Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магинтогорский государственный технический университет им. Г. И. Носова» Многопрофильный колледж

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ПРОФЕССИОНАЛЬНОМУ МОДУЛЮ

ПМ.02 ПРИМЕНЕНИЕ МИКРОПРОЦЕССОРНЫХ СИСТЕМ, УСТАНОВКА И НАСТРОЙКА ПЕРИФЕРИЙНОГО ОБОРУДОВАНИЯ

ПРОГРАММЫ ПОДГОТОВКИ СПЕЦИАЛИСТОВ СРЕДНЕГО ЗВЕНА ПО СПЕЦИАЛЬНОСТИ СПО

09.02.01 Компьютерные системы и комплексы базовой подготовки

Магнитогорск, 2017

ОДОБРЕНО

Предметно-цикловой комиссией «Информатики и вычислительной -

техники»

Председатель

/ И.Г. Зорина

Протокол №7 от 14 марта

2017 г.

Методической комиссией МпК

Протокол № 4 от «23» марта 2017г.

СОГЛАСОВАНО

ислуиции пиженер, программист проектного отдела ООО «ОСК»

Вистрий Борисовии Лукин_

КИПИА

Разработчики:

преподаватель ФГБОУ ВО «МГТУ им. Г.И. Носова» Многопрофильный колледж Анна Петровна Иванченко

преподаватель ФГБОУ ВО «МГТУ им. Г.И. Носова» Многопрофильный колледж Татьяна Борисовна Ремез

Комплект контрольно-оценочных средств составлен на основе ФГОС СПО по специальности 09.02.01 Компьютерные системы и комплексы утвержденного 24 июля 2014г. № 849, и рабочей программы профессионального модуля ПМ.02 Применение микропроцессорных систем, установка и настройка периферийного оборудования и предназначен для контроля и оценки образовательных достижений обучающихся.

СОДЕРЖАНИЕ

1 ОБЩИЕ ПОЛОЖЕНИЯ	4
2 ОЦЕНКА ОСВОЕНИЯ ТЕОРЕТИЧЕСКОГО КУРСА ПРОФЕССИОНАЛЬНОГО МОДУЛЯ	7
3 КОНТРОЛЬ ПРИОБРЕТЕНИЯ ПРАКТИЧЕСКОГО ОПЫТА. ОЦЕНКА ПО УЧЕБНОЙ И	
ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ	29
4 КОНТРОЛЬНО-ОПЕНОЧНЫЕ СРЕДСТВА ДЛЯ ЭКЗАМЕНА (квалификационного)	30

1 ОБЩИЕ ПОЛОЖЕНИЯ

Результатом освоения профессионального модуля является готовность обучающегося к выполнению вида деятельности Применение микропроцессорных систем, установка и настройка периферийного оборудования и составляющих его профессиональных компетенций, а также общие компетенции, формирующиеся в процессе освоения программы подготовки специалистов среднего звена в целом.

Формой аттестации по профессиональному модулю является экзамен (квалификационный). Экзамен (квалификационный) проводится в форме выполнения кейсзаланий

Итогом экзамена является однозначное решение: «вид профессиональной деятельности освоен / не освоен».

1.1 ФОРМЫ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ПРОФЕССИОНАЛЬНОМУ МОДУЛЮ

Таблина 1.1

Элементы модуля	Формы промежуточной	
	аттестации	
1	2	
МДК 02.01 Микропроцессорные системы	экзамен	
МДК 02.02 Установка и конфигурирование периферийного	экзамен	
оборудования		
Учебная практика УП.02	зачет	
Производственная практика (по профилю специальности)	зачет	
ПМ.02	Экзамен (квалификационный)	

1.2 РЕЗУЛЬТАТЫ ОСВОЕНИЯ МОДУЛЯ, ПОДЛЕЖАЩИЕ ПРОВЕРКЕ

1.2.1 Профессиональные и общие компетенции

В результате контроля и оценки по профессиональному модулю осуществляется комплексная проверка следующих профессиональных и общих компетенций

Таблица 1.2

Профессиональные компетенции	Основные показатели оценки результата*
(должны быть сформированы в	
полном объеме)	
ПК 2.1. Создавать программы на	ОПОР 2.1.1 Владение навыками разработки блок-схем
языке ассемблера для	алгоритма работы
микропроцессорных систем.	микроконтроллера/микропроцессора
	ОПОР 2.1.2 Владение навыками разработки
	управляющей программы для микропроцессорных
	систем на ассемблере
	ОПОР 2.1.3 Владение навыками выбора
	микроконтроллера для конкретной схемы управления
ПК 2.2. Производить тестирование,	ОПОР 2.2.1 Владение навыками анализа алгоритма
определение параметров и отладку	работы микроконтроллера/микропроцессора
микропроцессорных систем.	ОПОР 2.2.2 Владение навыками использования
	интегрированных сред разработки программного
	обеспечения
	ОПОР 2.2.3 Владение навыками комплексной отладки

	аппаратного и программного обеспечения	
	микроконтроллера	
ПК 2.3. Осуществлять установку и	ОПОР 2.3.1 Владение навыками конфигурирования	
конфигурирование персональных	персональных компьютеров	
компьютеров и подключение	ОПОР 2.3.2 Владение навыками подготовки	
периферийных устройств.	компьютерной системы к работе	
	ОПОР 2.3.3 Владение навыками подключения и	
	настройки периферийного оборудования	
ПК 2.4. Выявлять причины	ОПОР 2.4.1 Владение навыками применения	
неисправности периферийного	современных методов диагностики периферийного	
оборудования.	оборудования	
	ОПОР 2.4.2 Владение навыками использования	
	сервисной аппаратуры при определении	
	неисправностей	
	ОПОР 2.4.3 Владение навыками выявления причин	
	неисправностей и сбоев периферийного оборудования,	
	применения мер по их устранению	

Таблица 1.3

Результаты (освоенные общие компетенции)	Основные показатели оценки результата	
OK1. Понимать сущность и социальную значимость своей будущей профессии,	ОПОР 1.1 Аргументировано обосновывает сущность и значимость будущей профессии	
проявлять к ней устойчивый интерес.	ОПОР 1.2 Планирует получение дополнительных навыков в рамках своей будущей профессии.	
	ОПОР 1.3 Анализирует свои способности и возможности в профессиональной деятельности в процессе собеседования с работодателем, педагогическим работником, руководителем практики.	
	ОПОР 1.4 Составляет резюме.	
	ОПОР 1.5 Составляет портфолио работ и достижений в соответствии с установленными требованиями.	
ОК 2. Организовывать собственную деятельность, выбирать типовые методы	ОПОР 2.1 Аргументированно обосновывает профессиональную задачу или проблему.	
и способы выполнения профессиональных задач, оценивать их эффективность и качество.	ОПОР 2.2 Составляет план решения профессиональной задачи.	
эффективноств и ка тество.	ОПОР 2.3 Оценивает результаты решения профессиональной задачи.	
ОК 3. Принимать решения в стандартных и нестандартных ситуациях	ОПОР 3.1 Принимает решение в стандартной профессиональной ситуации.	
и нести за них ответственность.	ОПОР 3.2 Принимает решение в нестандартной профессиональной ситуации.	
	ОПОР 3.3 Оценивает результаты и последствия своих действий в стандартных и нестандартных ситуациях.	
ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного	ОПОР 4.1 Подбирает необходимые источники информации для решения профессиональных задач, профессионального и личностного развития.	

выполнения профессиональных задач, профессионального и личностного развития.	ОПОР 4.2 Структурирует получаемую информацию. ОПОР 4.3 Оформляет результаты поиска информации в соответствии с принятыми нормами.			
ОК 5. Использовать информационно- коммуникационные технологии в профессиональной деятельности.	ОПОР 5.1 Использует средства информационно- коммуникационных технологий в профессиональной деятельности. ОПОР 5.2 Применяет специализированное программное обеспечение при решении профессиональных задач. ОПОР 5.3 Демонстрирует культуру поведения в сети интернет с учетом требований информационной безопасности.			
ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами,	ОПОР 6.1 Демонстрирует навыки работы в коллективе и/или команде.			
руководством, потребителями.	ОПОР 6.2 Осуществляет взаимодействие с коллегами, руководством, потребителями в смоделированной ситуации профессиональной деятельности. ОПОР 6.3 Демонстрирует владение способами решения конфликтной ситуации в профессиональной деятельности.			
ОК 7. Брать на себя ответственность за работу членов команды (подчиненных),	ОПОР 7.1 Планирует деятельность членов команды и распределяет роли.			
результат выполнения заданий.	ОПОР 7.2 Выбирает оптимальные решения при выполнении заданий.			
	ОПОР 7.3 Выполняет функции лидера команды (руководителя проекта).			
	ОПОР 7.4 Анализирует деятельность членов команды при решении профессиональных задач.			
	ОПОР 7.5 Планирует деятельность членов команды по улучшению достигнутых результатов.			
ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься	ОПОР 8.1 Составляет свою профессиограмму.			
самообразованием, осознанно планировать повышение квалификации.	ОПОР 8.2 Планирует собственное повышение квалификации в соответствии с намеченным планом.			
	ОПОР 8.3 Осваивает дополнительные образовательные программы.			
ОК 9. Ориентироваться в условиях частой смены технологий в	ОПОР 9.1 Владеет информацией в области инноваций в профессиональной сфере деятельности.			
профессиональной деятельности.	ОПОР 9.2 Составляет алгоритм действий при смене технологий в профессиональной деятельности.			
	ОПОР 9.3 Анализирует актуальность технологических процессов при выполнении профессиональных задач.			

2 ОЦЕНКА ОСВОЕНИЯ ТЕОРЕТИЧЕСКОГО КУРСА ПРОФЕССИОНАЛЬНОГО МОДУЛЯ

Основной целью оценки МДК 02.01 Микропроцессорные системы и МДК 02.02 Установка и конфигурирование периферийного оборудования является оценка умений и знаний.

Обучающийся в ходе освоения профессионального модуля должен:

уметь:

- 1 составлять программы на языке ассемблера для микропроцессорных систем;
- 2 производить тестирование и отладку микропроцессорных систем (далее МПС);
- 3 выбирать микроконтроллер/микропроцессор для конкретной системы управления;
- 4 осуществлять установку и конфигурирование персональных компьютеров и подключение периферийных устройств;
 - 5 подготавливать компьютерную систему к работе;
 - 6 проводить инсталляцию и настройку компьютерных систем;
 - 7 выявлять причины неисправностей и сбоев, принимать меры по их устранению.

знать:

- 1 базовую функциональную схему МПС;
- 2 программное обеспечение микропроцессорных систем;
- 3 структуру типовой системы управления (контроллер) и организацию микроконтроллерных систем;
 - 4 методы тестирования и способы отладки МПС;
- 5 информационное взаимодействие различных устройств через информационнокоммуникационную сеть «Интернет» (далее – сеть Интернет);
 - 6 состояние производства и использование МПС;
- 7 способы конфигурирования и установки персональных компьютеров, программную поддержку их работы;
- 8 классификацию, общие принципы построения и физические основы работы периферийных устройств;
 - 9 способы подключения стандартных и нестандартных программных утилит;
 - 10 причины неисправностей и возможных сбоев.

Оценка теоретического курса профессионального модуля осуществляется с использованием следующих форм и методов контроля: вопросы контрольной работы; выполнение и защита практических и лабораторных работ; выполнение самостоятельной работы.

Паспорт оценочных средств

	Контролируемые разделы (темы)	Контролируемые	Контролируемые	Наименование оценочного средства	
№	МДК*	умения, знания	компетенции	Текущий контроль	Промежуточная аттестация
1	Тема 1.1. Общие сведения о микропроцессорных системах (МПС). Основные понятия и определения	У3, 36	ПК 2.2	Контрольный опрос. Самостоятельная работа	
2	Тема 1.2. Однокристальные МП	У3, 31, 33	ПК 2.2	Текущий контроль. Самостоятельная работа	
3	Тема 1.3 МПС	У3, 31, 33	ПК 2.2	Текущий контроль. Самостоятельная работа	
4	Тема 1.4. Организация памяти МПС	У3, 31, 33	ПК 2.2	Контрольный опрос. Самостоятельная работа	
5	Тема 1.5. Организация ввода/вывода данных МПС	У3, 31, 33	ПК 2.2	Контрольная работа№1, самостоятельная работа	Экзамен
6	Тема 1.6. Микроконтроллеры	У1,У3, 32, 33	ПК 2.1	Контрольная работа№2, самостоятельная работа	
7	Тема 1.7. Применение МПС	У3, 33, 36	ПК 2.1	Контрольная работа№3	
8	Тема 1.8 Программирование микроконтроллеров	У1, У2, 32, 34	ПК 2.1	Контрольная работа№4, самостоятельная работа	
9	Тема 1.9 МПС на основе программируемых логических контроллеров (ПЛК)	У1, У3, 32, 33, 36	ПК 2.1	Контрольная работа№5	
10	Тема 2.1. Общие сведения о периферийных устройствах	У4, 37, 38	ПК 2.3	Контрольная работа№ 2.1, самостоятельная работа	
11	Тема 2.2. Внешние запоминающие устройства	У4, 37, 38	ПК 2.3	Контрольная работа № 2.2, самостоятельная работа	Экзамен
12	Тема 2.3. Конфигурирование персональных компьютеров	У4, У6, 37, 38	ПК 2.3, ПК 2.4	Контрольная работа№ 2.3, самостоятельная работа	
13	Тема 2.4. Подключение	У5, 39	ПК 2.3	Текущий контроль	

периферийных устройств				
14 Тема 2.5. Выявление причин неисправностей и сбоев компьютерных систем	У7, 310	ПК 2.4	Самостоятельная работа, текущий контроль	

Типовые задания для оценки освоения МДК

2.1 Задания для оценки освоения МДК 02.01

2.1.1 ВХОДНОЙ КОНТРОЛЬ

Спецификация

Входной контроль проводится с целью определения готовности обучающихся к освоению междисциплинарного курса, базируется на дисциплинах, предшествующих изучению данного междисциплинарного курса:

- Прикладная электроника;
- Электротехнические измерения;
- Информационные технологии;
- Операционные системы и среды;
- Основы алгоритмизации и программирования.

По результатам входного контроля планируется осуществление в дальнейшем дифференцированного и индивидуального подхода к обучающимся. При низком уровне знаний проводятся корректирующие курсы, дополнительные занятия, консультации.

Примеры заданий входного контроля

- 1. Закончите предложение: электропроводность в полупроводниках осуществляется ...
- а) положительными ионами;
- б) свободными электронами;
- в) электронами и «дырками»;
- г) ионами и электронами.
- 2. Выберите полупроводниковый материал.
- а) кремний; б) уголь; в) каучук; г) сталь; д) медь.
- 3. Ответьте на вопрос: какими носителями заряда осуществляется электропроводность в полупроводниках *n*-типа?
 - а) электронами;
 - б) положительными ионами;
 - в) электронами и «дырками»;
 - 4. Закончите предложение: светодиод- это полупроводниковый прибор, в котором происходит...
 - а) преобразование электрической энергии в световую;
 - б) преобразование световой энергии в электрическую;
 - в) изменение сопротивление под действием светового потока;
 - г) усиление электронного потока за счет внешнего фотоэффекта.
 - 5. В цифровых ИМС в качестве ключей применяются ...
 - а) полупроводниковые диоды, биполярные трпнзисторы;
 - б) фотоэлектронные приборы;
 - в) реле и автоматические выключатели.
 - 6. Цифровые электронные схемы применяются:
 - а) в автогенераторах; б) в ЭВМ; в) ПЛМК
 - 7. Изобразите логическую схему элемента «ИЛИ НЕ».
- 8.В каком устройстве при изменении входной величины происходит скачкообразное изменение выходной величины?
- а) датчик; б) усилитель; в) реле.
 - 9. Что такое интегральная микросхема (ИМС)?
- а) миниатюрная электронная цепь в корпусе;
- б) любая цепь, содержащая электронные приборы;
- в) устройство для хранения и преобразования информации.
 - 10. Выберите устройства, в которых применяется электропривод:
 - а) универсальный станок;

- б) автотрансформатор;
- в) микропроцессор;
- г) полупроводниковые преобразователи.

Критерии оценки

критерии оценки				
Процент результативности	Качественная оценка индивидуальнь образовательных достижений			
(правильных ответов)	балл (отметка)	вербальный аналог		
90 ÷ 100	5	отлично		
80 ÷ 89	4	хорошо		
70 ÷ 79	3	удовлетворительно		
менее 70	2	неудовлетворительно		

2.1.2 Текущий контроль

Текущий контроль успеваемости осуществляется в ходе повседневной учебной работы по междисциплинарному курсу. Данный вид контроля должен стимулировать стремление к систематической самостоятельной работе по изучению программы курса, овладению профессиональными и общими компетенциями, позволяет отслеживать положительные/отрицательные результаты и планировать предупреждающие/ корректирующие мероприятия.

Формы текущего контроля

1 КОНТРОЛЬНЫЕ РАБОТЫ

Раздел 1

Контрольная работа входит в состав комплекта контрольно-оценочных средств и предназначается для текущего контроля и оценки умений и знаний, обучающихся 3 курса специальности 09.02.01 Компьютерные системы и комплексы по МДК.02.01. Микропроцессорные системы

Контрольный опрос №1 проводится в устном виде после изучения темы: Тема 1.1. Общие сведения о микропроцессорных системах (МПС). Основные понятия и определения

Время опроса:

всего - 15 мин.

Вопросы

- 1. Микропроцессор (МП) это...
- 2. Микропроцессорная система это...
- 3. Микропроцессорный комплект это...
- 4. Программа это...
- 5. Система команд это...

Критерии оценки:

- оценка «отлично» выставляется студенту, если он дал полный, развернутый ответ на вопрос;
- оценка «хорошо» выставляется студенту, если он полно ответил на вопрос, но есть негрубые неточности;
 - оценка «удовлетворительно» выставляется студенту, если он неполно ответил на вопрос;
 - оценка «неудовлетворительно» выставляется студенту, если он не ответил на вопрос.

Текущий контроль №2 проводится в письменном виде после изучения темы:Тема 1.2. Однокристальные МП

Время выполнения контрольной работы:

подготовка - 5 мин; выполнение - 25 мин; оформление и сдача - 10 мин; всего - 40 мин.

Задания

- 1. Приведите параметры, используемые при классификации МП
- 2. Приведите основные характеристики и критерии производительности МП
- 3. Укажите основные элементы архитектуры простейшего МП
- 4. Укажите основные элементы архитектуры 8ми разрядного МП
- 5. Укажите основные элементы архитектуры 16ти разрядного МП

Критерии оценки:

- оценка «отлично» выставляется студенту, если он дал полный, развернутый ответ на все вопросы контрольной работы;
 - оценка «хорошо» выставляется студенту, если он полно ответил на 4 вопроса контрольной работы;
- оценка «удовлетворительно» выставляется студенту, если он полно ответил на 3 вопроса контрольной работы;
- оценка «неудовлетворительно» выставляется студенту, если он не ответил на 3 и более вопросов контрольной работы.

Текущий контроль №3 проводится в письменном виде после изучения темы: Тема 1.3. МПС

Время выполнения контрольной работы:

подготовка - 5 мин; выполнение - 25 мин; оформление и сдача - 10 мин; всего - 40 мин.

Задания

- 1. Принципы фоннеймановской архитектуры МПС
- 2. Принципы гарвардской архитектуры МПС
- 3. Перечислите принципы построения МПС
- 4. Перечислите виды шин МПС
- 5. Опишите режимы работы МПС: программный обмен, прерывания, прямой доступ к памяти

Критерии оценки:

- оценка «отлично» выставляется студенту, если он дал полный, развернутый ответ на все вопросы контрольной работы;
 - оценка «хорошо» выставляется студенту, если он полно ответил на 4 вопроса контрольной работы;
- оценка «удовлетворительно» выставляется студенту, если он полно ответил на 3 вопроса контрольной работы;
 - оценка «неудовлетворительно» выставляется студенту, если он не ответил на 3 и более вопросов контрольной работы.

Контрольный опрос №4проводится в устном виде после изучения темы: Тема 1.4. Организация памяти МПС

Время опроса:

всего -15-20 мин.

Задания

- 1. Классификация систем памяти
- 2. ПЗУ и ППЗУ: конструкция, принцип действия, характеристики, области применения
- 3. Динамические и статические ОЗУ: конструкция, принцип действия, характеристики, области применения
- 4. РПЗУ и флэш-память: конструкция, принцип действия, характеристики, области применения
- 5. Кэш-память: особенности конструкции и организации, принцип действия, характеристики, области применения

Критерии оценки:

- оценка «отлично» выставляется студенту, если он дал полный, развернутый ответ на вопрос;
- оценка «хорошо» выставляется студенту, если он полно ответил на вопрос, но есть негрубые неточности;
 - оценка «удовлетворительно» выставляется студенту, если он неполно ответил на вопрос;
 - оценка «неудовлетворительно» выставляется студенту, если он не ответил на вопрос.

Контрольная работа №5 проводится в письменном виде после изучения темы: Тема 1.5. Организация ввода/вывода данных МПС

Время выполнения контрольной работы:

подготовка - 5 мин; выполнение - 25 мин; оформление и сдача - 10 мин; всего - 40 мин.

Задания (по вариантам)

- 1. Порты ввода/вывода: назначение, принципы работы и интерфейс последовательного и параллельного каналов связи: организация, используемые устройства
 - 2. Программно-управляемый ввод/вывод: организация, используемые устройства

- 3. Система прерываний микропроцессорной системы: организация, используемые устройства
- 4. Организация прямого доступа к памяти: организация, используемые устройства

Критерии оценки:

- оценка «отлично» выставляется студенту, если он дал полный, развернутый ответ на вопрос контрольной работы;
- оценка «хорошо» выставляется студенту, если он полно ответил на вопрос контрольной работы, но имеются недочеты или неточности;
- оценка «удовлетворительно» выставляется студенту, если он неполно ответил на вопрос контрольной работы;
 - оценка «неудовлетворительно» выставляется студенту, если он не ответил на вопрос контрольной работы.

Контрольная работа №6 проводится в письменном виде после изучения темы: Тема 1.6. Микроконтроллеры

Время выполнения контрольной работы:

подготовка - 5 мин; выполнение - 25 мин; оформление и сдача - 10 мин; всего - 40 мин.

Задания (по вариантам)

- 1. Микроконтроллеры с архитектурой CISC на примере микроконтроллеров с ядром MCS-51
- 2. Микроконтроллеры с архитектурой RISC на примере микроконтроллеров семейства AVR
- 3. Структура типовой системы управления и организация микроконтроллерных систем
- 4. Принципы создания ПО микроконтроллеров на языке ассемблер (основные принципы, мнемоника, типы данных и способы адресации)

Критерии оценки:

- оценка «отлично» выставляется студенту, если он дал полный, развернутый ответ на вопрос контрольной работы;
- оценка «хорошо» выставляется студенту, если он полно ответил на вопрос контрольной работы, но имеются недочеты или неточности;
- оценка «удовлетворительно» выставляется студенту, если он неполно ответил на вопрос контрольной работы;
 - оценка «неудовлетворительно» выставляется студенту, если он не ответил на вопрос контрольной работы.

Контрольная работа №7 проводится в письменном виде после изучения темы: Тема 1.7. Применение МПС

Время выполнения контрольной работы:

подготовка - 5 мин; выполнение - 25 мин; оформление и сдача - 10 мин; всего - 40 мин.

Задания (по вариантам)

- 1. МПС с различными типами датчиков: резистивные
- 2. МПС с различными типами датчиков: тензометрические
- 3. МПС с различными типами датчиков: температуры
- 4. МПС с различными типами датчиков: интеллектуальные

Критерии оценки:

- оценка «отлично» выставляется студенту, если он дал полный, развернутый ответ на вопрос контрольной работы;
- оценка «хорошо» выставляется студенту, если он полно ответил на вопрос контрольной работы, но имеются недочеты или неточности;
- оценка «удовлетворительно» выставляется студенту, если он неполно ответил на вопрос контрольной работы;
 - оценка «неудовлетворительно» выставляется студенту, если он не ответил на вопрос контрольной работы.

Контрольная работа №8 проводится в письменном виде после изучения темы: Тема 1.8 Программирование микроконтроллеров

Время выполнения контрольной работы:

подготовка - 5 мин; выполнение - 25 мин; оформление и сдача - 10 мин; всего - 40 мин.

Задания (по вариантам)

- 1. Опишите способы программирования микроконтроллеров: программирование по последовательному каналу, программирование повышенным напряжением, самопрограммирование микроконтроллеров, программирование памяти программ
- 2. Технологии разработки и отладки программ для микроконтроллеров внутрисхемные эмуляторы и эмуляторы ПЗУ
- 3. Технологии разработки и отладки программ для микроконтроллеров симуляторы
- 4. Технологии разработки и отладки программ для микроконтроллеров отладочные мониторы
- 5. Технологии разработки и отладки программ для микроконтроллеров платы развития

Критерии оценки:

- оценка «отлично» выставляется студенту, если он дал полный, развернутый ответ на вопрос контрольной работы;
- оценка «хорошо» выставляется студенту, если он полно ответил на вопрос контрольной работы, но имеются недочеты или неточности;
- оценка «удовлетворительно» выставляется студенту, если он неполно ответил на вопрос контрольной работы;
 - оценка «неудовлетворительно» выставляется студенту, если он не ответил на вопрос контрольной работы.

Контрольная работа №9 проводится в письменном виде после изучения темы: Тема 1.9 МПС на основе программируемых логических контроллеров (ПЛК)

Время выполнения контрольной работы:

подготовка - 5 мин;

выполнение - 25 мин;

оформление и сдача - 10 мин;

всего - 40 мин.

Задания (по вариантам)

- 1. Назначение и общая характеристика промышленных контроллеров.
- 2. Состав, физическая и виртуальная структура промышленных контроллеров.
- 3. Блочная структура контроллера. Модули ЦП; модули ввода-вывода; сигнальные модули, интерфейсные модули, коммуникационные процессоры.
 - 4. Режимы работы ПЛК. Технические характеристики ПЛК.

Критерии оценки:

- оценка «отлично» выставляется студенту, если он дал полный, развернутый ответ на вопрос контрольной работы;
- оценка «хорошо» выставляется студенту, если он полно ответил на вопрос контрольной работы, но имеются недочеты или неточности;
- оценка «удовлетворительно» выставляется студенту, если он неполно ответил на вопрос контрольной работы;
 - оценка «неудовлетворительно» выставляется студенту, если он не ответил на вопрос контрольной работы.

2ТИПОВЫЕ ПРАКТИКО-ОРИЕНТИРОВАННЫЕ ЗАДАНИЯ/СИТУАЦИОННЫЕ ЗАДАЧИ

Спецификация

Практико-ориентированные задачи используются для оценки практических навыков и умений студентов, а также позволяют оценить умения студентов применять теоретические знания на практике.

Задачи (к теме 1.6 Микроконтроллеры)

- 1. Составить программу удвоения числа, записанного в ЯП, результат разместить в другой ЯП (адреса выбрать произвольно).
- 2. Составить программу уменьшения числа, записанного в ЯП, на константу; результат разместить в другой ЯП (адреса выбрать произвольно).
- 3. Составить программу сложения числа, содержащегося в аккумуляторе, и числа, записанного в ЯП; результат разместить в другой ЯП (адреса выбрать произвольно).
- 4. Составить программу сложения числа, содержащегося в аккумуляторе, и константы; результат разместить в ЯП (адреса выбрать произвольно).
- 5. Составить программу сложения числа, содержащегося в аккумуляторе, и числа, записанного в регистр В; результат разместить в ЯП (адреса выбрать произвольно).
- б. Составить программу цикличного уменьшения содержимого аккумулятора на 1, действие производить до опустошения аккумулятора.
- 7. Составить программу цикличного увеличения содержимого аккумулятора на 1, действие производить до переполнения аккумулятора.

- 8. Составить программу умножения числа, записанного в ЯП, на 2; результат разместить в ЯП (адреса выбрать произвольно).
- 9. Составить программу деления числа, записанного в ЯП, на 2; результат разместить в ЯП (адреса выбрать произвольно).

Критерии оценки:

- оценка «отлично» выставляется студенту, если он правильно разработал программу и перевел ее в машинные коды;
- оценка «хорошо» выставляется студенту, если он правильно разработал программу и перевел ее в машинные коды, но имеются мелкие недочеты или негрубые ошибки;
- оценка «удовлетворительно» выставляется студенту, если он правильно разработал часть программу или не перевел ее в машинные коды;
- оценка «неудовлетворительно» выставляется студенту, если он не правильно разработал программу и не перевел ее в машинные коды.

ЗДОКЛАДЫ, СООБЩЕНИЯ

Спецификация

В процессе восприятия и осмысления информации, содержащейся в источнике, происходит соотнесение идей документа и знаний самого референта с объективной действительностью. В результате возникает понимание. Далее происходит объективация полученного субъективного образа в новом тексте — сообщении, в котором фиксируется уже синтезированный образ, пропущенный студентом через призму уплотнения информации. Свертывание информации в сообщение следует трактовать как промежуточный этап целого познавательного процесса. Написание сообщения способствует поиску информации и тем самым экономит время для творческой работы.

Темы докладов

No	Темы рефератов	Тема	
1 История развития МП Тема 1.1. Общие сведения		Тема 1.1. Общие сведения о МПС. Основные понятия и определения	
2	Альтернативные архитектуры МПС	Тема 1.3. МПС	

Критерии оценки

Оценка «5» выставляется студенту, если:

- содержание работы соответствует заданной тематике, студент показывает системные и полные знания и умения по данному вопросу;
- работа оформлена в соответствии с рекомендациями преподавателя;
- объем работы соответствует заданному;
- работа выполнена точно в срок, указанный преподавателем.

Оценка «4» выставляется студенту, если:

- содержание работы соответствует заданной тематике;
- студент допускает небольшие неточности или некоторые ошибки в данном вопросе;
- в оформлении работы допущены неточности;
- объем работы соответствует заданному или незначительно меньше;
- работа сдана в срок, указанный преподавателем, или позже, но не более чем на 1-2 дня.

Оценка «3» выставляется студенту, если:

- содержание работы соответствует заданной тематике, но в работе отсутствуют значительные элементы по содержанию работы или материал по теме изложен нелогично, нечетко представлено основное содержание вопроса;
- работа оформлена с ошибками в оформлении;
- объем работы значительно меньше заданного;
- работа сдана с опозданием в сроках на 5-6 дней.

Оценка «2» выставляется студенту, если:

- не раскрыта основная тема работы;
- оформление работы не соответствует требования преподавателя;
- объем работы не соответствует заданному;
- работа сдана с опозданием в сроках больше чем 7 дней.

2.1.3 ВОПРОСЫ ЭКЗАМЕНА/ЗАЧЕТА ИЛИ ИТОГОВЫЙ ТЕСТ

Спецификация

Экзамен предназначается для итогового контроля и оценки общих и профессиональных компетенций, умений и знаний обучающихся 3 курса специальности по программе МДК 02.01Микропроцессорные системы

Теоретические вопросы экзамена

- 1. Основные проблемы и перспективы развития микропроцессорной техники, компьютерных сетей и телекоммуникаций.
- 2. История развития микропроцессоров
- 3. Основные варианты архитектуры и структуры современных микропроцессоров
- 4. Классификация и области применения современных микропроцессоров

- 5. Базовая структура ЭВМ как микропроцессорной системы. Архитектура и принципы функционирования микропроцессорных систем
- 6. Архитектуры параллельных вычислительных систем
- 7. Организация памяти
- 8. Система команд микропроцессорной системы
- 9. Состав семейства микроконтроллеров. Архитектура.
- 10. Процессорное ядро микроконтроллера. Типы операндов, способы адресации.
- 11. Система команд микроконтроллера
- 12. Устройство управления и синхронизации микроконтроллера
- 13. Развитие микроконтроллеров
- 14. Интегрированная среда разработки программного обеспечения для семейства микроконтроллеров
- 15. Программирование микроконтроллера на языке ассемблера
- 16. Взаимодействие микроконтроллеров с объектами управления
- 17. Общие сведения и классификация микросхем с программируемой логикой
- 18. Области применения микросхем с программируемой логикой
- 19. Методика, средства и основные этапы проектирования
- 20. Средства и методы проектирования и автономной отладки аппаратных средств микропроцессорной системы
- 21. Средства и методы разработки и отладки программного обеспечения
- 22. Средства и методы комплексной отладки микропроцессорной системы.

Типовые задания для оценки освоения МДК.02.01 Микропроцессорные системы

Задание 1. Программирование микроконтроллеров на языке ассемблер

- 1. Войдите в интегрированную среду программирования Keil-C
- 2. Создайте новый файл исходного текста программы. Имя файла может быть, например, L1.c (расширение *.c обязательно). Текст программы:

```
таіп() {
//задание массива іпт A[10]={2,5,-8,7,-3,15,38,-11,66,-6};
//объявление переменных целого типа іпт I,S,P;
//начальное значение суммы S=0;
//начальное значение произведения P=1;
//переменная цикла I изменяется от 1 до 10 с шагом 1 for (I=1;I<10;I++) {
// нахождение произведения всех элементов массива P=P*A[I];
//если элемент массива меньше 0 if(A[I]<0) S=S+A[I];
//нахождение суммы отрицательных элементов массива }
```

Эта программа находит сумму отрицательных элементов массива А [10]. После выполнения программы результат (сумма) будет находиться в ячейке памяти S.

- 3. Создайте проект с именем LAB1.
- 4. Добавьте в проект файл с программой.
- 5. Настройте его параметры в соответствии с заданием с вариантом (таблица 2.1.1).

Номер варианта	Уровень оптимизации	Цель оптимизации	Формировать листинг	Микроконтролле р
1	1	Размер кода	с ассемблерным кодом	AduC812
2	2	Скорость работы	с таблицей символов	At89c52
3	3	Скорость работы	с таблицей символов	At89s53
4	4	Размер кода	с таблицей символов	AduC834
5	5	Размер кода	с ассемблерным кодом	DS89c420
6	6	Размер кода	с ассемблерным кодом	At89c55
7	7	Скорость работы	с таблицей символов	At89s51
8	8	Размер кода	с таблицей символов	At89LV55
9	1	Скорость работы	с ассемблерным кодом	AduC812
0	2	Размер кода	с таблицей символов	At89s51

- 6. Оттранслируйте программный проект.
- 7. Убедитесь, что при трансляции программного модуля не обнаружены синтаксические ошибки.
- 8. Убедитесь, что в директории проекта созданы загрузочный файл с расширение .lst и загрузочный hex-файл с расширением .hex.
- 9. Выполните пошаговую отладку программы с использованием кнопки F11. На каждом шаге выполнения программы запишите значения используемых переменных программы: A[i] и S.

Задание 2. Вывод информации через параллельный порт

- 1. По принципиальной схеме установите, к каким портам микроконтроллера подключены светодиоды.
- 2. По таблице регистров специальных функций (SFR) определите адреса регистров требуемых портов.
- 3. Войдите в интегрированную среду программирования Keil-C.
- 4. Создайте файл проекта.
- 5. Введите текст программы в соответствии с заданием с вариантом: требуется зажечь светодиоды, соответствующие номеру своего варианта (таблица 2.1.2.) в бинарном виде.
- 6. Оттранслируйте программу, и исправьте синтаксические ошибки.
- 7. Загрузите полученный *.hex файл в лабораторный стенд LESO1.
- 8. Убедитесь, что на лабораторном стенде LESO1 зажигаются требуемые светодиоды.

Задание З.Программная реализация работы таймера

- 1. Разработайте алгоритм программы соответственно заданию: сформировать сигнал прямоугольной формы скважности 2 заданного периода, согласно варианту (таблица 4). Сигнал должен выводиться на светодиод.
- 2. По принципиальной схеме установите, к каким портам микроконтроллера подключен светодиод. 3. По таблице регистров специальных функций (SFR) определите адреса регистров управления таймерами.
- 4. Рассчитайте значение регистров ТLхи ТНхдля формирования заданного времени работы таймера (таблица 4).
- 5. Рассчитайте требуемое количество итераций цикла для формирования сигнала с периодом Т(таблица 2.1.2.)
- 6. Войдите в интегрированную среду программирования Keil-C.
- 7. Создайте и настройте должным образом проект.
- 8. Разработайте и введите текст программы в соответствии с созданным алгоритмом.
- 9. Оттранслируйте программу, и исправьте синтаксические ошибки.
- 10. Загрузите полученный *.hex файл в лабораторный стенд LESO1.
- 11. Убедитесь, что программа функционирует должным образом. С помощью секундомера измерьте период сигнала.

Задание 4. Вывод символа на ЖКИ

- 1. Разработайте алгоритм программы, выводящей на экран ЖКИ ваше имя в заданной строке. Режим работы ЖКИ и номер строки определяется согласно варианту задания (таблица 2.1.3.).
- 2. По принципиальной схеме учебного стенда LESO1 определите, к каким выводам микроконтроллера ADuC842 подключен ЖКИ. По таблице SFR определите адреса используемых портов ввода-вывода.
- 3. Разработайте и введите текст программы в соответствии с созданным алгоритмом.

- 4. Оттранслируйте программу, и исправьте синтаксические ошибки.5. Загрузите полученный *.hex файл в лабораторный стенд LESO1.6. Убедитесь, что на экране дисплея в заданной позиции появился требуемый символ.

Таблица 2.1.2. – Варианты заданий

номер варнанта	таймер	время таймера	период сигнала Т
1	таймер 0	5 мс	2 c
2	таймер l	15 ме	3 c
3	таймер 0	10 мс	4 c
4	таймер 1	50 мс	5 e
5	таймер 0	30 мс	6 c
6	таймер l	14 мс	7 c
7	таймер 0	20 мс	8 c
8	таймер l	25 мс	9 c
9	таймер 0	40 мс	10 c
10	таймер l	4 мс	11 e
11	таймер 0	60 мс	12 e
12	таймер l	65 мс	13 e
13	таймер 0	35 мс	14 c
14	таймер l	7,5 мс	15 e
15	таймер 0	40 мс	16 c

Таблица 2.1.3. – Варианты заданий

HOMAN PARMAUTA	HOMOD CTROWN	DATE HAS PAIDOONS
номер варианта	номер строки	режим курсора
1	первая	неродинав
2	вторая	включен, мерцает
3	первая	включен, не мерцает
4	вторая	народиная
5	первая	включен, мерцает
6	вторая	включен, не мерцает
7	первая	нероплав
8	вторая	включен, мерцает
9	первая	включен, не мерцает
10	вторая	выключен
11	первая	включен, мерцает
12	вторая	включен, не мерцает
13	первая	выключен
14	вторая	включен, мерцает
15	первая	включен, не мерцает

Процент результативности	Качественная оценка индивидуальных образовательных достижений		
(правильных ответов)	балл (отметка)	вербальный аналог	
90 ÷ 100	5	отлично	
80 ÷ 89	4	хорошо	
70 ÷ 79	3	удовлетворительно	
менее 70	2	неудовлетворительно	

2.23адания для оценки освоения МДК 02.02

2.2.1 ВХОДНОЙ КОНТРОЛЬ

Спецификация

Входной контроль проводится с целью определения готовности обучающихся к освоению междисциплинарного курса, базируется на дисциплинах, предшествующих изучению данного междисциплинарного курса:

- Элементы высшей математики;
- Теория вероятностей и математическая статистика;
- Прикладная электроника;
- Электротехнические измерения;
- Информационные технологии;
- Операционные системы и среды;
- Основы алгоритмизации и программирования.

По результатам входного контроля планируется осуществление в дальнейшем дифференцированного и индивидуального подхода к обучающимся. При низком уровне знаний проводятся корректирующие курсы, дополнительные занятия, консультации.

Примеры заданий входного контроля

- 1. Кластер это...
- а) ячейка памяти
- б) самопроизвольно намагниченная область
- в) минимальный по емкости участок жесткого диска
- 2. Ферромагнетик это...
- а) вещество, которое создает поле, ослабляющее внешнее поле
- б) вещество, которое создает слабое магнитное поле, по направлению совпадающее с внешним полем
- в) вещество, которое значительно усиливает внешнее магнитное поле
- г) ни одно из определений не верно
- 3. Лазер это...
- а) оптический квантовый генератор
- б) ускоритель заряженных частиц
- в) оптическое устройство ввода-вывода данных для визуального отображения
- Пиксел это...
- а) минимальное расстояние между двумя соседними точками одного цвета
- б) маркер
- в) наименьший угловой размер, при котором наблюдатель различает два соседних элемента
- г) наименьший элемент изображения
- д) все перечисленное
- 5. Бит это...
- а) наименьшая единица информации, может принимать два значения 0 или 1
- б) единица информации, может принимать значение не только 0 и 1
- в) 8 байт
- 6. Адаптер это...
- а) специальная управляющая программа для управления процессом обмена информацией
- б) специальное устройство сопряжения и обмена
- в) совокупность правил и средств, устанавливающая единые принципы взаимодействия
- г) все перечисленное
- 7. Особенность ОЗУ это
- а) большая емкость;
- б) высокая скорость работы;

- в) потеря данных при выключении питания;
- г) сохранение данных при выключении питания.
- 8. Кулер
- а) устройство, формирующее изображение экрана
- б) вентилятор, предназначенный для охлаждения устройств в системном блоке
- в) устройство, предназначенное для преобразования цифровых сигналов в аналоговые
- 9. Бод
- а) переключатель с несколькими контактами
- б) процесс сжатия информации
- в) единица скорости передачи информации
- 10. Жидкие кристаллы
- а) вещество определенной структуры, используемое в производстве МП
- б) вещество определенной структуры, используемое в производстве мониторов
- в) вещество определенной структуры, используемое в производстве накопителей
- г) все перечисленное
- 11. Модем
- а) устройство для передачи сигналов по телефонным линиям
- б) устройство управления и запуска программ
- в) устройство для печати информации на бумаге
- 12. Апгрейд
- а) модернизация компьютера
- б) соединение с удаленным компьютером
- в) перезаписываемая память
- 13. HDD
- а) винчестер
- б) накопитель на жестком магнитном диске
- в) все перечисленное.

Эталоны ответов входного контроля

1-в; 2-в; 3-а; 4-г; 5-а; 6-б; 7-в; 8-б; 9-в; 10-б; 11-а; 12-а; 13-в.

Критерии оценки

Процент	Качественная оценка индивидуальных образовательных достижений		
результативности (правильных ответов)	балл (отметка)	вербальный аналог	
90 ÷ 100	5	отлично	
80 ÷ 89	4	хорошо	
70 ÷ 79	3	удовлетворительно	
менее 70	2	неудовлетворительно	

2.2.2 Текущий контроль

Текущий контроль успеваемости осуществляется в ходе повседневной учебной работы по междисциплинарному курсу. Данный вид контроля должен стимулировать стремление к систематической самостоятельной работе по изучению программы курса, овладению профессиональными и общими компетенциями, позволяет отслеживать положительные/отрицательные результаты и планировать предупреждающие/ корректирующие мероприятия.

Формы текущего контроля 1 КОНТРОЛЬНЫЕ РАБОТЫ

Спецификация

Контрольная работа входит в состав комплекта контрольно-оценочных средств и предназначается для текущего контроля и оценки умений и знаний, обучающихся 3 курса специальности 09.02.01 Компьютерные системы и комплексы по МДК.02.02. Установка и конфигурирование периферийного оборудования.

Контрольная работа № 2.1 проводится в письменном виде после изучения темы:

Тема 2.1. Общие сведения о периферийных устройствах

Время выполнения контрольной работы:

подготовка - 5 мин; выполнение - 70 мин; оформление и сдача - 15 мин; всего - 90 мин.

Задания

Вариант 1

- 1. Назначение и классификация периферийных устройств
- 2. Принцип действия и классификация мультимедийных проекторов
- 3. Режимы работы модема
- 4. Классификация манипуляторов типа «мышь»
- 5. Классификация клавишных переключателей

Вариант 2

- 1. Классификация сканеров и их светочувствительные элементы.
- 2. Сравнительная характеристика жидкокристаллических мониторов с активной и пассивной матрицей.
- 3. Принцип действия и классификация мультимедийных проекторов.
- 4. Назначение и классификация модемов.
- 5. Конструкция и принцип действия сетевых карт.

Контрольная работа № 2.2 проводится в письменном виде после изучения темы:

Тема 2.2. Внешние запоминающие устройства.

Время выполнения контрольной работы:

подготовка - 5 мин; выполнение - 70 мин; оформление и сдача - 15 мин; всего - 90 мин.

Задания

Вариант 1

- 1. Конструкция ленточного накопителя
- 2. Способы записи в накопителях на магнитной ленте.
- 3. Классификация накопителей на оптических дисках.
- 4. Способы записи в накопителях на оптических дисках.
- 5. Параметры мониторинга SMART.

Вариант 2

- 1. Назначение технологии SMART.
- 2. Компоненты НЖМД, акклиматизация НЖМД.
- 3. Механизмы привода головок в составе НЖМД.
- 4. Способы записи в накопителях на магнитной ленте.
- 5. Классификация накопителей на оптических дисках.

Контрольная работа № 2.3 проводится в письменном виде после изучения темы:

Тема 2.3. Конфигурирование персональных компьютеров.

Время выполнения контрольной работы:

подготовка - 5 мин; выполнение - 70 мин; оформление и сдача - 15 мин; всего - 90 мин.

Задания Вариант 1

- 1. Классификация системных блоков;
- 2. Разновидности и основные характеристики чипсета;
- 3. Конструктивное исполнение микропроцессоров и разъемов для их подключения
- 4. Основные компоненты, входящие в состав ПК;
- 5. Охлаждение микропроцессоров

Вариант 2

- 1. Понятие форм-фактора;
- 2. Конструктивное исполнение микропроцессоров и разъемов для их подключения;
- 3. Способы конфигурирования и установки персональных компьютеров;
- 4. Классификация модулей оперативной памяти;
- 5. Состав системного блока.

Критерии оценки:

- оценка «отлично» выставляется студенту, если он дал полный, развернутый ответ на все вопросы контрольной работы;
- оценка «хорошо» выставляется студенту, если он полно ответил на 4 вопроса контрольной работы;
- оценка «удовлетворительно» выставляется студенту, если он полно ответил на 3 вопроса контрольной работы;
- оценка «неудовлетворительно» выставляется студенту, если он не ответил на 3 и более вопросов контрольной работы.

2 ОПРОС

Спецификация

Вопросы устного опроса входят в состав комплекта контрольно-оценочных средств и предназначаются для текущего контроля и оценки знаний, обучающихся 3 курса специальности 09.02.01 Компьютерные системы и комплексы по МДК.02.02. Установка и конфигурирование периферийного оборудования. Опрос проводится после изучения каждой темы.

Тема 2.1. Общие сведения о периферийных устройствах Вопросы:

- 1. Для чего предназначены периферийные устройства ПК?
- 2. Что такое интерфейс периферийного устройства?
- 3. Что такое драйвер и его назначение
- 4. Что должен включать базовый комплект ПЭВМ?
- 5. Назначение и классификация клавиатур.
- 6. Перечислите классификацию клавишных переключателей.
- 7. Назначение и классификация манипуляторов типа «мышь».
- 8. Опишите принцип действия оптической мыши
- 9. Назначение сканера и его классификация.
- 10. Назначение и классификация мониторов.
- 11. Опишите технологию изготовления ЖК мониторов.

- 12. Назначение видеоадаптера.
- 13. Назначение и классификация видеопроекторов.
- 14. Назначение и классификация принтеров
- 15. С помощью наложения каких цветов формируется изображение в цветных струйных принтерах?

Тема 2.2. Внешние запоминающие устройства Вопросы:

- 1. Назначение и классификация внешних запоминающих устройств.
- 2. Перечислите основные технические характеристики ВЗУ.
- 3. Перечислите основные элементы накопителя на жестких магнитных дисках
- 4. Как называются фильтры, используемые в НЖМД? Каково их назначение?
- 5. Что означает термин цилиндр в НЖМД?
- 6. Какая запись применяется в НЖМД?
- 7. Какие механизмы привода головок применяются в НЖМД?
- 8. Перечислите особенности динамического привода головок.
- 9. Перечислите основные технические характеристики НЖМД.
- 10. Для чего нужна технология S.M.A.R.Т. в НЖМД?
- 11. Назначение и классификация накопителей на оптических дисках.
- 12. Как происходит запись на оптический диск?
- 13. Перечислите основные технические характеристики оптических накопителей.
- 14. Какой носитель информации применяется в электронных накопителях?
- 15. Перечислите достоинства и недостатки SSD-накопителей.

Тема 2.3. Конфигурирование персональных компьютеров Вопросы:

- 1. Назначение и классификация системного блока ПК.
- 2. Какие комплектующие входят в состав системного блока ПК
- 3. Что такое форм-фактор?
- 4. От чего зависит выбор мощности блока питания ПК?
- 5. Назначение материнской платы.
- 6. Какие компоненты находятся на материнской плате и для чего?
- 7. перечислите основные компоненты процессора.
- 8. Какие характеристики определяют производительность процессора?
- 9. Основные характеристики элементов памяти.
- 10. Особенности ОЗУ.

Тема 2.4. Подключение периферийных устройств Вопросы:

- 1. Поясните назначение системной шины ПК.
- 2. Какое назначение у шины РСІ?
- 3. Какое основное преимущество у РСІ-технологии?
- 4. Назначение шины USB.
- 5. Особенности подключения шины USB.

Тема 2.5. Выявление причин неисправностей и сбоев компьютерных систем Вопросы:

- 1. Аппаратные и программные неисправности. Их взаимосвязь.
- 2. Программа POST. Назначение, способы индикации неисправностей
- 3. Основные компоненты ПК, проверяемые программой POST.
- 4. Перечислите неисправности материнской платы.
- 5. Какими способами можно произвести чистку оптической системы привода компакт-лисков?

2.2.3 САМОСТОЯТЕЛЬНАЯ РАБОТА 2 КОНСПЕКТ

Спецификация

Конспект - это краткое, связное и последовательное изложение констатирующих и аргументирующих положений текста. Классификация видов конспектов:

- план-конспект. При создании такого конспекта сначала пишется план текста, далее на отдельные пункты плана "наращиваются" комментарии. Это могут быть цитаты или свободно изложенный текст;
- тематический конспект. Такой конспект является кратким изложением данной темы, раскрываемой по нескольким источникам;
 - текстуальный конспект. Этот конспект представляет собой монтаж цитат одного текста;
- свободный конспект. Данный вид конспекта включает в себя и цитаты, и собственные формулировки.

Темы конспектов:

- стандарты и модели клавиатур. Трехмерный манипулятор;
- влияние монитора на человека: опасные и безопасные мониторы;
- фотографическая печать;
- способы соединения модема: выделенная линия, радиосети, спутниковый канал;
- технологии записи на магнитный носитель;
- способы повышения ёмкости винчестера;
- проблемы надежности винчестеров;
- перспективы развития электронных накопителей;
- обзор моделей нетрадиционных корпусов ПК;
- составление сравнительных характеристик системных плат различных производителей;
 - обзор различных типов оперативной памяти;
 - обзор производителей портативных систем;
 - решения проблем охлаждения портативных систем.

Критерии оценки

Уровень усвоения теоретического материала; качество составленного конспекта.

3 РЕФЕРИРОВАНИЕ

Спецификация

В процессе восприятия и осмысления информации, содержащейся в реферируемом источнике, происходит соотнесение идей документа и знаний самого референта с объективной действительностью. В результате возникает понимание. Далее происходит объективация полученного субъективного образа в новом тексте — реферате, в котором фиксируется уже синтезированный образ, пропущенный референтом через призму уплотнения информации. Свертывание информации в реферат следует трактовать как промежуточный этап целого познавательного процесса. Современная практика Р. способствует поиску информации и тем самым экономит время для творческой работы.

Темы рефератов

№	Темы рефератов	Тема	
1	различные типы портативных компьютеров и	Тема 2.5. Выявление причин	
	их технические характеристики;	неисправностей и сбоев компьютерных	
2	вспомогательные программы для выявления	систем	
	неисправностей периферийного оборудования;		
3	виды неисправностей системной платы		

Критерии оценки

- содержание работы соответствует заданной тематике, студент показывает системные и полные знания и умения по данному вопросу;
- работа оформлена в соответствии с рекомендациями преподавателя;
- объем работы соответствует заданному;
- работа выполнена точно в срок, указанный преподавателем.

Оценка «4» выставляется студенту, если:

- содержание работы соответствует заданной тематике;
- студент допускает небольшие неточности или некоторые ошибки в данном вопросе;
- в оформлении работы допущены неточности;
- объем работы соответствует заданному или незначительно меньше;
- работа сдана в срок, указанный преподавателем, или позже, но не более чем на 1-2 дня.

Оценка «3» выставляется студенту, если:

- содержание работы соответствует заданной тематике, но в работе отсутствуют значительные элементы по содержанию работы или материал по теме изложен нелогично, нечетко представлено основное содержание вопроса;
- работа оформлена с ошибками в оформлении;
- объем работы значительно меньше заданного;
- работа сдана с опозданием в сроках на 5-6 дней.

Оценка «2» выставляется студенту, если:

- не раскрыта основная тема работы;
- оформление работы не соответствует требования преподавателя;
- объем работы не соответствует заданному;
- работа сдана с опозданием в сроках больше чем 7 дней.

2.2.4 ВОПРОСЫ ЭКЗАМЕНА

Спецификация

Экзамен предназначается для итогового контроля и оценки общих и профессиональных компетенций, умений и знаний обучающихся 3 курса специальности по программе МДК 02.02 Установка и конфигурирование периферийного оборудования

Задания

No	Контрольные вопросы	Тема
1	Назначение и классификация периферийных устройств.	2.1.
2	Компоненты НЖМД, назначение фильтров.	2.2.
3	Конструкция ленточного накопителя	2.2.
4	Компоненты НЖМД, акклиматизация НЖМД.	2.2.
5	Классификация манипуляторов типа «мышь»	2.1.

6	Принцип действия и классификация мультимедийных	2.1.
	проекторов	
7	Классификация клавишных переключателей	2.1.
8	Классификация сканеров и их светочувствительные элементы	2.1.
9	Принтеры. Назначение, классификация;	2.1.
10	Лазерные принтеры;	2.1.
11	Струйные принтеры;	2.1.
12	Конструкция и принцип действия сетевых карт	2.1.
13	Компоненты НЖМД, механизмы привода головок.	2.2.
14	Технология SMART и ее назначение	2.2.
15	Способы записи в накопителях на магнитной ленте.	2.2.
16	Классификация накопителей на оптических дисках	2.2.
17	Основные компоненты, входящие в состав ПК;	2.3.
18	Охлаждение микропроцессоров	2.3.
19	Универсальная последовательная шина USB, разновидности,	2.4.
	характеристики.	
20	Понятие форм-фактора;	2.4.
21	Программа POST. Назначение, способы индикации	2.5.
	неисправностей, основные компоненты ПК, проверяемые	
	программой	
22	Диагностические программы, входящие в состав Windows	2.5.
23	Понятие форм-фактора;	2.3.
24	Классификация модулей оперативной памяти;	2.3.
25	Классификация системных блоков	2.3.
26	Способы конфигурирования персональных компьютеров	2.3.

No	Типовые задания	Тема
1	Определите емкость жесткого диска, имеющего 10 головок, 80 цилиндров по 300 секторов на дорожке;	2.2.
2	Определите количество отображаемых цветов, если глубина цвета32 бита;	2.1.
3	Определите объем памяти, занимаемый растровым изображением размером 90*100 точек с палитрой 256 цветов	2.1.
4	Определите размер видеопамяти для разрешения 1280*1024 с глубиной цвета 16 бит;	2.1.
5	Определите емкость жесткого диска, имеющего Здиска, 100 цилиндров по 236 секторов на дорожке;	2.2.
6	Определите количество отображаемых цветов, если глубина цвета 16 бит;	2.1.
7	Определите объем памяти, занимаемый растровым изображением размером 90*100 точек с палитрой 65536 цветов	2.1.
8	Определите размер видеопамяти для разрешения 1200*600 с глубиной цвета 16 бит;	2.1.
9	Определите емкость жесткого диска, имеющего 4 головки, 120 цилиндров по 500 секторов на дорожке;	2.2.
10	Определите емкость жесткого диска, имеющего 12 головок, 75 цилиндров по 260 секторов на дорожке;	2.2.

Критерии оценки

Оценка «**отлично**» выставляется при выполнении заданий в полном объеме; работа отличается глубиной проработки всех разделов содержательной части, студент свободно

владеет теоретическим материалом, безошибочно применяет его при решении задачи, на все вопросы дает правильные и обоснованные ответы, убедительно защищает свою точку зрения.

Оценка «**хорошо**» выставляется при выполнении заданий в полном объеме; работа отличается глубиной проработки всех разделов содержательной части, студент твердо владеет теоретическим материалом, может применять его самостоятельно, задание выполнено с незначительными недоработками; на большинство вопросов даны правильные ответы, защищает свою точку зрения достаточно обосновано.

Оценка **«удовлетворительно»** выставляется при выполнении заданий в основном правильно, но без достаточно глубокой проработки некоторых разделов; студент усвоил только основные разделы теоретического материала, при выполнении практического задания допускает ошибки; на вопросы отвечает неуверенно, неуверенно защищает свою точку зрения. Оценка **«неудовлетворительно»** выставляется, когда студент не может защитить свои решения, допускает грубые фактические ошибки при ответах на поставленные вопросы или вовсе не отвечает на них.

3 КОНТРОЛЬ ПРИОБРЕТЕНИЯ ПРАКТИЧЕСКОГО ОПЫТА. ОЦЕНКА ПО УЧЕБНОЙ И ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

3.1. Общие положения

Предметом оценки по учебной и производственной практике являются:

- 1) профессиональные и общие компетенции;
- 2) практический опыт и умения.

Оценка по практике выставляется на основании Отчета по учебной и производственной практике, содержащем задание на практику и аттестационный лист с указанием видов работ, выполненных обучающимся во время учебной и производственной практики, их объема, качества выполнения в соответствии с технологией и (или) требованиями организации, в которой проходила учебная и производственная практика.

3.2. Требования к Отчету по учебной и производственной практике

Требования к Отчету по учебной и производственной практике представлены в Методических указаниях по практике.

4 КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ЭКЗАМЕНА (квалификационного)

Задание 1

Инструкция

- 1. Внимательно прочитайте задание.
- 2. Время выполнения задания –2 часа

Текст задания:

- 1. Составить блок-схему алгоритма программы, осуществляющей сложение двух младших и двух старших бит порта Сс выводом результата на порт D.
- 2. В среде программирования и отладки AVRStudio составить программу для микроконтроллера Atmega 8535, осуществляющую сложение двух младших и двух старших бит порта Сс выводом результата на порт D.
- 3. Собрать электрическую схему соединений на стенде «Микроконтроллер и устройства ввода-вывода».
- 4. Загрузить программу в микроконтроллер, проверить ее работоспособность, при необходимости отладить и продемонстрировать работу на стенде «Микроконтроллер и устройства ввода-вывода».
- 5. Проанализируйте алгоритм и внесите в него изменения для вычисления (по вариантам):
 - а) суммы двух 3-разрядных чисел;
 - б) суммы двух 8-разрядных чисел;
 - в) разности двух 2-разрядных чисел;
 - г) разности двух 4-разрядных чисел.
- 6. На базе измененного алгоритма составить программу в среде программирования и отладки AVRStudio, согласно своего варианта для микроконтроллера Atmega 8535.
- 7. Внести необходимые изменения в электрическую схему соединений.
- 8. Загрузить программу в микроконтроллер, проверить ее работоспособность, при необходимости отладить и продемонстрировать работу на стенде «Микроконтроллер и устройства ввода-вывода».

КРИТЕРИИ ОЦЕНКИ

Коды проверяемых	Основные показатели оценки результата	Оценка
компетенций	(ОПОР)	(да /
		нет)
ПК 2.1. Создавать программы на	ОПОР 2.1.1 Владение навыками разработки	
языке ассемблера для	блок-схем алгоритма работы	
микропроцессорных систем.	микроконтроллера/микропроцессора	
	ОПОР 2.1.2 Владение навыками разработки	
	управляющей программы для	
	микропроцессорных систем на ассемблере	
	ОПОР 2.1.3 Владение навыками выбора	
	микроконтроллера для конкретной схемы	
	управления	
ПК 2.2. Производить	ОПОР 2.2.1 Владение навыками анализа	
тестирование, определение	алгоритма работы	
параметров и отладку	микроконтроллера/микропроцессора	
микропроцессорных систем.	ОПОР 2.2.2 Владение навыками использования	
	интегрированных сред разработки и отладки	
	программного обеспечения	
	ОПОР 2.2.3 Владеть навыками комплексной	
	отладки аппаратного и программного	
	обеспечения микроконтроллера	
ПК 2.3. Осуществлять установку	ОПОР 2.3.1 Владение навыками	
и конфигурирование	конфигурирования персональных компьютеров	
персональных компьютеров и	ОПОР 2.3.2 Владение навыками подготовки	

подключение периферийных	компьютерной системы к работе	
устройств.	ОПОР 2.3.3 Владение навыками подключения и	
	настройки периферийного оборудования	
ПК 2.4. Выявлять причины	ОПОР 2.4.1 Владение навыками применения	
неисправности периферийного	современных методов диагностики	
оборудования.	периферийного оборудования	
	ОПОР 2.4.2 Владение навыками использования	
	сервисной аппаратуры при определении	
	неисправностей	
	ОПОР 2.4.3 Владение навыками выявления	
	причин неисправностей и сбоев периферийного	
	оборудования, применения мер по их	
	устранению	

Для оценки образовательных достижений обучающихся применяется универсальная шкала оценки образовательных достижений

шкала оценки образовательных достижении		
Процент результативности (правильных ответов)	Качественная оценка уровня подготовки	
процент результативности (правильных ответов)	балл (отметка)	вербальный аналог
90 ÷ 100	5	отлично
80 ÷ 89	4	хорошо
70 ÷ 79	3	удовлетворительно
менее 70	2	неудовлетворительно
Показатели оценки презентации и защиты портфол (если предусмотрено)		

Пример экзаменационного билета по профессиональному модулю для экзамена (квалификационного)

Министерство образования и науки Российской Федерации Федеральное государственное образовательное учреждение высшего профессионального образования «Магнитогорский государственный технический университет им. Г.И. Носова» Многопрофильный колледж

Специальность 09.02.01 «Компьютерные системы и комплексы» Профессиональный модуль ПМ.02 Применение микропроцессорных систем, установка и настройка периферийного оборудования

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

Задание 1

Коды проверяемых профессиональных и общих компетенций: ПК 2.1, 2.2.ОК 1 - 9. Инструкция

- 1. Внимательно прочитайте задание.
- 2. Время выполнения задания 10 мин

Текст задания:

Основные проблемы и перспективы развития микропроцессорной техники, компьютерных сетей и телекоммуникаций.

Задание 2

Коды проверяемых профессиональных и общих компетенций: ПК 2.3, 2.4. ОК 1 - 9. Инструкция

- 1. Внимательно прочитайте задание.
- 2. Время выполнения задания 10 мин

Текст задания:

Сравнительная характеристика жидкокристаллических мониторов с активной и пассивной матрицей.

Задание 3

Коды проверяемых профессиональных и общих компетенций: ПК 2.1-2.4 ОК 1 - 9. Инструкция

- 1. Внимательно прочитайте задание.
- 2. Время выполнения задания 10 мин

Текст задания:

Определите объем памяти, занимаемый растровым изображением размером 90*100точек с палитрой 256 цветов