4. Сколько наборов будет участвовать в СКН Φ для функции заданной таблично:

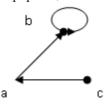
a	б	c	$(a \to \delta) \to \bar{c}$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1

1	1	0	1
1	1	1	0

- a) 3;
- б) 5;
- B) 8;
- r) 4.
- 5. Логическое выражение A & A равносильно:
 - a) 0
 - б) 1;
 - в) A;
 - Γ) A
- 6. Логическая функция $f(x, y, z) = x \& (yVz) V x \& ^{y} V x$ принимает значение, равное ...
 - a) y;
 - б) z;
 - в) x;
 - r) 1.
- 7. Выберите из перечисленного функцию, соответствующую построенной логической схеме:

- a) $f(x, y) = (xVy)V\overline{x}$;
- 6) $f(x,y) = (x \& y)V\overline{x}$;
- B) f(x, y) = (xVy) & x;
- $f(x, y) = \overline{x} \& yVx$
- 8. Выберите верный результат функции $F = A \oplus B$:
 - a) 1110;
 - б) 0101;
 - в) 1101;
 - r) 0110.
- 9. Для представления логической функции в виде полинома Жегалкина используются следующие логические функции ...
 - a) $\{1, \oplus, \vee\};$
 - $(0, \oplus, \vee);$

- $\{1, \oplus, \land\}$
- $(0, \oplus, \land)$
- 10. Для того, чтобы система логических функций F была полной, необходимо и достаточно, чтобы...
 - а) она целиком не содержалась ни в одном из классов Ko, K1, M, S, L;
 - б) она представима уравнением Жегалкина первой степени;
 - противоположных в) на всех наборах значения функций противоположны;
 - г) она принадлежала каждому замкнутому классу Ко, К1, М, S, L.
- 11. Является ли полной система функций {f, g, h} (принадлежность функций классам T_0, T_1, L, M, S отображена в таблице).


Функции	T_{0}	T_1	L	M	S
f	+	-	+	+	-
g	-	+	+	+	-
h	+	+	-	+	+

- а) да:
- б) нет.
- 12. Какая из систем принадлежит классу То?
 - a) $\{\vee,1\}$;
 - 6) $\{\oplus, \rightarrow, 0\}$;
 - B) $\{\oplus,1\}$;
 - Γ) $\{\oplus,\vee,0\}.$
- 13. Укажите соответствие между понятием и его обозначением:
 - а) объединение;
- 1. ○;
- б) разность;
- 2. \ , если $A\supset B$; 3. \;
- в) пересечение;
- г) дополнение;
- 4. ∪.
- 14. Заданы 2 множества $A = \{3,5,6,8,9,10\}$ и $B = \{9,3,10,14\}$, множество $C = (A \setminus B) \cup B$ имеет вид:
 - a) {3,5,6,8,9,10};

 - б) Ø; в) {3,9,10,14};
 - г) {3,5,6,8,9,10,14}.
- 15. Выражение « всякое натуральное число кратное 2 является четным» в виде формулы логики предиката имеет вид:

a)
$$\forall x, \forall n \quad (x \in N \lor x : 2 \to x = 2 \cdot n)$$

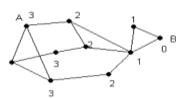
- δ) $\forall x (x ∈ N & x : 2, \text{ то } x \text{ кратное})$.
- $\forall x, \forall n \quad (x \in N \& x: 2 \rightarrow x = 2 \cdot n)$
- $\forall x, \forall n \quad (x \in N \& x : 2, x \kappa pathoe)$
- 16. Если $A=\{2,3,4,5,6,7,8\}$, то бинарное отношение $P=\{(x,y)\mid x,y\in A,x$ делит $yux\leq 3\}$ можно записать в виде ...
 - a) $P=\{(2,2),(2,4),(2,6),(2,8),(3,3),(3,6)\};$
 - 6) $P=\{(2,2),(2,4),(2,6),(2,8),(3,3),(3,6),(4,8)\};$
 - B) $P = \{(2,2),(2,4),(2,6),(2,8),(3,3),(3,6),(4,4),(4,8),(5,5),(6,6),(7,7),(8,8)\}.$
- 17. Установите соответствие между графической и аналитической интерпретацией отношения на множестве A, где $A = \{a,b,c\}$.

- a) $P=\{(b,a), (b,b), (c,a)\};$
- Θ) $P = {(a,b),(b,a),(b,b),(c,a),(a,c)};$
- B) $P=\{(a,b),(b,b)(c,a)\}.$
- 18. Чему равен порядок подстановки $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix}$
 - a) 2;
 - б) 3;
 - в) 4;
 - г) 5.
- 19. Чему равно число инверсий подстановки $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix}$.
 - a) 5;
 - б) 6;
 - в) 3;
 - r) 2.
- 20. Существует ли отображение, обратное отображению $x \rightarrow x4 4x2 + 3$, X

$$= [-\infty; -\sqrt{3}], Y=R?$$

- а) да;
- б) нет.
- 21. Выражение $9^{n+1} 8n 9$ для всех $n \ge 0$ кратно ...
 - a) 7;

- б) 9;
- в) 4;
- г) 5.
- 22. Выберите правильную запись свойства сравнения: два числа, сравнимые с третьим по одному модулю, сравнимы между собой:
 - a) $(a \equiv b \pmod{p}, b \equiv c \pmod{p}) \Rightarrow a \equiv c \pmod{p}$.
 - 6) $(a \equiv b \pmod{p}, c \equiv d \pmod{p}) \Rightarrow (a \pm c) \equiv (b \pm d) \pmod{p}$.
 - B) $(a \pm c) \equiv (b \pm d) \pmod{p}$:
 - $\Gamma) \quad (a \equiv b \pmod{p}) \Longrightarrow (ak \equiv bk \pmod{p})$
- 23. Система счисления это ...
 - а) представление чисел в экспоненциальной форме;
 - б) представление чисел с постоянным положением запятой;
 - в) способ представления чисел с помощью символов, имеющих определённые количественные значения;
 - г) представление чисел в виде ряда и в виде разрядной сетки.
- 24. В чем заключается принцип шифрования рассеивание:
 - в использовании таких шифрующих преобразований, которые исключают восстановление взаимосвязи статистических свойств открытого и шифрованного текста;
 - б) в распространении влияния одного символа открытого текста на много символов шифртекста.
- 25. Какое из представленных выражений кратно 2?
 - a) $n \cdot (n+1) + 10$:
 - $(n-1)\cdot (n+1)+2$
- 26. Доказать методом математической индукции кратность 3 выражения: $n^2 + 11$
- 27. Имеется 5 видов открыток без марок и 4 вида марок. Сколькими способами можно выбрать конверт и марку для посылки письма?
 - a) 20;
 - б) 9;
 - в) 41;
 - r) 5.
- 28. Сколько существует двузначных чисел, у которых обе цифры четные?
 - a) 16:
 - б) 20;
 - в) 29;
 - r) 10.
- 29. Число инцидентных ребер графа называют ...
 - а) петлей;
 - б) степенью вершины;


- в) мощностью ребер;
- г) мощностью ребер.
- 30. Две вершины называются смежными, если ...
 - а) существует соединяющее их ребро;
 - б) существует вершина соединяющая их ребро;
 - в) существует петля этих вершин.
- 31. Кратчайший путь от В к А, если длина рёбер одинаковая равен ...
 - a) 2;
 - б) 3;
 - в) 4:
 - r) 5.
- 32. Дерево с n+1 вершинами содержит ...
 - а) пребро;
 - б) n+1 ребро;
 - в) n-1 ребро.
- 33. Может ли логическое устройство иметь несколько выходов?
- 34. Какое дискретное устройство из ниже перечисленных входит в схему арифметико-логического устройства?
 - а) многоразрядный параллельный сумматор;
 - б) двунаправленный регистр;
 - в) ЈК-триггер;
 - г) D-триггер.
- 35. Дополнительный код двоичного числа это ...
 - а) число, дополняющее данное до максимального значения (2^n-1) , где n-10 где n-1
 - б) число, дополняющее данное до переполнения (2^n) и получающееся прибавлением (1)» к обратному коду числа;
 - в) сумма всех разрядов двоичного числа произведение всех разрядов двоичного числа.

Критерии оценки

За каждый правильный ответ – 1 балл.

За неправильный ответ – 0 баллов.

Процент результативности	Качественная оценка индивидуальных образовательных достижений			
(правильных ответов)	балл (отметка)	вербальный аналог		
90 ÷ 100	5	отлично		
80 ÷ 89	4	хорошо		
70 ÷ 79	3	удовлетворительно		
менее 70	2	не удовлетворительно		

2.2 Контрольные работы

Спецификация

Контрольные работы проводятся после изучения соответствующего раздела.

Контрольная работа по теме «Основы теории множеств».

1. Найдите $\sigma_1 \circ \sigma_2$, $\sigma_2 \circ \sigma_1$, σ_1^3 , σ_2^4 , σ_1^{-1} , порядок каждой из подстановок, число инверсий и четность подстановки σ_1 .

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix} \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$

2. Решите задачу. Из 100 студентов 42 посещают спортивные секции, 30 — занятия НСО, а 28 — кружки художественной самодеятельности. На занятия НСО и спортом успевают ходить 5 студентов, спортом и художественной самодеятельностью занимаются 10, НСО и художественной самодеятельностью — 8, а сразу все три увлечения имеют три студента. Сколько студентов не посещают ни одно из этих объединений по интересам?

Контрольная работа по теме «Булевы функции».

- 1. Построить таблицу функции.
- 2. По таблице составить совершенные ДНФ и КНФ.
- 3. Найти разложение БФ в дизъюнктивную форму по переменным x, z. Проверить результат с помощью таблицы.
- 4. Упростить исходную формулу и проверить результат с помощью таблицы.
- 5. Построить СДНФ и СКНФ по исходной формуле с помощью эквивалентных преобразований.

$$(x \vee y) \rightarrow (z \oplus x)$$

2.3. Индивидуальное домашнее задание

Спецификация

Индивидуальное домашнее задание входит в состав комплекта контрольно-оценочных средств и предназначается для текущего контроля и оценки умений и знаний обучающихся 2 курса по специальности 09.02.01 Компьютерные системы и комплексы по программе учебной дисциплины «Дискретная математика». Выполнение индивидуального домашнего задания по теме 1.1. Основы теории множеств позволяет закрепить теоретические знания и применить их на практике.

Индивидуальное домашнее задание по теме 1.1. Основы теории множеств

Задание 1. Даны множества A и B. Найдите множества $A \cup B, A \cap B, A \cup C, A \cap C, A \setminus B, B \setminus A$.

 $A = \{-3, -2, -1, 0, 1, 2, 3, 7\}, B = \{5, 3, 2, 1, 0, -2, -3\}, C = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}.$

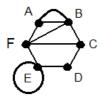
Задание 2. Докажите тождество с помощью кругов Эйлера.

 $(X \cap Y) \cup Z = (X \cup Z) \cap (Y \cup Z)$

Критерии оценки:

- оценка «отлично» выставляется студенту, если правильно выполнены все задания;
- оценка «хорошо» выставляется студенту, если в заданиях допущены незначительные вычислительные ошибки;
- оценка «удовлетворительно» выставляется студенту, если выполнено правильно одно из заданий;
- оценка «неудовлетворительно» выставляется студенту, если в работе допущены существенные ошибки, неправильно применены формулы.

3. ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ


Промежуточная аттестация обучающихся по учебной дисциплине, осуществляется по завершении изучения данной дисциплины и позволяет определить качество и уровень ее освоения. Предметом оценки освоения учебной дисциплины являются умения и знания.

Дифференцированный зачет предназначается для итогового контроля и оценки умений и знаний обучающихся 2 курса специальности 09.02.01 Компьютерные системы и комплексы по программе учебной дисциплины «Дискретная математика». Зачет проводится на последнем занятии по дисциплине.

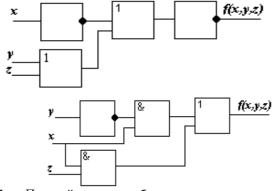
3.1 Вопросы зачета

- 1. Сформулируйте определение высказывания. Приведите примеры высказываний. Приведите примеры предложений, которые не являются высказываниями. Какие значения может принимать высказывание?
- 2. Сформулируйте определение логической функции. Как может быть задана логическая функция? В чем особенности табличного задания функции? Приведите пример табличного задания логической функции.
- 3. Что представляет собой таблица истинности функции? Чему равно общее число наборов переменных логической функции и ее значений?
- 4. Сколько существует логических функций одной переменной? Объясните смысл операции отрицания?
- 5. Сколько существует логических функций от двух переменных? Объясните смысл операции конъюнкции двух переменных с привлечением множеств. Приведите таблицу истинности функции «конъюнкция x_1 , x_2 ».
- 6. Сколько существует логических функций от двух переменных? Объясните смысл операции дизъюнкция двух переменных с привлечением множеств. Приведите таблицу истинности функции «дизъюнкция x_1 , x_2 ».
- 7. Приведите пример задания логической функции формулой. Можно ли задать одну и ту же функцию различными формулами? Какие формулы называются эквивалентными? Как доказывается эквивалентность формул логических функций?
- 8. Какая формула называется булевой? Перечислите четыре основные разновидности булевых формул.
- 9. Дайте определение булевой алгебры логических функций. Справедливы ли сочетательный, переместительный и распределительный законы для операций булевой алгебры? Допишите правую часть для распределительного закона относительно дизъюнкции двух переменных $x_1 \wedge (x_2 \vee x_3) = ?$
- 10. Дайте определение булевой алгебры логических функций. Справедливы ли сочетательный, переместительный и распределительный законы для операций булевой алгебры? Допишите правую часть для распределительного закона относительно конъюнкции двух переменных $x_1 \lor (x_2 \land x_3) = ?$

- 11. Сформулируйте определение элементарной конъюнкции и дизъюнктивной нормальной формы (ДНФ). Чем отличается ДНФ от СДНФ?
- 12. Сформулируйте определение элементарной дизъюнкции и конъюнктивной нормальной формы (КНФ). Чем отличается КНФ от СКНФ?
- 13. В чем смысл минимизации булевых формул? Перечислите основные методы минимизации булевых формул.
- 14. Какая система функций называется функционально полной? Приведите пример функционально полных систем.
- 15. Сформулируйте определение алгебры Жегалкина. Сформулируйте определение замыкания множества логических функций.
- 16. На основании каких элементов составляются логические схемы? Какие требования предъявляются к логическим схемам?
- 17. В чем смысл задачи анализа логических схем? Каковы два пути анализа логических схем?
- 18. Сформулируйте определение предиката. Что представляет собой предметная область предиката и какие значения может принимать предикат?
- 19. В чем отличие предиката от булевой функции? Каков смысл кванторов общности и существования? Как определяется истинность предиката?
- 20. Сформулируйте определение множества. Приведите примеры множества. Перечислите способы задания множеств. Приведите примеры.
- 21. Перечислите основные операции над множествами. Приведите примеры на кругах Эйлера.
- 22. Сформулируйте определение подстановки. Приведите пример подстановки. Что такое инверсия и транспозиция подстановки.
- 23. Сформулируйте определение декартова произведения множеств. Приведите примеры. Чему равна длина (мощность) множества.
- 24. Основы теории кодирования текстовой информации.
- 25. Основы алгебры вычетов.
- 26. Сформулируйте определение графа. Приведите примеры ориентированного и неориентированного графов.
- 27. Сформулируйте определение графа. Для данного графа укажите степень вершин и кратность ребер.

3.2 Типовые задания

1. Как на основании таблицы истинности функции получить СДНФ?


Постройте ее для следующей таблицы:

x_1	x_2	F
0	0	0
0	1	1
1	0	0
1	1	1

2. Как на основании таблицы истинности функции получить СКНФ? Постройте ее для такой таблицы:

x_I	x_2	F
0	0	1
0	1	0
1	0	0
1	1	1

- 3. Минимизируйте функцию $F(x_1, x_2) = (\overline{x_1} \wedge x_2) \vee (x_1 \wedge x_2)$.
- 4. Построить логические функции для следующих схем:

- 5. Постройте таблицы истинности для функций: $F(x_1,x_2)=(x_1\wedge x_2)\vee \overline{x_1}, \quad F(x_1,x_2)=(x_1\vee x_2)\wedge \overline{x_2}$. Сконструируйте логические схемы, реализующие эти функции.
- 6. Решите задачу. Из 100 студентов университета английский язык знают 28 студентов, немецкий 30, французский 42, английский и немецкий 8, английский и французский 10, немецкий и французский 5, все три языка знают 3 студента. Сколько студентов не знают ни одного из трех языков?
- 7. Найдите $\sigma_1 \circ \sigma_2$, $\sigma_2 \circ \sigma_1$, σ_1^3 , σ_2^4 , σ_1^{-1} , порядок каждой из подстановок, число инверсий и четность подстановки σ_1 .

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix} \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$

8. Докажите тождество с помощью кругов Эйлера:

 $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z).$

- 9. Пусть даны множества A={-3;-2;-1;0;1;2;3;7}, B={5;3;2;1;0;-2;-3}, C={-4;-3;-2;-1;0;1;2;3;4}. Найдите множества $A\cup B$, $A\cap B$, $A\cup C$, $B\cup C$ $A\setminus B$, $B\setminus A$
- 10. Выполните действия: а) 271,34 $_{(8)}$ + 1566,2 $_{(8)}$; б) 65,2 $_{(16)}$ + 3CA,8 $_{(16)}$; в) 731,6 $_{(8)}$ 622,6 $_{(8)}$; г) 22D,1 $_{(16)}$ 123,8 $_{(16)}$.
- 11. Полна ли система функций $\{f, g, h\}$ (принадлежность функций классам T_0 , T_1 , L , M , S отображена в таблице).

Функции	T_{0}	T_1	L	M	S
f	-	-	+	-	+
g	+	+	+	+	+
h	+	+	-	-	+

12. Полна ли система функций {F, G, H} (принадлежность функций классам T_0 , T_1 , L , M , S отображена в таблице).

Функции	T_{0}	T_1	L	M	S
F	-	+	-	-	-
G	-	+	+	+	-
H	-	-	-	-	+

Критерии оценки

Оценка «отлично» ставится:

- Дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний по дисциплине, доказательно раскрыты основные положения вопроса, отражены основные концепции и теории по данному вопросу, описанные теоретические положения иллюстрируются практическими примерами;
- в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений;
- знание по предмету демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей;
- ответ изложен в соответствии с требованиями культуры речи и с использованием соответствующей системы понятий и терминов (могут быть допущены недочеты в определении понятий, исправленные студентом самостоятельно в процессе ответа).

Оценка «хорошо» ставится:

- Дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-

следственные связи, однако студент испытывает затруднения при иллюстрации теоретических положений практическими примерами.

- Ответ четко структурирован, логичен, изложен в соответствии с требованиями культуры речи и с использованием соответствующей системы понятий и терминов.
- Могут быть допущены 2-3 неточности или незначительные ошибки, исправленные студентом с помощью преподавателя.

Оценка «удовлетворительно» ставится:

- Дан недостаточно полный и недостаточно развернутый ответ. Студент не может проиллюстрировать теоретические положения практическими примерами.
- Логика и последовательность изложения имеют нарушения; допущены ошибки в раскрытии понятий, употреблении терминов, которые студент способен исправить после наводящих вопросов (допускается не более двух ошибок, не исправленных студентом).
- Студент не способен самостоятельно выделить существенные и несущественные признаки и причинно-следственные связи, сделать выводы.
- Речевое оформление требует поправок, коррекции, не используются понятия и термины соответствующей научной области.

Оценка «неудовлетворительно» ставится:

- Ответ представляет собой разрозненные знания с существенными ошибками по вопросу, присутствуют фрагментарность, нелогичность изложения.
- Студент не осознает связь обсуждаемого вопроса по билету с другими объектами дисциплины. Отсутствуют выводы, конкретизация и доказательность изложения.
- Речь неграмотная, необходимая терминология не используется, студент не дает определения базовым понятиям.
- Отсутствие ответов на вопросы, дополнительные и уточняющие вопросы преподавателя не приводят к коррекции ошибочных ответов студента.