Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г. И. Носова» Многопрофильный колледж

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОЙ РАБОТЕ

по учебной дисциплине
ОП.06 Техническая механика
для студентов
44.02.06 Профессиональное обучение (по отраслям). Обработка
металлов давлением

ОДОБРЕНО:

Предметно-цикловой комиссией «Обработки металлов давлением» Председатель О.В.Шелковникова Протокол № _1 от 7.09.2016г.

Методической комиссией МпК Протокол №1 от 22.09.2016 г.

Составитель:

преподаватель ФГБОУ ВО «МГТУ им. Г.И. Носова» Многопрофильный колледж Валерия Вячеславовна Радомская

Методические указания по самостоятельной работе разработаны на основе рабочей программы учебной дисциплины «Техническая механика»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К современному специалисту общество предъявляет широкий перечень требований, среди которых важное значение имеет наличие определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной ситуации. Формирование такого умения происходит в течение всего периода обучения через организацию самостоятельной работы. Процесс самостоятельной работы позволяет проявиться индивидуальным способностям личности. Только через самостоятельную работу обучающийся может стать высококвалифицированным компетентным специалистом, способным к постоянному профессиональному росту.

Задачи самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
- развитие познавательных способностей и активности: творческой инициативы, самостоятельности, ответственности и организованности;
- формирование самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- использование материала, собранного и полученного в ходе самостоятельных занятий на семинарах, на практических и лабораторных занятиях, при написании проектной работы, для эффективной подготовки к итоговым зачетам и экзаменам и последующего освоения программы подготовки специалистов среднего звена.

Самостоятельная работа является одним из видов учебных занятий и предполагает активную роль обучающегося в ее планировании, осуществлении и контроле.

Самостоятельная работа является обязательной для каждого обучающегося. Самостоятельная работа может осуществляться индивидуально или группами обучающихся в зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня сложности, уровня умений обучающихся.

Контроль результатов внеаудиторной самостоятельной работы может осуществляться в пределах времени, отведенного на обязательные учебные занятия и внеаудиторную самостоятельную работу обучающихся по учебной дисциплине, может проходить в письменной, устной или смешанной форме, с представлением изделия или продукта творческой деятельности.

В качестве форм и методов контроля внеаудиторной самостоятельной работы могут быть использованы проверка выполненной работы преподавателем, тестирование.

Общие критерии оценки самостоятельной работы

Самостоятельная работа студентов оценивается согласно следующим критериям:

Оценка «5» выставляется студенту, если:

- содержание работы соответствует заданной тематике, студент показывает системные и полные знания и умения по данному вопросу;
- работа оформлена в соответствии с рекомендациями преподавателя;
- объем работы соответствует заданному;
- работа выполнена точно в срок, указанный преподавателем.

Оценка «4» выставляется студенту, если:

- содержание работы соответствует заданной тематике;
- студент допускает небольшие неточности или некоторые ошибки в данном вопросе;
- в оформлении работы допущены неточности;
- объем работы соответствует заданному или незначительно меньше;
- работа сдана в срок, указанный преподавателем, или позже, но не более чем на 1-2 дня.

Оценка «3» выставляется студенту, если:

- содержание работы соответствует заданной тематике, но в работе отсутствуют значительные элементы по содержанию работы или материал по теме изложен нелогично, нечетко представлено основное содержание вопроса;
- работа оформлена с ошибками в оформлении;
- объем работы значительно меньше заданного;
- работа сдана с опозданием в сроках на 5-6 дней.

Оценка «2» выставляется студенту, если:

- не раскрыта основная тема работы;
- оформление работы не соответствует требования преподавателя;
- объем работы не соответствует заданному;
- работа сдана с опозданием в сроках больше чем 7 дней.

ВИДЫ ЗАДАНИЙ ДЛЯ САМОСТОЯТЕЛЬНОЙ ВНЕАУДИТОРНОЙ РАБОТЫ

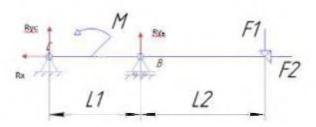
Тема 1.3 Пара сил и момент силы относительно точки

Расчетно-графическая работа

Задание: Определить величины реакций в шарнирах двух опорной балки. Проверить правильность решения.

Цель: иметь представление о видах опор балочных систем и возникающих в них реакциях. Знать формы уравнений равновесия плоской системы произвольно расположенных сил и уметь их использовать для определения реакций для балки с шарнирными опорами.

Рекомендации по выполнению задания: Изображаем на схеме неизвестные реакции опор.


Оформление всех самостоятельных работ на листах формата A4. Титульный лист:

> вырально годорскием в весимен официоналы управления вышем орожных образований образований образований «Мониторский подорожений учениемий ученуются подорожнымий витеря.

> > Расчетно-графическая работа на теор

> > > Darreston (CH, 1505-16-b) Darreston Restaura D. S.

Mesenropa, 2011

1. Составляем уравнения равновесия моментов относительно точки

B
$$\Sigma M_B = F1.4-M+Ryc.2=0$$
,

$$C \Sigma M_C = -Ry_B \cdot 2 - M + F1 \cdot 6 = 0$$

и сумму проекций на ось х

$$\Sigma F_X = R_X - F_2 = 0$$

2. выражаем неизвестные из полученных уравнений

$$Ryc = \frac{-F1 \cdot 4 + M}{2},$$

$$Ry_B = \frac{F1 \cdot 6 - M}{2},$$

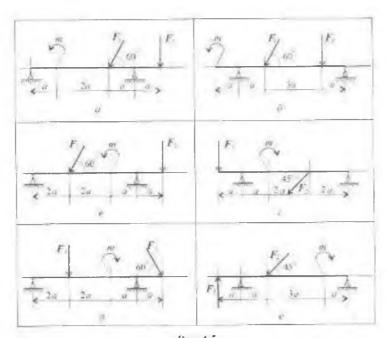
$$Rx = F2$$
.

Если в результате реакция опоры получается отрицательной то на схеме нужно направить эту реакцию в противоположную сторону. Тогда в ответ запишем положительное значение.

Форма контроля:

Проверка преподавателем.

Защита перед аудиторией своей работы.


Критерии оценки:

Оценка 3 – Реакции опор указанны на схеме правильно, одна из реакций верно посчитана.

Оценка 4 – Реакции опор указанны на схеме правильно, две реакции опоры посчитаны верно.

Оценка 5 – Реакции опор указаны на схеме верно, все три посчитаны правильно.

№1 Определить величины реакций в шарнирах двух опорной балки. Проверить правильность решения.

Параметр				Dan 1 a	Bapı	иант				
	1	2	3	4	5	6	7	8	9	10
F1, кН	10	12	14	16	18	20	22	24	26	28
F2, кН	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5
т, кН*м	14	13	12	11	10	9	8	7	6	5
а, м	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2

Тема 1.5 Центр тяжести

Расчетно-графическая работа

Задание: Определить координаты центра тяжести составного сечения.

Цель: в результате выполнения работы студент должен знать методы определения центра тяжести тела и формулы для определения положения центра тяжести плоских фигур. Уметь определять положение центра тяжести сложных геометрических фигур и фигур, составленных из стандартных профилей.

Рекомендации по выполнению

- 1. Изображаем на схеме габаритные размеры каждой фигуры. Размеры полосы указаны в условии задачи, размеры стандартных профилей берем по номеру профиля из таблицы ГОСТ b и h. Проверяем единицы измерения, они должны все быть одинаковыми.
- 2. Определяем положения центра тяжести каждой фигуры. Центр тяжести полосы лежит также как и у прямоугольника на пересечении его диагоналей. Центры тяжести профилей двутавра, швеллера и уголка указаны в таблице ГОСТ.
- 3.Определяем площади фигур.

Площадь полосы находим по формуле $A = b \times h$, двутавр, швеллер и уголок находим в таблице ГОСТ.

4.Заполнить таблицу своими значениями.

	Фигура 1	Фигура 2	Фигура 3	Фигура 4
Площадь, А				
Координата, х				
Координата, у				

5.Из таблицы подставляем значения в формулу для определения общего центра тяжести

$$Xc = \frac{A_1 \times x_1 + A_2 \times x_2 + A_3 \times x_3 + A_4 \times x_4}{A_1 + A_2 + A_3 + A_4}$$

$$y_{c} = \frac{A_{1} \times y_{1} + A_{2} \times y_{2} + A_{3} \times y_{3} + A_{4} \times y_{4}}{A_{1} + A_{2} + A_{3} + A_{4}}$$

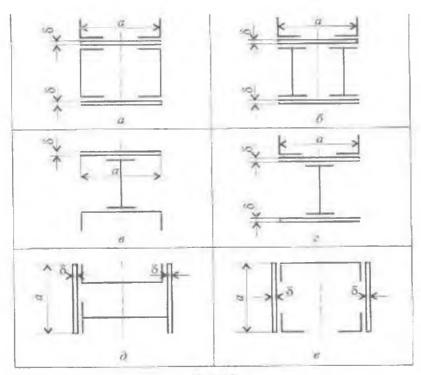
6. Отметить центр тяжести составного сечения на рисунке по расчитанным значениям.

Ответ: Xc=; Yc=.

Форма контроля:

Проверка преподавателем.

Защита перед аудиторией своей работы.


Критерии оценки:

Оценка 3 -Таблица заполнена верно, единицы измерения одинаковы более чем 50%.

Оценка 4 – Таблица заполнено верно, все единицы измерения одинаковы.

Оценка 5 – Общий центр тяжести посчитан и указан на схеме верно.

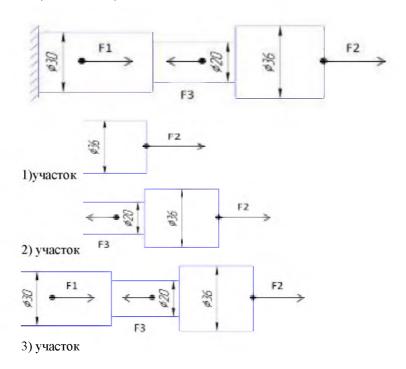
№2 Определить положение центра тяжести сечения, составленного из стандартных профилей.

Puc. 5.2

-	1				Bap	CAUCT				
Параметр	1	2	3	4	5	6	7	8	9	10
№ шнедлера	18	18a	20	20s	22	220	24	24a	27	30
№ двутавра	18	18a	20	20a	22	22n	24	24a	27	30
№ уголка	8	8	9	9	10	10	11	11	12,5	14
ar, MM	180	200	200	220	220	240	240	260	270	300
Š. MNI	5	5	5	5	5	5	6	6	6	6

- 1. Проговорить названия стандартных профилей проката. 2. Проговорить где находятся центры тяжести у простых фигур. 3. Написать уравнения для нахождения координат общего центра тяжести.

Тема 2.2 Растяжение и сжатие


Расчетно-графическая работа

Задание: Построение эпюр продольных сил и нормальных напряжений

Цель: в результате выполнения работы студент должен знать правила построения эпюр продольных сил и нормальных напряжений в поперечном сечении бруса, уметь с помощью метода сечений строить эпюры продольных сил и нормальных напряжений.

Рекомендации по выполнению

1. делим брус на участки по методу сечений и рассчитываем продольную силу на каждом участке.

По методу сечений определить продольную силу N, (H) на каждом участке.

$$N1 = F2 = 10 \text{ kH}$$

$$N2 = F2-F3 = 10-5 = 5 \text{ kH}$$

$$N3 = F2-F3+F1 = 10-5+30 = 35 \text{ kH}$$

По формуле
$$A = \frac{D^2 \times \pi}{4}$$
, (мм²) или $A = R^2 \times \pi$, (мм²)

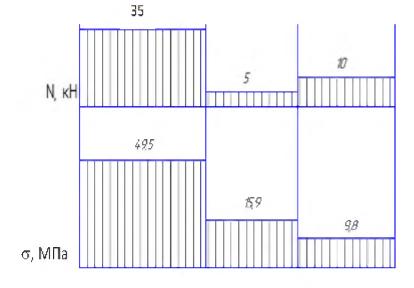
найти площадь каждого круглого сечения.
$$A1 = \frac{\pi \times D^2}{4} = \frac{3.14 \times 36^2}{4} = 1017.36 \text{ mm}^2$$

$$A2 = \frac{\pi \times D^2}{4} = \frac{3.14 \times 20^2}{4} = 314 \text{ mm}^2$$

$$A3 = \frac{\pi \times D^2}{4} = \frac{3.14 \times 30^2}{4} = 706.5 \text{ mm}^2$$

2. определяем величины нормальных напряжений по сечениям с учетом изменения площади поперечного сечения.

Исходя из полученных значений находим нормальное напряжение на каждом участке


$$\sigma = \frac{N(H)}{A(MM^2)}, (H/MM^2) или MПа).$$

$$\sigma 1 = \frac{N1}{A1} = \frac{10 \times 10^3}{1017,36} = 9,8 MПа, (H/MM^2)$$

$$\sigma 2 = \frac{N2}{A2} = \frac{5 \times 10^3}{314} = 15,9 MПа, (H/MM^2)$$

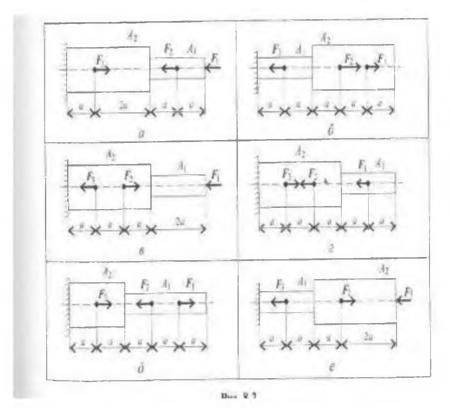
$$\sigma 3 = \frac{N3}{A3} = \frac{35 \times 10^5}{706,5} = 49,5 MПа, (H/MM^2)$$

3.Строим эпюры N и σ .

Форма контроля:

Проверка преподавателем.

Защита перед аудиторией своей работы.


Критерии оценки:

Оценка 3 – По методу сечений правильно определена продольная сила на каждом.

Оценка 4 – По методу сечений правильно определена продольная сила на каждом участке и изображена эпюра. Правильно посчитаны площади сечений.

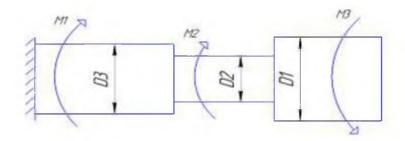
Оценка 5 – По методу сечений правильно определена продольная сила на каждом участке и изображена эпюра. Правильно посчитаны площади сечений. Правильно посчитаны напряжения на каждом участке и есть эпюра.

№3 Построение эпюр продольных сил и нормальных напряжений.

P1		Вариалу											
Hapavers	1	2	3	4	5	ő	î	8	4	10			
F_3 , KH	20	26	20	17	16	[1]	26	40	14	28			
F ₂ , KH	10	20	8	13	25	12	9	55	16	14			
<i>F</i> ₃ , кН	5	10	4 .	8	28	13	3	24	10	5			
A , cv	1.8	1,6	1,0	2,6	1.2	0.9	1.9	2,8	2,1	1,9			
A ₁ , cm ²	3,2	2.4	÷,5	2,5	2.8	1,7	2,6	3.4	2.9.	2,4			
a. M	0,2	0,3	0,4	0,5	0,6	0.4	0,3	0,2	0.5	0,6			

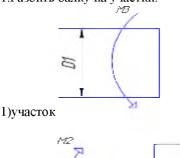
- $1. \mbox{Проговорить}$ единицы измерения значений сил, напряжений и площадей.
- 2.Определить где наиболее опасное сечение бруса.
- 3. Проговорить формулу для нахождения напряжения
- 4.Какие внутренние силовые факторы возникают при растяжении и сжатии.
- 5. Правило знаков для продольной силы..

Тема 2.5 Кручение

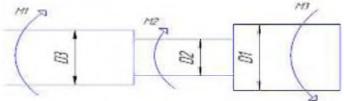

Расчетно-графическая работа

Задание:

- 1. Определить по методу сечений крутящие моментоы.
- 2.По условию прочности рассчитать размеры каждой ступени.


Цель: в результате выполнения работы студент должен знать правила построения эпюр крутящих моментов и касательных напряжений в поперечном сечении бруса, уметь с помощью метода сечений строить эпюры крутящих моментов и касательных напряжений. Проводить конструирование бруса с учетом полученных значений из условия прочности.

Рекомендации по выполнению


143

1. Разбить балку на участки.

3

2)участок

3)участок

По методу сечений определить крутящий момент Мкр, (кH*m) на каждом участке.

$$M\kappa p1 = -M3 = -5 \kappa H*м$$
 $M\kappa p2 = -M3+M2 = -5+10 = 5 \kappa H*м$
 $M\kappa p3 = -M3+M2-M1 = -5+10-30 = -25 \kappa H*м$

2.По условию прочности определяем полярные моменты сопротивления ступеней вала.

$$\tau = \frac{M \kappa p}{W p} \le [\tau]$$

$$Wp1 = \frac{M \kappa p}{[\tau]} = \frac{-5 \times 10^6}{140} = 35714,28, \text{ MM}^3$$

$$Wp2 = \frac{M \kappa p}{[\tau]} = \frac{5 \times 10^6}{140} = 35714,28, \text{ MM}^3$$

$$Wp3 = \frac{M \kappa p}{[\tau]} = \frac{-25 \times 10^6}{140} = 173571,4, \text{ MM}^3$$

3.Из формулы выражаем диаметры вала.

$$Wp = 0.2 \times D^{3}, \text{ MM}^{3}$$

$$D1 = \sqrt[5]{\frac{Wp1}{0.2}} = \sqrt[5]{\frac{35714.28}{0.2}} = 56 \text{ MM}$$

$$D2 = \sqrt[5]{\frac{Wp2}{0.2}} = \sqrt[5]{\frac{35714.28}{0.2}} = 56 \text{ MM}$$

$$D3 = \sqrt[5]{\frac{Wp}{0.2}} = \sqrt[5]{\frac{178571.4}{0.2}} = 96 \text{ MM}$$

Изобразить на схеме брус с расчетными диаметрами.

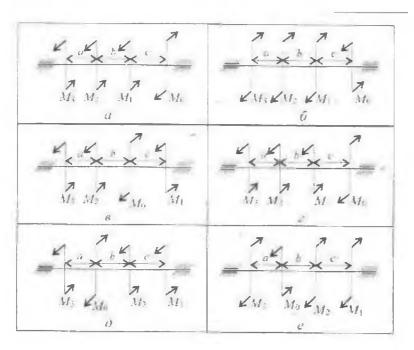
Ответ: Уточненные D3 = 96 мм, D2 = 56 мм, D1 = 56 мм.

Форма контроля:

Проверка преподавателем.

Защита перед аудиторией своей работы.

Критерии оценки:


Оценка 3 – По методу сечений правильно определены крутящие моменты на каждом участке и построена эпюра.

Оценка 4 – По методу сечений правильно определены крутящие моменты на каждом участке и построена эпюра. Правильно определены полярные моменты сопротивления.

Оценка 5 – По методу сечений правильно определены крутящие моменты на каждом участке и построена эпюра. Правильно определены полярные моменты сопротивления. Правильно сконструирован брус.

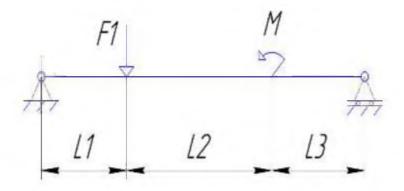
*№*4

- 1.Определить по методу сечений крутящие моментоы.
- 2.По условию прочности рассчитать размеры каждой ступени.

Параметр					Bapı	иант				
	1	2	3	4	5	6	7	8	9	10
m1, кН*м	10	12	14	16	18	20	22	24	26	28
m2, кН*м	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5
m3,кH*м	14	13	12	11	10	9	8	7	6	5
m4,кН*м	2,6	2,7	2,8	2,9	3,0	3,1	3,2	3,3	3,4	3,5

а=b=с, м	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2

- 1.Проговорить единицы измерения значений моментов, напряжений и площадей.
- 2.Проговорить формулу для нахождения напряжения 4.Какие внутренние силовые факторы возникают при кручении.
- 5. Правило знаков для крутящего момента.


Тема 2.6 Изгиб

Расчетно-графическая работа

Задание: Построить эпюры внутренних силовых факторов возникающих при изгибе.

Цель: иметь представление о видах изгиба и внутренних силовых факторах в сечении при изгибе. Знать методы определения внутренних силовых факторов и уметь ими пользоваться. Знать основные правила и порядок построения эпюр поперечных сил и изгибающих моментов. Уметь строить эпюры поперечных сил и изгибающих моментов.

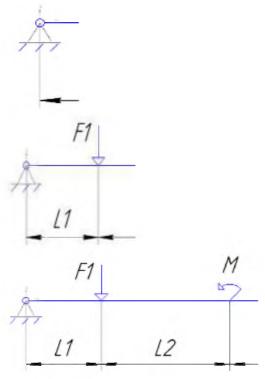
Рекомендации по выполнению

1. Определяем реакции опор, составляя уравнения равновесия.

$$\Sigma Fx = -Rx = 0$$
 $Rx = 0$

$$\Sigma M = (F1 \times 1) - M - (Rb \times 4) = 0$$

$$Rb = \frac{M - F1}{4} = \frac{5 - 30}{4} = -6,25 \text{ kH}$$


$$\Sigma Fy = Ra - Rb - F1 = 0$$

$$Ra = F1 + Rb = 30 + 6.25 = 36.25 \text{ kH}$$

2. Проверка:

$$\Sigma F_V = 36,25 - 6,25 - 30 = 0$$

3-4. Разбить брус на участки.

По методу сечений определить поперечную силу Q, (кH) на каждом участке.

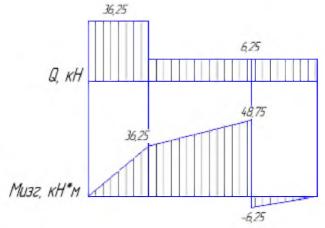
По методу сечений определить изгибающий момент Мизг, (кН*м).

$$M1 = Ra \times z, z \rightarrow 1M$$

 $M1 = 36,25 \times 0 = 0$
 $M1 = 36,25 \times 1 = 36,25 \text{ kH*}_M$

$$M2 = R\alpha \times (1+z) - F1 \times z, z \rightarrow 2M$$

$$M2 = 36,25 \times (1+0) - 30 \times 0 = 36,25 \text{ kH*}_M$$


$$M2 = 36,25 \times (1+2) - 30 \times 2 = 48,75, \text{ kH*}_M$$

$$M3 = R\alpha \times (3+z) - F1 \times (2+z) - M, z \rightarrow 1_{M}$$

$$M3 = 36,25 \times (3+0) - 30 \times (2+0) - 55 = -6,25, \kappa H*_{M}$$

$$M3 = 36,25 \times (3+1) - 30 \times (2+1) - 55 = 50, \kappa H*_{M}$$

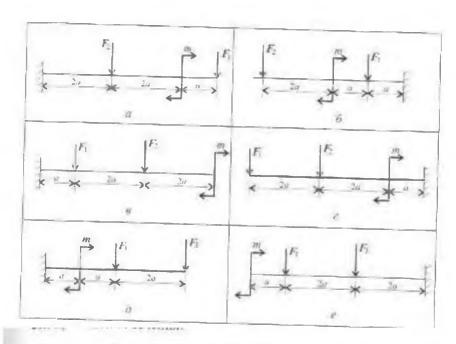
5.Строим эпюры Q и Мизг.

Ответ: Опасным считаются сечение 1 здесь максимальный скачек силы поперечной Q и переход от сечения 2 к сечению 3 здесь максимальное значение момента

Форма контроля:

Проверка преподавателем.

Защита перед ау диторией своей работы.


Критерии оценки:

Оценка 3 — По методу сечений правильно определены поперечные силы на каждом участке.

Оценка 4 – По методу сечений правильно определены поперечные силы на каждом участке. Правильно определены изгибающие моменты.

Оценка 5 – По методу сечений правильно определены поперечные силы на каждом участке. Правильно определены изгибающие моменты. Построены обе эпюры.

№5Построить эпюры внутренних силовых факторов возникающих при изгибе.

Параметр	-				Вармали												
1000	1	2	3	4	5	6	7	S	9]11							
F _t , KH	111	11	12	13	14	15	16	17	1.8	19							
F_2 , κH	4,4	4,8	7.8	8.4	12	12,8	17	18	22,8	24							
m, kH I v	3	-1	5	6	7	7	6	5	4	3							
u, M	0,2	0,2	0,3	0,3	0,4	0,4	0.5	0.5	0,6	0.6							

- 1. Правило знаков для поперечной силы.
- 2.Правило знаков для изгибающего момента.
- 4. Какие внутренние силовые факторы возникают при изгибе.
- 5. Какие использовали уравнения равновесия, проговорить их полное название

Тема 3.2.Простейшие движения твердого тела.

Решение задач

Задание: Определить вид движения на каждом участке, записать закон движения на каждом участке. Определить полный угол поворота за время движения и полное число оборотов шкива за это время. Определить угловую скорость, нормальное ускорение и касательное в указанные моменты времени.

Цель: представление о поступательном и вращательном иметь движениях твердого тела и их параметрах. Знать способы задания движения. Знать обозначения, единицы измерения, взаимосвязь кинематических параметров движения. Уметь определять кинематические параметры движения.

Рекомендации по выполнению

По заданному графику следует рассмотреть 3 участка движения. Первый участок – разгон из состояния покоя (равноускоренное движение).

Уравнение движения заданно по формуле

 $\varphi = \varphi_0 + \omega_0 * t + (\varepsilon * t^2)/2$

В данном случае $\phi_0 = 0$, $\omega_0 = 0$

Следовательно $\varphi = (\varepsilon * t^2)/2$

Откуда $\varepsilon = (2\phi)/t^2$

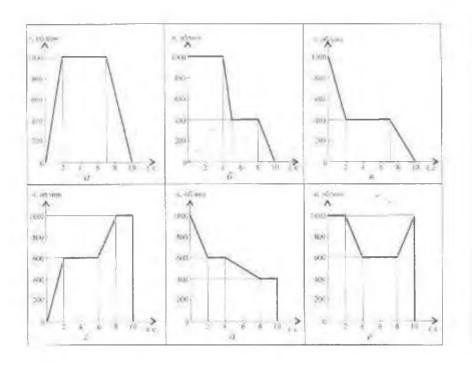
Тело из состояния покоя сделало 1000 оборотов за 2 секунды, один оборот равен 2¶ радиан. Следовательно $\phi = 2000$ ¶ радиан.

Тогда можем определить значение углового ускорения $\varepsilon = (2*2000*\P)/t^2 = 3140 \text{ рад/c}^2$.

Полное число оборотов на первом участке равно $z = \phi/2*\P = 2000*\P/2*\P = 1000$ оборотов.

Угловая скорость равна $\omega = (2*\P*n)/60 = 2*\P*1000/60 = 104,7$ рад/с. В ответе указываем значения на всех трех участках и полный угол поворота и число обротов.

Форма контроля:


Проверка преподавателем. Защита перед аудиторией своей работы.

Критерии оценки:

- 3 все три участка правильно заданы уравнения движения и посчитан угол поворота.
- 4 для каждого участка верно рассчитаны угловая скорость, угловое ускорение и число оборотов.
- 5 определен полный угол поворота и полное число оборотов шкива.

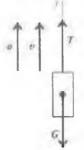
№6 Определить вид движения на каждом участке, записать закон движения на каждом участке. Определить полный угол поворота за время движения и полное число оборотов шкива за это время. Определить угловую скорость, нормальное ускорение и касательное в указанные моменты времени.

Danasana					Bap	нант				
Параметр	1	2	3	4	5	6	7	ķ	9	10
Диаметр авкива, м	0,2	0,3	0,4	0.6	0,5	0,8	0,2	0,6	0,5	0.8
l _{j+} c	2	1	2	1	2	1	2	1	2	1
t ₂ , C	8	9	8	9	8	6	9	8	9	6

- 1. Законы поступательного движения точки для равномерного движения
- 2. Законы вращательного движения точки для равнопеременного движения.
- 3. Законы поступательного движения точки равнопеременногодвижения.
- 4. Законы вращательного движения точки равномерного движения.

Тема 4.3. Трение. Работа и мощность.

Решение задач


Задание: определить потребную мощность электродвигателя лифта.

Цель: знать аксиомы динамики и математическое выражение основного закона динамики. Иметь представление о трении и силе трения, силе инерции. Знать формулы для определения силы трения и силы инерции. Знать формулы для определения работы и мощности при поступательном и вращательном движениях. КПД. Уметь рассчитывать работу и мощность с учетом потерь на трение и сил инерции.

Рекомендации по выполнению

Задан график изменения скорости лифта при подъеме. Масса лифта 2800 кг. Определить натяжение каната.

Рассмотрим участок 1 – подъем с ускорением.

Уравнение равновесия кабины лифта: $\Sigma Fx = T1$ -G-Fин = 0

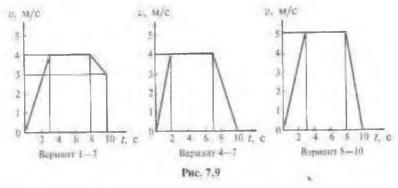
 Γ де G = mg, Fин = ma,

Т – натяжение каната,

G - сила тяжести.

Fин - сила инерции, растягивающая канат.

Для определения ускорения на участке 1 учтем, что


Форма контроля:

Проверка преподавателем.

Защита перед аудиторией своей работы.

Критерии оценки:

№7 Определить натяжение каната, на котором подвешен лифт, при подъеме. По максимальной силе натяжения каната определить потребную мощность электродвигателя. С учетом КПД определить максимальную мощность электродвигателя.

2 months	Варизит												
Riquisierr	1	2	3.	4	5	5	7	8	90	10			
Масса т, кт	500	700	750	800	600	800	600	450	900	850			
КПД механизма	8,0	0,75	0.8	0.75	0,8	0.75	0,8	0.75	0,8	0.75			

- 1. Законы поступательного движения точки для равномерного движения
- 2. Законы вращательного движения точки для равнопеременного движения.
- 3. Законы поступательного движения точки равнопеременногодвижения.

Законы вращательного движения точки равномерного движения

Тема 5.1. Основные положения. Общие сведения о передачах

Решение вариантных задач

Задание: Провести кинематический и силовой расчет передачи.

Цель: иметь представление о назначении передач, о передачах, используемых в специальном оборудовании. Знать кинематические и силовые соотношения в передачах, формулы для расчета передаточного отношения и коэффициента полезного действия многоступенчатой передачи. Знать типы и особенности механических передач, их обозначения на кинематических схемах. Уметь проводить кинематические и силовые расчеты много ступенчатого привода.

Рекомендации по выполнению

1.Вычертить кинематическую схему.

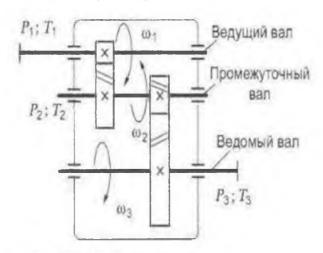


Рис. 17.7. Схема двухступенчатой передачи

2. Определяем передаточные числа по ступеням, общее передаточное число.

U1 = Z2/Z1; U2 = Z4/Z3; Uобщ = U1*U2; ювых = ювх/Uобщ

3. Определяем КПД передачи. Коэффициенты полезного действия передач получены экспериментально и выбираются по справочнику. Обе ступени - цилиндрические зубчатые. КПД таких передач 0,98-0,99

$$\eta 1 = \eta 2 = 0.98$$

3. Мощности на валах

 $P2 = P1*\eta1;$

 $P3 = P2*\eta 2$

4. Вращающие моенты

 $T2 = T1*U1*\eta1$

 $T3 = T2*U2*\eta^2$

Форма контроля:

Проверка преподавателем.

Защита перед аудиторией своей работы.

Критерии оценки:

Оценка 3 – Определено общее передаточное число и КПД передачи.

Оценка 4 – Определено общее передаточное число и КПД передачи. Мощности на валах посчитаны верно.

Оценка 5 – Определено общее передаточное число и КПД передачи. Мощности на валах посчитаны верно. Моменты на валах посчитаны верно.

№8 Провести кинематический и силовой расчет передачи.

Варианты	1	2	3	4	5	6	7	8	9	10
P _{au} , KBr	2		4		.5		6		<u>R</u>	
ω ₁₀ , pa.1/c	50		100		100		75		50	
ζյ	18	20	20	22	22	18	18	20	22	22
24	36	45	50	44	55	36	72	80	55	88
P _{max} - xBr		2		6		8		J1)		10
ω _{mes} , paz/c		10		1.5		28		32		10
No exemu	1	2	3	4	5	1	2	3	4	5

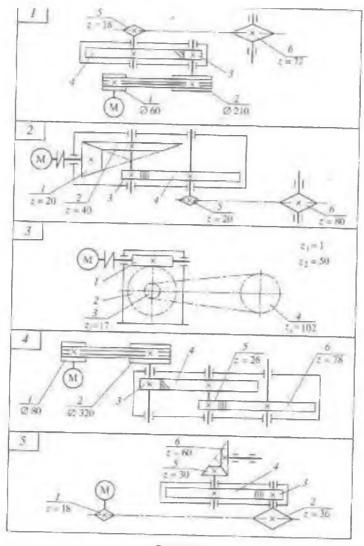


Рис. 17.8

- 1. Какие передачи изображены на схеме?
- 2.Откуда куда передается движение?
- 4. Чем отличается редуктор от мультипликатора?
- 5. Для чего используют передачи?

Тема 5.3. Зубчатые передачи

Доклад

Задание: Доклад на тему особенностей изготовления зубчатых передач

Цель: иметь представление о методах зубонарезания и требованиях к профилю зубьев, об основной теореме зацепления, о эвольвентном зацеплении зубьев, шаге зацепления, модуле зуба колеса. Знать эвольвентного зубьев, характеристики зацепления формулы геометрического цилиндрических колес уметь ими расчета И пользоваться.

Рекомендации по выполнению

Рассказать какое оборудование задействовано в изготовлении зубчатых колес.

Как оно работает?

Почему его предпочитают другому оборудованию?

Форма контроля:

Защита перед аудиторией своей работы.

Критерии оценки:

Оценка 3 – Представлены два основных способа зубонарезания.

Оценка 4 – Рассмотрены три профиля зубьев.

Оценка 5 – Рассмотрен полный цикл изготовления зубчатого колеса от заготовки.

№9 Доклад на тему особенностей изготовления зубчатых передач.

Вопросы самоконтроля

- 1. Какие зубчатые передачи вам известны?
- 2. Какие основные достоинства цилиндрических передач?
- 3. Назовите основные отличия цилиндрических передач от червячных.

Тема 5.3. Зубчатые передачи

Расчет вариантных задач

Задание: 1.Расчитать геометрические параметры зубчатой цилиндрической передачи.

2.Схематично зарисовать геометрию двух колес в зацеплении.

Цель: иметь представление о методах зубонарезания и требованиях к профилю зубьев, об основной теореме зацепления, о эвольвентном зацеплении зубьев, шаге зацепления, модуле зуба колеса.

Знать характеристики эвольвентного зацепления зубьев, формулы для геометрического расчета цилиндрических колес и уметь ими пользоваться.

1.С колеса замерить высоту зуба и посчитать число зубьев. Модуль передачи определяется по формуле

m =h/2.25 выбираем ближайшее к полученному значению по ряду ГОСТ

Z1 =

2.Определить передаточное отношение.

U = Z2/Z1

выбираем ближайшее к полученному значению по ряду ГОСТ

3. Определяем межцентровое расстояние.

 $a\omega = 0.5 m(Z1+Z2)$ выбираем ближайшее к полученному значению по ряду ГОСТ

4. Определяем геометрические параметры передачи. Диаметр делительной окружности: d = mZ Диаметр окружности выступов: da = d+2ha = m(z+2) Диаметр окружности впадин: df = d-2hf = m(z-2.5) Высота головки зуба: ha = m Высота ножки зуба: hf = 1.25m

5.Схематично изобразить полученные результаты.

№10. Расчет вариантных задач

- 1.Где на схеме указаны диаметры впадин, выступов, делительные?
- 2. Как определить межосевое расстояние?
- 3.В какой точке зуб разделяют на ножку и головку.

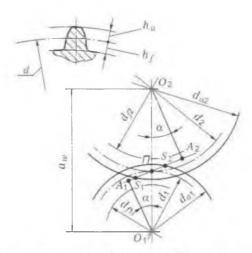


Рис. 18.1. Геометрия цилиндрической передачи: Π — полюс зацепления; A_1A_2 — линия зацепления; S_1S_2 — длина активной линии зацепления; α — угол зацепления; a_w — межосевое расстояние; d_1 , d_2 — диаметры делительных окружностей; h_a , h_f — высота головки и пожки зуба соответственно; d_{f1} , d_{f2} — диаметры окружностей впадин; d_{g1} , d_{g2} — диаметры окружностей выступов

Тема 5.4. Червячная передача. Передача винт-гайка.

Доклад

Задание: Доклад на тему особенностей изготовления передачи винт-гайка

Цель: иметь представление о методах изготовления передачи вит-гайка.

Рекомендации по выполнению

Рассказать какое оборудование задействовано в изготовлении.

Как оно работает?

Почему его предпочитают другому оборудованию?

Форма контроля:

Защита перед аудиторией своей работы.

Критерии оценки:

Оценка 3 – Рассмотрены два типа передач.

Оценка 4 – Рассмотрен принцип изготовления передачи качения.

Оценка 5 – Рассмотрен принцип изготовления передачи роликовинтовой.

№11 Доклад на тему особенностей изготовления передачи винт-гайка.

- 1. Какие винтовые передачи вам известны?
- 2. Какие основные достоинства винтовых передач передач?
- 3. Назовите основные отличия передачи винт-гайка.

Тема 5.5.Общие сведения о редукторах.

Доклад

Задание: Доклад на тему классификации редукторов

Цель: иметь представление о редукторах.

Рекомендации по выполнению

Рассмотреть основные типы редукторов: цилиндрический одноступенчатый и двух ступенчатый, червячный, Коническоцилиндрический.

Записать расшифровку каждого редуктора.

Форма контроля:

Защита перед аудиторией своей работы.

Критерии оценки:

Оценка 3 – Рассмотрены все типы редукторов.

Оценка 4 – Рассмотрен шифр каждого редуктора.

Оценка 5 – Рассмотрен способ смазки редукторов.

№12 Доклад на тему классификации редукторов.

Вопросы самоконтроля

- 1.Как смазывают редуктор и подшипники?
- 2.Где в шифре указано значение передаточного числа?
- 3. Как определить тип редуктора?

Тема 5.5.Общие сведения о редукторах.

Составление кинематических схем приводов.

Задание: Рассмотреть конструкцию редуктора. Изобразить кинематическую схему редуктора. Пояснить работу редуктора

Цель: иметь представление о типоразмерах, исполнении и компоновках редукторов. Знать назначение, основные параметры, достоинства и недостатки редукторов основных типов.

Рекомендации по выполнению

Провести анализ редуктора изображенного на чертеже.

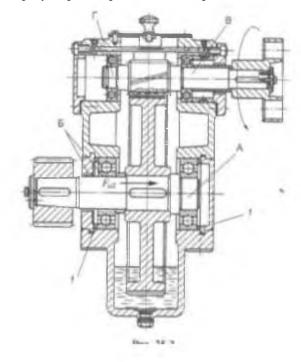
Построить кинематическую схему.

Определить скорость и вращающий момент тихоходного вала редуктора.

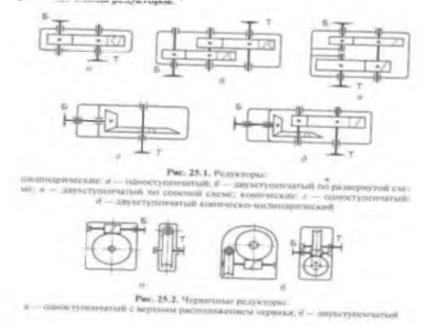
Форма контроля:

Защита перед аудиторией своей работы.

Критерии оценки:


Оценка 3 – Правильно изображена передача.

Оценка 4 – Указан корпус.


Оценка 5 – Указаны подшипники.

№13 Составление кинематических схем приводов.

- 1. Как смазывают редуктор и подшипники?
- 2.Где в шифре указано значение передаточного числа?
- 3. Как определить тип редуктора?
- 1. Провести анализ редуктора изображенного на чертеже.

2. Построить кинематическую схему:

Тема 5.6. Ременные передачи. Цепные передачи

Доклад на тему применения ременных передач Задание: Доклад на тему применения ременных передач

Цель: иметь представление о методах изготовления передачи ременных передач.

Рекомендации по выполнению

Рассказать какое оборудование задействовано в изготовлении.

Как оно работает?

Почему его предпочитают другому оборудованию?

Форма контроля:

Защита перед аудиторией своей работы.

Критерии оценки:

Оценка 3 – Рассмотрены типы передач.

Оценка 4 – Рассмотрен принцип изготовления передачи.

Оценка 5 – Рассмотрен принцип изготовления ремней.

№14 Доклад на тему применения ременных передач.

Вопросы самоконтроля

- 1. Какие питы ремней вам известны?
- 2. Какие основные достоинства ременных передач?
- 3. Назовите основные отличия ременных от фрикционных.

Тема 5.8. Опоры валов и осей. Муфты

Доклад.

Задание: Доклад на тему особенностей изготовления и применения различных типов подшипников.

Цель: иметь представление о методах изготовления подшипников.

Рекомендации по выполнению

Рассказать какое оборудование задействовано в изготовлении.

Как оно работает?

Почему его предпочитают другому оборудованию?

Форма контроля:

Защита перед аудиторией своей работы.

Критерии оценки:

Оценка 3 – Рассмотрены типы подшипников.

Оценка 4 – Рассмотрен принцип смазывания .

Оценка 5 – Рассмотрены шифры подшипников.

№15 Доклад на тему особенностей изготовления и применения различных типов подшипников.

- 1. Какие питы подшипников вам известны?
- 2. Какие тела качения вы знаете?
- 3. Какие нагрузки воспринимает подшипник?