Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова» Многопрофильный колледж

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ЛАБОРАТОРНО-ПРАКТИЧЕСКИХ РАБОТ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОПЦ.04 МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ

программы подготовки специалистов среднего звена по специальности СПО 15.02.12 Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям)

ОДОБРЕНО

Предметно-цикловой комиссией Механического и гидравлического оборудования Председатель: О.А. Тарасова Протокол №6 от 21.02.2018 г.

Методической комиссией

Протокол №4 от 01.03.2018 г.

Разработчик

В.В. Радомская, преподаватель МпК ФГБОУ ВО «МГТУ им. Г.И. Носова»

Методические указания разработаны на основе рабочей программы учебной дисциплины «Метрология, стандартизация и подтверждение соответствия».

СОДЕРЖАНИЕ

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	4
2 ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ/ЛАБОРАТОРНЫХ ЗАНЯТИЙ	6
3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ	7
Практическое занятие 1	7
Практическое занятие 2	13
Практическое занятие 3	15
Практическое занятие 4	21
Практическое занятие 5	27
Лабораторное занятие 1	32
Лабораторное занятие 2	40

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Состав и содержание практических и лабораторных занятий направлены на реализацию Федерального государственного образовательного стандарта среднего профессионального образования.

Ведущей дидактической целью практических занятий является формирование профессиональных практических умений (умений выполнять определенные действия, операции, необходимые в последующем в профессиональной деятельности) или учебных практических умений (умений решать задачи по технической механике), необходимых в последующей учебной деятельности.

Ведущей дидактической целью лабораторных занятий является экспериментальное подтверждение и проверка существенных теоретических положений (законов, зависимостей).

В соответствии с рабочей программой учебной дисциплины «Метрология, стандартизация и подтверждение соответствия» предусмотрено проведение практических и лабораторных занятий. В рамках практического/лабораторного занятия обучающиеся могут выполнять одну или несколько практических/лабораторных работ.

В результате их выполнения, обучающийся должен: *уметь:*

- У1. читать рабочие/ремонтные чертежи деталей;
- У2. применять документацию систем качества;
- У3. применять требования нормативных документов к основным видам продукции (услуг) и процессов;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.5 составлять план действий;
 - У02.2 определять необходимые источники информации;
 - У02.5 выделять наиболее значимое в перечне информации;
- У04.2 взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности;
- У05.1 применять техники и приемы эффективного общения в профессиональной деятельности;
- У05.3 излагать свои мысли и оформлять документы по профессиональной тематике на государственном языке;
- У10.1 понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые).

Содержание практических и лабораторных занятий ориентировано на подготовку обучающихся к освоению профессионального модуля программы подготовки специалистов среднего звена по специальности и овладению *профессиональными компетенциями*:

- ПК 1.1. Осуществлять работы по подготовке единиц оборудования к монтажу.
- ПК 1.2. Проводить монтаж промышленного оборудования в соответствии с технической документацией.
- ПК 1.3. Производить ввод в эксплуатацию и испытания промышленного оборудования в соответствии с технической документацией.
- ПК 2.1. Проводить регламентные работы по техническому обслуживанию промышленного оборудования в соответствии с документацией завода-изготовителя.

- ПК 2.2. Осуществлять диагностирование состояния промышленного оборудования и дефектацию его узлов и элементов.
- ПК 2.3. Проводить ремонтные работы по восстановлению работоспособности промышленного оборудования.
- ПК 3.2. Разрабатывать технологическую документацию для проведения работ по монтажу, ремонту и технической эксплуатации промышленного оборудования в соответствии требованиями технических регламентов.

А также формированию обших компетенций:

- ОК 01 Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- OК 02 Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности
- ОК 04 Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами
- OК 05 Осуществлять устную и письменную коммуникацию на государственном языке с учетом требований особенностей социального и культурного контекста
- ОК 10 Пользоваться профессиональной документацией на государственном и иностранном языках

Выполнение обучающихся практических и лабораторных работ по учебной дисциплине «Метрология, стандартизация и подтверждение соответствия» направлено на:

- обобщение, систематизацию, углубление, закрепление, развитие и детализацию полученных теоретических знаний по конкретным темам учебной дисциплины;
- формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;
- формирование и развитие умений: наблюдать, сравнивать, сопоставлять, анализировать, делать выводы и обобщения, самостоятельно вести исследования, пользоваться различными приемами измерений, оформлять результаты в виде таблиц, схем, графиков;
- приобретение навыков работы с различными приборами, аппаратурой, установками и другими техническими средствами для проведения опытов;
- развитие интеллектуальных умений у будущих специалистов: аналитических, проектировочных, конструктивных и др..

Практические и лабораторные занятия проводятся после соответствующей темы, которая обеспечивает наличие знаний, необходимых для ее выполнения.

2 ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ/ЛАБОРАТОРНЫХ ЗАНЯТИЙ

Разделы/темы	Темы практических / лабораторных занятий	Кол-во часов	Требования ФГОС СПО (уметь)
РАЗДЕЛ 1. МЕТРОЛОГИЯ		16	(уметь)
Тема 1.1 Допуски и	Практическая работа №1 Перевод	2	У1, У2, У3
посадки гладких	национальных не метрических		, ,
соединений	единиц измерения в единицы		
	международной системы СИ		
Тема 1.2 Области	Практическая работа №2	2	У1, У2, У3
применения	Построение полей допусков		
рекомендуемых посадок			
Тема 1.3 Допуски посадки	Практическая работа №3 Посадки	1	У1, У2, У3
типовых соединений	шпоночных соединений.		
	Обозначение на чертеже		
	Практическая работа №4 Посадки	1	У1, У2, У3
	под подшипники. Обозначение на		
	чертеже.		
	Практическая работа №5 Посадки	1	У1, У2, У3
	резьбовых соединений. Обозначение		
	на чертеже		
	Контрольная работа №1	1	У1, У2, У3
	Лабораторная работа №1	4	У1, У2, У3
	Определение параметров		
	шероховатости поверхности.		
Тема 1.5 Шероховатость	Лабораторная работа №2 Контроль	4	У1, У2, У3
поверхности	размеров деталей		
	штангенинструментами.		
	Обозначение на чертеже		
	Проект		
ИТОГО		16	

3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Тема1.1 Допуски и посадки гладких соединений

Практическая работа №1

Перевод национальных не метрических единиц измерения в единицы международной системы СИ

Цель: Научиться переводить единицы измерения в систему СИ.

Выполнив работу, Вы будете:

- уметь:
- У1. читать рабочие/ремонтные чертежи деталей;
- У2. применять документацию систем качества;
- У3. применять требования нормативных документов к основным видам продукции (услуг) и процессов;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.5 составлять план действий;
 - У02.2 определять необходимые источники информации;
 - У02.5 выделять наиболее значимое в перечне информации;
- У04.2 взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности;
- У05.1 применять техники и приемы эффективного общения в профессиональной деятельности;
- У05.3 излагать свои мысли и оформлять документы по профессиональной тематике на государственном языке;
- У10.1 понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые).

Материальное обеспечение:

<u>Стандарты ЕСДП: ГОСТ 25346-82; ГОСТ 25347-82; ГОСТ 25348-82; ГОСТ 25349-82;</u> ГОСТ 25670-82

Задание:

1. Перевести единицы измерения в систему СИ

Краткие теоретические сведения:

Международная система единиц физических величин.

Совокупность основных и производных единиц ФВ, образованная в соответствии с принятыми принципами, называется *системой единиц физических величин*. Единица основной ФВ является *основной единицей* данной *системы*. В Российской Федерации используется система единиц СИ, введенная ГОСТ 8.417-2002 «ГСИ. Единицы физических величин». В качестве основных единиц приняты метр, килограмм, секунда, ампер, кельвин, моль и канделла (табл.12).

Производная единица - это единица производной ΦB системы единиц, образованная в соответствии с уравнениями, связывающими ее с основными единицами или же с основными

и уже определенными производными. Некоторые производные единицы системы СИ, имеющие собственное название, приведены в табл. 13.

Таблица 12 Основные единицы физических величин системы СИ.

Величина	Единица				
	Обозн	ачение		Обозн	ачение
Наименование	Размер	Рекомен	Наименование	русское	междуна
	ность	дуемое			родное
Длина	L	1	метр	M	m
Macca	M	m	килограмм	КГ	kg
Время	T	t	секунда	С	S
Сила электрического	I	I	ампер	A	A
тока					
Термодинамическая	О	T	кельвин	К	К
температура					
Количество вещества	N	n, v	МОЛЬ	моль	mol
Сила света	J	J	канделла	кд	cd

Таблица 13. Производные единицы системы СИ, имеющие специальное название.

Величина			Единица				
Наименование	Размерность	Наименование	Обозначение	Выражение через ед.СИ			
Частота	T^{-1}	герц	Гц	c^{-1}			
Сила, вес	LMT ⁻²	ньютон	Н	м*кг*c ⁻²			
Давление, механическое напряжение	$L^{-1}MT^{-2}$	паскаль	Па	м ⁻¹ *кг*с ⁻²			
Энергия, работа, количество теплоты	$L^2 M T^{-2}$	джоуль	Дж	м ² *кг*с ⁻²			
Мощность	$L^2 MT^{-3}$	ватт	Вт	м ² *кг*с ⁻³			
Количество	TI	кулон	Кл	c*A			
электричества							
Электрическое	$L^{2} MT^{-3}I^{-1}$	вольт	В	$M^2 *K\Gamma *c^{-3} *A^{-1}$			
напряжение,							
потенциал,							
электродвижущая сила							
Электрическая емкость	$L^{-2}M^{-1}T^4I^2$	фарад	ф	$\mathbf{M}^{-2} \mathbf{*} \mathbf{K} \mathbf{\Gamma}^{-1} \mathbf{*} \mathbf{c}^{4} \mathbf{*} \mathbf{A}^{2}$			
Электрическое	$L^{2} MT^{-3}I^{-2}$	OM	Ом	м ² *кг*с ⁻³ *А ⁻²			
сопротивление							
Магнитная индукция	$MT^{-2}I^{-1}$	тесла	Тл	кг**c ⁻² A ⁻¹			

Для установления производной единицы следует:

- выбрать ФВ, единицы которых принимаются в качестве основных;
- установить размер этих единиц;

-выбрать определяющее уравнение, связывающее величины, измеряемые основными единицами, с величиной, для которой устанавливается производная единица. При этом символы всех величин, входящих в определяющее уравнение, должны рассматриваться не как сами величины, а как их именованные числовые значения;

Все основные, производные, кратные и дольные единицы являются системными. Внесистемная единица - это единица ΦB , не входящая ни в одну из принятых систем единиц. Внесистемные единицы по отношению к единицам СИ разделяют на 4 вида:

- допускаемые наравне с единицами СИ, например: единицы массы - тонна; плоского угла - градус, минута, секунда; объема - литр и др. Некоторые внесистемные единицы, допускаемые к применению наравне с единицами СИ, приведены в табл.14.

Two may be a second to the sec							
Наименование	Единица						
величины	Наименование	Обозначение	Соотношение с едини-				
			цей СИ				
Macca	тонна	Т	10 ³ кг				
Время	минута	МИН	60 c				
	час	Ч	3600 c				
	сутки	сут	86400 c				
Объем	литр	Л	$10^{-3}\mathrm{M}^{3}$				
Площадь	гектар	га	10^4m^2				

Таблица 14. Внесистемные единицы, допускаемые к применению наравне с единицами СИ.

- допускаемые к применению в специальных областях, например: астрономическая единица, парсек, световой год единицы длины в астрономии; диоптрия единица оптической силы в оптике; электрон-вольт единица энергии в физике и т.д.
- временно допускаемые к применению наравне с единицами СИ, например: морская миляв морской навигации; карат - единица массы в ювелирном деле и др. Эти единицы должны изыматься из употребления в соответствии с международными соглашениями;
- изъятые из употребления, например; миллиметр ртутного столба –единица давления; лошадиная сила единица мощности и некоторые другие.

Различают кратные и дольные единицы ФВ. *Кратная единица*- это единица ФВ, в целое число раз превышающая системную или внесистемную единицу. Например, единица длинны - километр равна 10 м, т.е. кратная метру. *Дольная единица* - единица ФВ, значение которой в целое число раз меньше системой или внесистемной единицы. Например, единица длины миллиметр равна 10 м, т.е. является дольной. Приставки для образования кратных и дольных единиц СИ приведены в табл.15.

 Таблица 15. Множители и приставки для образования десятичных кратных и дольных единиц

 и их наименований.

Множитель	Приставка	Обозначение	Множитель	Приставка	Обозначение
10 ¹⁸	экса	Э	10 ⁻¹	деци	d
10 ¹⁵	пета	П	10 ⁻²	санти	С

1012	тера	T	10 ⁻³	МИЛЛИ	M
10 9	гига	Γ	10 ⁻⁶	микро	MK
10 ⁶	мега	M	10 ⁻⁹	нано	Н
10 ³	кило	К	10 -12	пико	П
10 ²	гекто	Γ	10 -15	фемто	ф
101	дека	да	10 -18	атто	a

Существует соотношение между единицами измерения СИ и наиболее часто встречающи-мися единицами других систем и внесистемными (см. таблицу 16)

Таблица 16 Соотношения между единицами измерения

№		Единицы	Соотношение между единицами измерения СИ и
п.п	Величины	измерения	наиболее часто встречающимися единицами
		в СИ	других систем и внесистемными.
1.	Длина	M	$1_{MKM} = 10^{-6} M$
2.	Macca	ΚΓ	$1_{\rm T} = 1000 \ { m kg}$
			1ц = 100 кг
3.	Температура	К	$O = (t^{\circ}C + 273,15) \text{ K}$
4.	Вес (сила	Н	1кг = 9,81Н
	тяжести)		1 дин = 10^{-5} H
5.	Давление	Па	$1бар = 10^5 \Pi a$
			1мбар = 100 Па
			1дин /см ² = 1 мкбар = $0,1$ Па
			$1 \text{krc} / \text{cm}^2 = 1 \text{ at} = 9.81 \text{x} 10^4 \text{\Pi} \text{a} = 735 \text{mm.pt.ct.}$
			$1 \text{кгc} / \text{м}^2 = 9,81 \Pi \text{a}$
			1 мм.вод.ст. = 9,81 Па
			1 мм.рт.ст. = 133,3 Па
6.	Мощность	Вт	1 кгс ×м / c = 9,81 Вт
			$1 \text{ эрг / c} = 10^{-7} \text{ Br}$
			1ккал/ч = 1,163Bт
7.	Объем	M ³	$1 \pi = 10^{-3} $
8.	Плотность	кг / м ³	$1 \text{ т/м}^3 = 1 \text{ кг/дм}^3 = 1 \text{ г/см}^3 = 10^3 \text{ кг/м}^3$
			$1 \text{ Krc} \times \text{c}^2 / \text{m}^4 = 9.81 \text{ Kr} / \text{m}^3$
9.	Работа, энергия,	Дж	$1 \text{ кгс } \times M = 9.81 \text{ Дж}$
	количество теплоты		$1 \text{ эрг} = 10^{-7} \text{Дж}$
			$1 \text{ кВт } \times \text{ч} = 3.6 \times 10^6 \text{ Дж} = 4.19 \text{ кДж}$

Порядок выполнения работы:

- 1.Ознакомиться с единицами физических величин и их размерностью по ГОСТ 8.417-2002 или по методическому указанию.
 - 2. Оформить заголовочную часть практической работы и выполнить задание .
- 3.Перечертить задание по своему варианту (см. таблицу 16) в форме таблицы. Используя таблицы 11-15 данного пособия, выразить в соответствующих единицах заданные величины.

Ход работы:

Талица 17 Варианты

1,7, 1	13, 19	2,8, 1	4, 20	3, 9,	, 15, 21	
Задание	Ответ	Задание	Ответ	Задание	Ответ	
10м	MKM	100м	MM	100см	M	
100кг	T	100кг	Ц	100кг	Γ	
37°C	θ=	32°C	Θ=	25°C	Θ=	
250К	°C	450K	$^{\circ}C$	210 K	$^{\circ}C$	
10Па	бар	10Па	Мбар	10Па	дин/см ²	
100Па	мм.рт.ст.	100Па	кгс/см ²	100Па	мм.вод.ст.	
1000		1000		1000	кгс/ см ²	
им.рт.ст.	мбар	мм.рт.ст.	Па	мм.рт.ст.		
10 H	КГ	10 H	дин	10 H	Γ	
10Вт	ккал/ч	10Вт	эрг/с	10Вт	кгс*м/с	
10Дж	ккал	10Дж	кВт*ч	10Дж	эрг	
0,1л	CM ³	0,1л	ДМ ³	0,1л	M ³	
0,1 м/с	м/ч	0,1 м/с	км/с	0,1 м/с	км/ч	
10 A	ГА	10 A	кА	10 A	MA	
100Вт	МВт	100Вт	сВт	100Вт	дВт	
KΓ / M ³	кг/дм ³	1 кг /м ³	г/ с м ³	1 κΓ / m ³	Γ/M ³	

		Варианть	і заданий.		
4, 10,	16, 22	5, 11,	, 11, 17, 23 6,12,18, 24		18, 24
Задание	Ответ	Задание	Ответ	Задание	Ответ
1Мм	M	10мкм	M	100мм	M
10т	КГ	100ц	Т	100г	КГ
48°C	Θ=	53°C	θ=	70 °C	Θ=
375К	°C	273К	°C	300К	$^{\circ}C$
10Па	ат	10Па	мм.рт.ст.	10Па	мбар
100Па	кгс/м ²	100Па	мкбар	100Па	дин/м ²
1000		1000		1000	
мм.рт.ст.	дин/см ²	мм.рт.ст.	ат	мм.рт.ст.	κ гс/м 2
10 H	ДГ	10 H	СГ	10 H	дин
1Вт	ккал/ч	1Вт	кгс*м/с	1Вт	эрг/с
1Дж	ккал	1Дж	кВт*ч	1Дж	эрг
0,01л	CM ³	0,01л	ДМ ³	0,01л	M ³
0,1 м/с	м/мин	0,1 м/с	км/мин	0,01 м/с	км/ч
0,1 A	гА	0,1 A	cA	cA 0,1 A	
1Вт	мВт	1Вт	сВт 1Вт		дВт
1 кг / м ³	кг/дм ³	1 кг / м ³	г/см ³	1 кг / м ³	$M\Gamma/M^3$

Форма представления результата:

Отчет о проделанной работе.

Критерии оценки:

— «Отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.

- «Хорошо» теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.
- «Удовлетворительно» теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

Тема 1.2 Области применения рекомендуемых посадок

Практическое занятие № 2

Построение полей допусков.

Цель: <u>Научиться выбирать посадки в системе отверстия и вала с использованием</u> таблиц ГОСТов.

Выполнив работу, Вы будете:

уметь:

- У1. читать рабочие/ремонтные чертежи деталей;
- У2. применять документацию систем качества;
- У3. применять требования нормативных документов к основным видам продукции (услуг) и процессов;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.5 составлять план действий;
 - У02.2 определять необходимые источники информации;
 - У02.5 выделять наиболее значимое в перечне информации;
- У04.2 взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности;
- У05.1 применять техники и приемы эффективного общения в профессиональной деятельности;
- У05.3 излагать свои мысли и оформлять документы по профессиональной тематике на государственном языке;
- У10.1 понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые).

Материальное обеспечение:

<u>Стандарты ЕСДП: ГОСТ 25346-82; ГОСТ 25347-82; ГОСТ 25348-82; ГОСТ 25349-82;</u> ГОСТ 25670-82

Задание:

- 1. Построить поле допуска для заданной посадки (таблица 7).
- 2. Определить величину зазора(натяга).

Краткие теоретические сведения:

Системой допусков и посадок (СДП) называется совокупность рядов допусков и посадок, закономерно построенных на основе опыта, теоретических и экспериментальных исследований и оформленных в виде стандартов. Система предназначена для выбора минимально необходимых, но достаточных для практики вариантов допусков и посадок типовых соединений деталей машин, дает возможность стандартизировать режущие инструменты и калибры, облегчает конструирование, производство и взаимозаменяемость деталей машин, а также обусловливает их качество.

Третий принцип построения СДП (предусмотрены системы образования посадок) Предусмотрены посадки в системе отверстия и в системе вала.

Посадки в системе отверстия — посадки, в которых требуемые зазоры и натяги получаются сочетанием различных полей допусков валов с полем допуска основного отверстия.

Основное отверстие (Н) — отверстие, нижнее отклонение которого равно нулю.

Посадки в системе вала — посадки, в которых требуемые зазоры и натяги получаются сочетанием различных полей допусков отверстий с полем допуска основного вала.

Основной вал (h) — вал, верхнее отклонение которого равно нулю.

Точные отверстия обрабатываются дорогостоящим мерным инструментом (зенкерами, развертками, протяжками и т. п.). Каждый такой инструмент применяют для обработки только одного размера с определенным полем допуска. Валы же независимо от их размера обрабатывают одним и тем же резцом или шлифовальным кругом.

При широком применении системы вала необходимость в мерном инструменте многократно возрастет, поэтому предпочтение отдается системе отверстия.

Порядок выполнения работы:

- 1. Определить отклонения размеров вала и отверстия по таблицам ГОСТа.
- 2. Построить поле допуска.
- 3. Определить величину зазора (натяга) в мм.

Ход работы:

Пример 1.Определить отклонения размеров вала и отверстия по таблицам ГОСТа.

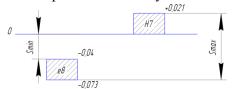
Посадка на отверстие $\emptyset 20H7^{(+0.021)}$

Верхнее отклонение ES = 0.021мм

Hижнее отклонение EI = 0

Наименьший диаметр $D_{min} = 20$ мм

Наибольший диаметр $D_{max} = 20+0,021 = 20,021$ мм


Верхнее отклонение es = -0.073мм

Ни жнее отклонение ei = -0.04мм

Наименьший диаметр $d_{min} = 20-0.073 = 19.927$ мм

Наибольший диаметр $d_{max} = 20-0.04 = 19.960$ мм

2. Построить поле допуска по своим значениям,

т.к. размеры вала меньше размеров отверстия посадка называется с зазором.

3. Определить величину зазора

$$S_{min} = EI-es = 0-(-0.04) = 0.04$$
MM

$$S_{\text{max}} = ES - ei = +0.021 - (-0.073) = 0.094 \text{MM}$$

$$S_{max}$$
 =ES-ei = +0,021-(-0,073) = 0,094мм тогда **средний зазор** $S_{cp} = \frac{s_{min} + s_{max}}{2} = \frac{0,04 + 0,094}{2} = 0,067$ мм

Пример 2.Определить отклонения размеров вала и отверстия по таблицам ГОСТа.

Посадка *Ф25Н7/г6*

Посадка на отверстие $Ø25H7^{(+0,021)}$

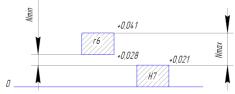
Bерхнее отклонение ES = 0.021мм

Нижнее отклонение EI = 0

Наименьший диаметр $D_{min} = 25 \text{мм}$

Наибольший диаметр $D_{max} = 25+0,021 = 25,021$ мм

Посадка на вал *\$\phi25\triangle 61.0041*\\ \$\phi.0028\$\frac{\phi}{\phi.0028}\$\frac{\phi}{


Верхнее отклонение es = 0.041мм

Ни жнее отклонение ei = 0.028мм

Наименьший диаметр $d_{min} = 25+0,028 = 25,028$ мм

Наибольший диаметр $d_{max} = 25 + 0.041 = 25.041$ мм

2. Построить поле допуска по своим значениям,

т.к. размеры вала больше размеров отверстия такая посадка называется с натягом.

3. Определить величину натяга

 $N_{\text{max}} = \text{es-EI} = +0.041 - 0 = 0.041 \text{ MM}$

 $N_{min} = ei-ES = +0.028-0.021 = 0.007 MM$

тогда **средний натяг** $N_{cp} = \frac{N_{max} + N_{min}}{2} = \frac{0.041 + 0.007}{2} = 0.024$ мм

Пример 3 Определить отклонения размеров вала и отверстия по таблицам ГОСТа.

Посадка *Ф23H7/k6*

Посадка на отверстие $\emptyset 23H7^{(+0,021)}$

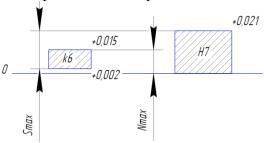
Верхнее отклонение ES = 0.021 мм

Нижнее отклонение EI = 0

Наименьший диаметр $D_{min} = 23$ мм

Наибольший диаметр $D_{max} = 23+0,021 = 23,021$ мм

Посадка на вал *\$23k6\(\frac{+0.015}{+0.002}\)*


Верхнее отклонение es = 0.015мм

Ни жнее отклонение ei = 0.002мм

Наименьший диаметр dmin = 23+0,015 = 23,015мм

Наибольший диаметр dmax = 23+0.002 = 23.002 мм

2. Построить поле допуска по своим значениям,

т.к. на поле допуска вал перекрывается отверстием полностью, посадка называется переходной.

3.Определить величину натяга и зазора

 $N_{\text{max}} = \text{es-EI} = +0.015 - 0 = 0.015 \text{MM}$

 $S_{\text{max}} = \text{ei-ES} = +0,002-0,021 = -0,019 \text{MM}$

тогда средний натяг и средний зазор $N_{cp} = S_{cp} = \frac{N_{max} + S_{max}}{2} = \frac{0.015 + (-0.019)}{2} = -0.004$ мм

Форма представления результата:

Отчет о проделанной работе.

Критерии оценки:

- «Отлично» теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.
- «Хорошо» теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.
- «Удовлетворительно» теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат опибки.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

Тема 1.3 Допуски посадки типовых соединений

Практическое занятие № 3

Посадки шпоночных соединений. Обозначение на чертеже.

Цель: научиться обозначать посадки шпоночных соединений на чертежах.

Выполнив работу, Вы будете:

уметь:

- У1. читать рабочие/ремонтные чертежи деталей;
- У2. применять документацию систем качества;
- У3. применять требования нормативных документов к основным видам продукции (услуг) и процессов;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.5 составлять план действий;
 - У02.2 определять необходимые источники информации;
 - У02.5 выделять наиболее значимое в перечне информации;
- У04.2 взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности;
- У05.1 применять техники и приемы эффективного общения в профессиональной деятельности;
- У05.3 излагать свои мысли и оформлять документы по профессиональной тематике на государственном языке;
- У10.1 понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые).

Материальное обеспечение: <u>инструкции к выполнению заданий, шпоночные</u> соединения, таблицы ГОСТа, конспект лекций.

Задание:

1. Назначить посадку на шпоночное соединение и указать на чертеже по варианту (таблица 11).

Краткие теоретические сведения:

Шпоночные соединения предназначены для соединения с валами зубчатых колес, шкивов, маховиков, муфт и других деталей и служат для передачи крутящих моментов. Наиболее часто применяются соединения с призматическими шпонками. Размеры, допуски, посадки и предельные отклонения соединений с призматическими шпонками установлены ГОСТ 23360-78*.

Порядок выполнения работы:

- 1. Подобрать шпонку по таблице ГОСТа.
- 2. Назначить посадку на шпоночное соединение, исходя из рекомендаций.
- 3. Указать посадку на чертеже.

Ход работы:

Пример: Соединение шпонки свободное, вал диаметром 42мм.

1. Подобрать шпонку по таблице ГОСТа (таблица 8)

Для диаметра вала ϕ 42 подбираем шпонку с размерами 12х8, глубина паза вала $t_1 =$ 5мм, глубина паза втулки $t_2 = 3,3$ мм

Таблица 8, «Основные размеры соединений с призматическими шпонками»

			- 1					
AA 1, 1/2								
Диаметр	Номинальный размер шпонки, мм Номинальный размер паза, мм							
вала <i>d</i> , мм	hyh	рх h Фаска S		Глубина		Раді	tyc r	
	D X 11	max	min	На валу t ₁	На втулке t ₂	max	min	
От 6 до 8	2 x 2			1.2	1.0			
Св. 8 до 10	3 x 3	0.25	0.16	1.8	1.4	0.16	0.08	
Св. 10 до 12	4 x 4			2.5	1.8			
Св. 12 до 17	5 x 5			3.0	2.3			
Св. 17 до 22	6 x 6	0.40	0.25	3.5	2.8	0.25	0.16	
Св. 22 до 30	7 x 7	0.40	0.23	4.0	3.3	0.23	0.10	
Св. 22 до 30	8 x 7			4.0	3.3			
Св. 30 до 38	10 x 8			5.0	3.3			
Св. 38 до 44	12 x 8			5.0	3.3			
Св. 44 до 50	14 x 9	0.60	0.40	5.5	3.8	0.40	0.25	
Св. 50 до 58	16 x 10			6.0	4.3			
Св. 58 до 65	18 x 11			7.0	4.4			

Продолжение таблицы 8, «Основные размеры соединений с призматическими шпонками».

Диаметр		Номинальный размер шпонки, мм			Номинальный размер паза, мм			
вала <i>d</i> , мм	bxh	Фас	ка Ѕ	Глу	бина	Радиус <i>r</i>		
	DXII	max	min	На валу t ₁	На втулке t ₂	max	min	
Св. 65 до 75	20 x 12			7.5	4.9			
Св. 75 до 85	22 x 14			9.0	5.4			
Св. 85 до 95	25 x 14	0.80	0.60	9.0	5.4	0.60	0.40	
Св. 95 до 110	28 x 16			10.0	6.4			
Св. 110 до 130	32 x 18			11.0	7.4			
Св. 130 до 150	36 x 20			12.0	8.4			
Св. 150 до 170	40 x 22	1.2	1.00	13.0	9.4	1.0	0.7	
Св. 170 до 200	45 x 25			15.0	10.4			
Св. 200 до 230	50 x 28			17.0	11.4			
Примечания. 1. Длина шпонок долж	кна выбирать	ся из ряд	na: 6: 8: 10	D: 12: 14: 16: 18	: 20: 22: 25: 28:	32: 36: 40:	45: 50:	

1. Длина шпонок должна выбираться из рядак €, 8; 10; 12; 14; 16; 18; 20; 22; 25; 28; 22; 36; 40; 45; 50; 56; 63; 70; 80; 90; 100; 110; 125; 140; 160; 180; 200; 220.
2. Материал - сталь с временным сопротивлением разрыву не менее 590 МН/м² (60 ктс/мм²).
3. На рабочем чертеже проставляется один размер для вала I₈ (предпочтительный вариант) и для втупки d + ½.
4. В обоснованных случаях (пустотелые валы, передача пониженных крутящих моментов и т.л.) допускается применять меньшие размеры сечений стандартных шпонох.
5. Пример условного обозначения шпонях исполения 1 (с раднусом закуглений R = b/2) с размерами b = 18 мм, h = 11 мм, l = 100 мм. Шпонка 18 x 11 x 100 / ОСТ 23360-78;

2. Назначить посадку на шпоночное соединение(таблица 9).

На ширину шпонки h9.

На ширину паза вала Н9.

На ширину паза втулки D10.

Таблица 9, «поля допусков по ширине шпонки и шпоночных пазов b для свободного, нормального и плотного соединений»

Элемент соединения	Поле допусков размера <i>b</i> при соединении				
элемент соединения	свободном	нормальном	плотном		
Ширина шпонки	h9	h9	h9		
Ширина паза на валу	H9	N9	P9		
Ширина паза на втулке	D10	Js9	P9		

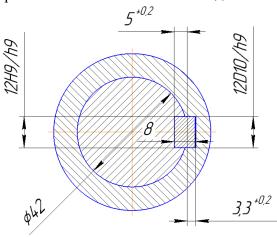

3. Подобрать по значению пазов на валу и втулке предельные отклонения (таблица 10).

Таблица 10, «Предельные отклонения на глубину пазов»

Высота шпонки <i>h</i> , мм	От 2 до 6	От 6 до 18	От 18 до 50
Предельные отклонения на глубину паза на валу t_1	+0.1	+0.2	+0.3
(или d - t_1), и во втулке t_2 (или d + t_2), мм	0	0	0

4. Проставить посадки на чертеже.

По размерам сделать чертеж и обозначить на нем посадки.

Варианты заданий

Таблица 11

№ варианта	Вал						
1	∅ 48, соединение свободное	9	Ø 70, соединение нормальное	17	Ø 72, соединение плотное	25	Ø 75, соединение свободное
2	Ø 80, соединение нормальное	10	Ø 54, соединение плотное	18	Ø 45, соединение свободное	26	Ø 185, соединение нормальное
3	Ø 15, соединение плотное	11	Ø 100, соединение свободное	19	Ø 15, соединение нормальное	27	Ø 120, соединение плотное
4	Ø 120, соединение свободное	12	Ø 30, соединение нормальное	20	Ø 48, соединение плотное	28	Ø 30, соединение свободное
5	Ø 60, соединение нормальное	13	Ø 75, соединение плотное	21	Ø 100, соединение свободное	29	Ø 54, соединение нормальное
6	Ø 185, соединение плотное	14	Ø 25, соединение свободное	22	Ø 28, соединение нормальное	30	Ø 80, соединение плотное
7	∅ 18, соединение свободное	15	Ø 40, соединение нормальное	23	Ø 45, соединение плотное	31	Ø 70, соединение свободное
8	Ø 28, соединение нормальное	16	Ø 55, соединение плотное	24	∅ 18, соединение свободное	32	Ø 55, соединение нормальное

Форма представления результата:

Отчет о проделанной работе.

Критерии оценки:

— «Отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.

- «Хорошо» теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.
- «Удовлетворительно» теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

Тема 1.3 Допуски посадки типовых соединений Практическое занятие № 4

Посадки под подшипники. Обозначение на чертеже.

Цель: Научиться обозначать посадки под подшипники.

Выполнив работу, Вы будете:

уметь:

- У1. читать рабочие/ремонтные чертежи деталей;
- У2. применять документацию систем качества;
- У3. применять требования нормативных документов к основным видам продукции (услуг) и процессов;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.5 составлять план действий;
 - У02.2 определять необходимые источники информации;
 - У02.5 выделять наиболее значимое в перечне информации;
- У04.2 взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности;
- У05.1 применять техники и приемы эффективного общения в профессиональной деятельности;
- У05.3 излагать свои мысли и оформлять документы по профессиональной тематике на государственном языке;
- У10.1 понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые).

Материальное обеспечение: конспект лекций, инструкции для выполнения задания, подшипники качения, таблицы ГОСТа.

Запание

1. Расшифровать обозначения подшипника и подобрать посадки.

Краткие теоретические сведения:

Подшипники, являясь опорами для подвижных частей, определяют их положение в механизме и несут значительные нагрузки. Подшипники качения имеют следующие основные преимущества по сравнению с подшипниками скольжения:

обеспечивают более точное центрирование вала;

имеют более низкий коэффициент трения;

имеют небольшие осевые размеры.

К недостаткам подшипников качения можно отнести:

повышенную чувствительность к неточностям монтажа и установки;

жесткость работы, отсутствие демпфирования колебаний нагрузки;

относительно большие радиальные размеры.

Классы точности подшипников качения

Долговечность подшипников качения определяется величиной и характером нагрузки, точностью изготовления, правильной посадкой на вал и в отверстие корпуса, качеством

монтажа. В зависимости от точности изготовления и сборки для различных типов подшипников установлены следующие классы точности таблица 18.

Классы точности подшипников

Таблина 18

Tup populations revenue		Класс точности						
Тип подшипника качения	0 6X 6 5 4			2	Т			
Шариковые и роликовые радиальные, шариковые радиально-упорные	×	-	x	×	x	×	×	
Упорные и упорно-радиальные	х	-	х	х	х	х	-	
Роликовые конические	х	х	х	х	х	х	-	
Примечания. 1. Самый точный класс – Т, грубый – О. 2. По заказу потребителя могут быть поставлены подшипники более грубых классов: 8 и Т.								

Классы точности определяют:

допуски размеров, формы и взаимного положения элементов деталей подшипника качения (дорожек качения, тел качения и т.д.);

допуски размеров и формы посадочных поверхностей наружного и внутреннего колец подшипника качения;

допустимые значения параметров, характеризующих точность вращения подшипников.

Дополнительные технические требования к подшипникам качения устанавливаются тремя категориями: A, B, C. В табл. 2.14 указаны категории и классы точности подшипников, для которых они предусмотрены, и те дополнительные технические требования, которые они устанавливают.

Обозначение подшипников категорий А и В:

A125-205, где A – категория; 1 – ряд момента трения; 2 – группа радиального зазора; 5 – класс точности; 205 – номер подшипника.

Обозначение подшипников категории С (в обозначении категорию С не указывают): 6-205, где 6 – класс точности; 205 – номер подшипника.

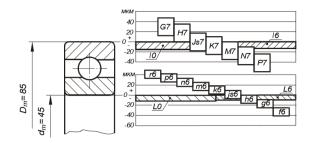

205, где 205 — номер подшипника; 0 — класс точности (в обозначении 0 класс не указывают).

Таблица 19

Категория	Класс точности							Дополнительные требования		
Категория	8	7	0	6X	6	5	4	2	Т	дополнительные тресования
А	-	-	-	-	-	х	х	х	х	По уровню вибраций По форме поверхностей качения По одному из перечисленных в стандарте параметров на выбор
В	-	-	x	x	x	х	-	-	-	По одному из перечисленных в стандарте параметров на выбор
С	х	х	х	-	х	-	-	-	-	Не предъявляются

Назначение полей допусков для вала и отверстия корпуса при установке подшипников качения

На рисунке показана схема расположения рекомендуемых полей допусков посадочных размеров для подшипников классов точности 0 и 6.

Из схемы видно, что поля допусков для внутреннего и наружного колец подшипника качения расположены одинаково относительно нулевой линии, верхнее отклонение равно 0, нижнее — отрицательное.

Валы с полями допусков r6, p6, n6, m6, k6 при сопряжении с внутренним кольцом подшипника обеспечивают посадки с натягом.

Вследствие повышенных требований к форме посадочных поверхностей подшипников стандартом устанавливаются следующие поля допусков.

- а) Поля допусков на средние диаметры D_m и d_m , которые ограничивают значения средних диаметров колец, равных $D_m = \frac{D_{max} + D_{min}}{2}$ и $d_m = \frac{d_{max} + d_{min}}{2}$, где D_{max} , D_{min} , d_{max} , d_{min} выбираются из ряда измерений в разных сечениях соответственно наружного и внутреннего диаметров. Обозначаются поля допусков, например, у подшипников нулевого класса 10 для наружного кольца и L0 для отверстия внутреннего кольца.
- б) Поля допусков для ограничения самих D_{max} , D_{min} , d_{max} , d_{min} , значения которых больше на величину допустимой погрешности формы.

При выборе полей допусков на вал и отверстие под внутреннее и наружное кольца подшипника необходимо учитывать следующее:

- класс точности подшипника качения;
- вид нагружения колец подшипника;
- тип подшипника;
- режим работы подшипника;
- геометрические размеры подшипника.

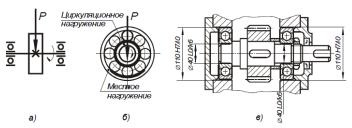
Влияние класса точности подшипника качения на выбор посадок

Как видно из схемы полей допусков, для подшипников классов точности 0 и 6 рекомендуемый набор полей допусков посадочных поверхностей одинаков. Для более высоких классов точности подшипников качения набор полей допусков посадочных поверхностей несколько изменяется, в частности, применяются поля допусков более точных квалитетов.

Влияние вида нагружения колец подшипника на выбор посадок

Вид нагружения кольца подшипника качения существенно влияет на выбор его посадки. Рассмотрим типовые схемы механизмов и особенности работы подшипников в них.

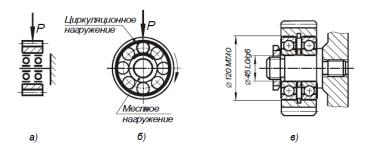
Первая типовая схема. Внутренние кольца подшипников вращаются вместе с валом, наружные кольца, установленные в корпусе, неподвижны. Радиальная нагрузка P постоянна по величине и не меняет своего положения относительно корпуса.

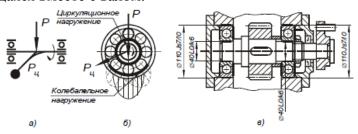

В этом случае внутреннее кольцо воспринимает радиальную нагрузку P последовательно всей окружностью дорожки качения, такой вид нагружения кольца называется **циркуляционным**. Наружное кольцо подшипника воспринимает радиальную

нагрузку лишь ограниченным участком окружности дорожки качения, такой характер нагружения кольца называется местным.

Дорожки качения внутренних колец подшипников изнашиваются равномерно, а наружных – только на ограниченном участке.

При назначении посадок подшипников качения существует правило: кольца, имеющие местное нагружение, устанавливаются с возможностью их проворота с целью более равномерного износа дорожек качения; при циркуляционном нагружении, напротив, кольца сажают по более плотным посадкам.


Рекомендуемые посадки для подшипников классов точности 0 и 6 приведены в таблице.


Вторая типовая схема. Наружные кольца подшипников вращаются вместе с зубчатым колесом. Внутренние кольца подшипников, посаженные на ось, остаются неподвижными относительно корпуса. Радиальная нагрузка P постоянна по величине и не меняет своего положения относительно корпуса.

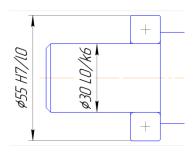
В этом случае наружное кольцо воспринимает радиальную нагрузку P последовательно всей окружностью дорожки качения, т.е. имеют циркуляционное нагружение. Внутреннее кольцо подшипника воспринимает радиальную нагрузку лишь ограниченным участком окружности дорожки качения, т.е. имеют местное нагружение.

Рекомендуемые посадки для подшипников 0 и 6 классов точности приведены в таблице.

Третья типовая схема. Внутренние кольца подшипников вращаются вместе с валом, наружные кольца, установленные в корпусе, — неподвижны. На кольца действуют две радиальные нагрузки, одна постоянна по величине и по направлению P, другая, центробежная, вращающаяся вместе с валом.

Посадки шариковых и роликовых радиальных и радиально-упорных подшипников							
Вид кольца	Вид нагружения	Рекомендуемые посадки					
	Циркуляционное	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Внутреннее кольцо, посадка на вал	Местное	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	Колебательное	LO jo6 jo6					
	Циркуляционное	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Наружное кольцо, посадка в корпус	Местное	H7 10 . H7 16					
	Колебательное	Je7 10 · Je7					
Примечания. 1. Поля допусков, заключенные в рамки, рекомендуются при осевой регулировке колец радиально- упорных подшипников. 2. При регулируемом наружном кольце с циркуляционным нагружением радиально-упорных под-							
шипников рекомендуются поса 3. Таблица дана в сокращении							

Порядок выполнения работы:


- 1. Согласно варианту в таблице 21 расшифровать обозначение подшипника.
- 2. Назначить посадки на кольца подшипника по таблице 20.
- 3. Проставить размеры.

Ход работы:

1. по таблице 21 выбрать свой вариант В752-306:

категория — В момент трения — 7 радиальный зазор — 5 класс точности — 2 номер — 306 диаметр d — 30мм диаметр D — 72мм ширина B — 11мм.

- 2. Вид нагружения местный, по таблице 20 назначаем посадки на внутренне кольцо L0/k6, на наружное H7/10.
- 3. Проставить размеры.

$\mathcal{N}_{\underline{0}}$	Вид нагружения	Обозначение
варианта		подшипника
1	циркуляционное	A216-100
2	местное	B324-104
3	колебательное	2-106
4	циркуляционное	A43T-108
5	местное	B540-110
6	колебательное	6X-112
7	циркуляционное	A766-114
8	местное	B875-118
9	колебательное	4-120
10	циркуляционное	A192-200
11	местное	B20T-202
12	колебательное	204
13	циркуляционное	A316X-208
14	местное	B426-210
15	колебательное	5-212
16	циркуляционное	A674-214
17	местное	B752-216
18	колебательное	T-218
19	циркуляционное	A86T-220
20	местное	B535-300
21	колебательное	302
22	циркуляционное	A644-304

Форма представления результата:

Отчет о проделанной работе.

Критерии оценки:

- «Отлично» теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.
- «Хорошо» теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.
- «Удовлетворительно» теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

Тема 1.3 Допуски посадки типовых соединений

Практическое занятие № 5

Посадки резьбовых соединений. Обозначение на чертеже.

Цель: научиться подбирать посадки для резьбовых соединений.

Выполнив работу, Вы будете:

- У1. читать рабочие/ремонтные чертежи деталей;
- У2. применять документацию систем качества;
- У3. применять требования нормативных документов к основным видам продукции (услуг) и процессов;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.5 составлять план действий;
 - У02.2 определять необходимые источники информации;
 - У02.5 выделять наиболее значимое в перечне информации;
- У04.2 взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности;
- У05.1 применять техники и приемы эффективного общения в профессиональной деятельности;
- У05.3 излагать свои мысли и оформлять документы по профессиональной тематике на государственном языке;
- У10.1 понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые).

Материальное обеспечение: конспект лекций, инструкции для выполнения задания, болты и гайки, таблицы ГОСТа.

Задание:

1.Подобрать по заданным значениям допуски для резьбового соединения (таблица 17).

Краткие теоретические сведения:

Метрическая цилиндрическая резьба применяется главным образом в качестве крепежной и разделяется на резьбу с крупным шагом диаметром 1...64 мм и резьбу с мелким шагом диаметром 1...600 мм. При равных наружных диаметрах метрические резьбы с мелким шагом отличаются от резьб с крупным шагом меньшей высотой профиля и меньшим углом подъема резьбы. Поэтому резьбы с мелким шагом рекомендуется применять при малой длине свинчивания, на тонкостенных деталях, а также при переменной нагрузке, толчках и вибрациях. Резьбы с крупным шагом рекомендуется применять для соединения деталей, не подвергающихся таким нагрузкам, так как они менее надежны при переменной нагрузке и вибрациях и более склонны к самоотвинчиванию.

К основным параметрам цилиндрических резьб относятся:

- d2 (D2) средний диаметр резьбы соответственно болта и гайки;
- d (D) наружный диаметр резьбы соответственно болта и гайки;
- d1 (D1) внутренний диаметр резьбы соответственно болта и гайки;

Р – шаг резьбы;

 α – угол профиля резьбы, для метрических резьб α = 60°.

Значения основных параметров метрических резьб по ГОСТ 9150-81.

Таблица 15

(Q) P	$\frac{d_2(D_2)}{d_1(D_1)}$		P Γαŭκα α = 60° P/2 Болт	H/4 H= 0.866025 P	
Шаг резь-	Наружный диам		Средний диаметр	Внутренний диаметр d ₁ , D ₁ , мм	
бы <i>Р</i> , мм	с крупным шагом, мм	с мелким шагом, мм	d ₂ , D ₂ , мм		
1	6	8 10	5.350 7.350 9.350	4.917 6.917 8.917	
1.25	8	10	7.188 9.188	6.647 8.647	
1.5	10		9.026 11.026 13.026 15.026	8.386 10.386 12.386 14.386	
1.75	12		10.863	10.106	
Iller peer	Наружный диаме	этр <i>d</i> для резьб	C	B	

Шаг резь-	Наружный диам	этр <i>d</i> для резьб	Средний диаметр	Внутренний диаметр	
бы Р, мм			d ₂ , D ₂ , mm	d _t , D _t , mm	
	14	NA INC.	12.701	11.835	
	16		14.701	13.835	
	10	18	18.701	15.835	
2		20	18.701	17.835	
		22	20.701	19.835	
		24	22.701	21.835	
	18		18.376	15.294	
2.5	20		18.376	17.294	
	22		20.376	19.294	
	24		22.051	20.752	
	27		25.051	23.752	
		30	28.051	26.752	
		36	34.051	32.752	
3		42	40.051	38.752	
3		48	48.051	42.752	
		56	54.051	52.752	
		64	62.051	60.752	
		72	70.051	68.752	
		80	78.051	76.752	
3.5	30		27.727	28.211	
3.0	33		30.727	29.211	
	36		33.402	31.670	
		64	61.402	59.670	
4		72	69.402	67.670	
		80	77.402	75.670	
		90	87.402	85.670	
4.5	42		39.077	37.129	
5	48		44.752	42.587	
	64		60.103	57.505	
		72	68.103	65.505	
6		80	76.103	73.505	
		90	86.103	83.505	
		100	98.103	93.505	

Резьбы при свинчивании контактируют только боковыми сторонами профиля, поэтому только средний диаметр, шаг и угол профиля резьбы определяют характер сопряжения в резьбе. Для компенсации накопленной погрешности шага и погрешности угла профиля производят смещение действительного среднего диаметра резьбы. Вследствие взаимосвязи между отклонениями шага, угла профиля и собственно среднего диаметра, допускаемые отклонения этих параметров раздельно не нормируют. Устанавливают только суммарный допуск на средний диаметр болта и гайки, который включает допускаемые отклонения собственно среднего диаметра и диаметральные компенсации погрешности шага и угла профиля. Кроме этого, задается допуск на наружный диаметр болта и внутренний диаметр у гайки, т.е. на диаметры, которые формируются перед нарезанием резьбы и при измерении готовых изделий наиболее доступны.

Поля допусков основного отбора метрической резьбы для посадок с зазором по ГОСТ 16093-81 приведены в таблице 16.

Цифры обозначают степень точности, а буквы - основное отклонение.

Длина свинчивания в силу конструктивных особенностей резьбовых соединений оказывает влияние на качество и характер сопряжения. Установлено три группы длин свинчивания: S – короткие,

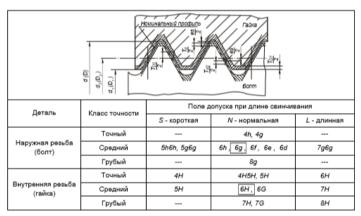
N – нормальные и L – длинные.

 \hat{K} группе N относятся резьбы с длиной свинчивания не менее 2,24 × P × $d^{0.2}$ и не более $6.7 \times P \times d^{0.2}$.

Длины свинчивания менее $2,24 \times P \times d^{0.2}$ относятся к группе S, а длины свинчивания более $6.7 \times P \times d^{0.2}$ - к группе L.

Точные значения длин свинчивания установлены ГОСТ 16093-81.

Класс точности - понятие условное (на чертежах указывают поля допусков); и его используют для сравнительной оценки точности резьбы.


Точный класс рекомендуется для ответственных резьбовых соединений.

Средний класс - для резьб общего назначения.

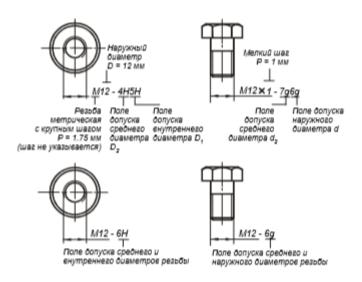
Грубый класс - для резьб, нарезаемых на горячекатаных заготовках, в длинных глухих отверстиях и т.п.

Поля допусков основного отбора метрической резьбы для посадок с зазором по ГОСТ 16093-81

Таблица 16

- Примечания.
- Для получения различных посадок можно применять любые сочетания полей допусков резьбы болтов и гаек.
- Поля допусков, заключенные в рамки, рекомендуются для предпочтительного применения.
 При длинах свинчивания S и L допускается применять поля допусков, установленные для длин свинчивания N
- 4. Наиболее распространенной посадкой для крепежных метрических резьб является $\frac{6H}{c}$
- 5. Таблица приведена в сокращении.

Порядок выполнения работы:


- 1. Подобрать свои допуски для болта и гайки;
- 2.Изобразить чертеж резьбового соединения и обозначить допуск;
 - 3.Выполнить отчет о проделанной работе

Ход работы:

Примеры обозначения посадок метрических резьб приведены на рисунке.

Если обозначение поля допуска наружного диаметра у болта или внутреннего диаметра у гайки совпадает с обозначением поля допуска среднего диаметра, его в обозначении не приводят.

Пример условного обозначения резьбового сопряжения с левой резьбой и мелким шагом P = 1 мм: $M12 \times 1LH - 6H/6g$.

Варианты

Таблица 17

	1	ı	ı	1	
вариант	диаметр	шаг	шаг	длинна	класс
	наружный,	крупный,	мелкий,	свинчивания	точности
	d	P	P		
1	10	-	1	S	средний
2	8	1,25	-	N	грубый
3	12	-	1,5	L	точный
4	10	1,5	-	S	грубый
5	14	-	1,5	N	точный
6	12	1,75	-	L	средний
7	14	2	-	S	точный
8	18	-	2	N	средний
9	16	2	-	L	грубый
10	20	-	2	S	средний
11	18	2,5	-	N	грубый
12	30	-	3	L	точный
13	20	2,5	-	S	грубый
14	36	-	3	N	точный
15	22	2,5	-	L	средний
16	42	-	3	S	точный
17	24	3	-	N	средний
18	48	-	3	L	грубый

19	27	3	-	S	средний
20	56	-	3	N	грубый
21	30	3,5	-	S	точный
22	64	-	3	N	грубый
23	33	3,5	-	L	точный
24	64	-	4	S	средний
25	36	4	-	N	грубый
26	72	ı	4	L	точный
27	42	4,5	-	S	грубый
28	80	-	4	N	точный
29	48	5	-	L	средний
30	90	-	4	S	точный

Форма представления результата:

Отчет о проделанной работе.

Критерии оценки:

- «Отлично» теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.
- «Хорошо» теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.
- «Удовлетворительно» теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

Тема 1.5 Шероховатость поверхности

Лабораторное занятие № 1

Определение параметров шероховатости поверхности

Цель: <u>изучение параметров шероховатости поверхности деталей; получение навыков обработки профилограммы и определение по ней характеристик параметров шероховатости, вывод о годности детали</u>

Выполнив работу, Вы будете:

уметь:

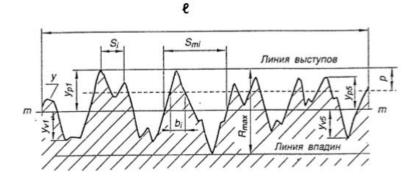
Материальное обеспечение:

конспект лекций, инструкции для выполнения задания, профилограммы

Задание:

Определить основные параметры шероховатости

Краткие теоретические сведения:


Шероховатость поверхности и ее влияние на работу деталей машин.

В процессе формообразования деталей на их поверхности появляется шероховатость – совокупность микронеровностей (чередующихся выступов и впадин) с относительно малыми расстояниями между их вершинами (шагами).

Шероховатость может быть следом от резца или другого режущего инструмента, копией неровностей форм или штампов, может появляться вследствие вибраций, возникающих при резании, а также в результате действия других факторов.

Влияние шероховатости на работу деталей машин многообразно:

- степень шероховатости поверхности может нарушать характер сопряжения деталей из-за смятия или интенсивного износа микронеровностей профиля;
- шероховатость поверхности разрушает контактирующие с ней различного рода уплотнения;
- неровности, являясь концентраторами напряжений, снижают усталостную прочность деталей;
- шероховатость влияет на герметичность соединений, на качество гальванических и лакокрасочных покрытий;
 - шероховатость влияет на точность измерения деталей;
- коррозия металлов возникает и распространяется быстрее на грубо обработанных поверхностях.

Параметры шероховатости в направлении высоты неровностей профиля (высотные параметры)

1). Среднее арифметическое отклонение профиля.

Ra – среднее арифметическое из абсолютных значений отклонений профиля в пределах базовой длины:

$$Ra = \frac{1}{l} \int_0^l |y(x)| dx$$
, мкм или приближенно

$$Ra = \frac{1}{n} \sum_{i=1}^{n} |yi|$$
 мкм – в случае ручной обработки профилограммы,

где ℓ – базовая длина; n – число выбранных точек профиля на базовой длине; y – расстояние между любой точкой профиля и средней линией.

Нормируется от 0,008 до 100 мкм.

2). Высота неровностей профиля по десяти точкам.

Rz – сумма средних абсолютных значений высот пяти наибольших выступов профиля и глубин пяти наибольших впадин профиля в пределах базовой длины.

$$Rz = \frac{\sum_{i=1}^{5} |y_{pi}| + \sum_{i=1}^{5} |y_{vi}|}{5} \cdot 10^{3}, \text{ MKM}$$

где y_{pi} — высота і-го наибольшего выступа; y_{vi} — глубина і - й наибольшей впадины профиля.

Нормируется от 0,025 до 1000 мкм.

3). Наибольшая высота неровностей профиля.

Rmax — расстояние между линией выступов и линией впадин профиля в пределах базовой длины ℓ . Линия выступов профиля — линия, проходящая через высшую точку профиля, линия впадин — линия, проходящая через низшую точку профиля, эквидистантно средней линии, в пределах базовой длины.

Нормируется от 0,025 до 1000 мкм.

Параметры шероховатости в направлении длины профиля (шаговые параметры).

1). Средний шаг неровностей профиля.

Sm – среднее значение шага неровностей профиля в пределах базовой длины.

$$S_m = \frac{1}{n} \sum_{i=1}^n S_{mi}, MM$$

где S_{mi} — шаг неровностей — отрезок средней линии, заключенный между точками пересечения смежных выступов и впадин профиля со средней линией, n — число шагов в пределах базовой длины.

Нормируется от 0,002 до 12,5мм.

2). Средний шаг местных выступов профиля.

S – среднее значение шага местных выступов профиля в пределах базовой длины.

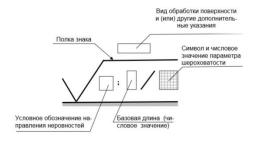
$$S = \frac{1}{n} \sum_{i=1}^{n} S_i, MM$$

где Si — шаг местных выступов профиля, равный длине отрезка средней линии между проекциями на нее двух наивысших точек соседних местных выступов профиля, n — число шагов неровностей по вершинам в пределах базовой длины.

Нормируется от 0,002 до 12,5 мм.

Параметр шероховатости, связанный с формой неровностей профиля (параметр формы)

Относительная опорная длина профиля.

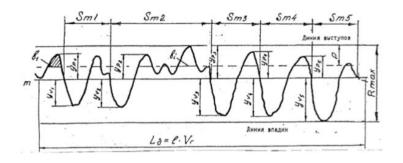

tp – отношение опорной длины профиля к базовой длине:

$$t_p = \frac{\eta_p}{l} \cdot 100\%$$

где $\eta_p = \sum_{i=1}^n b_i$ - опорная длина профиля есть сумма длин отрезков b_i в пределах базовой длины, отсекаемых на заданном уровне p в материале профиля линией, проведенной эквидистантно средней линии.

 ${f p}$ — уровень сечения профиля — расстояние между линией выступов профиля и линией, пересекающей профиль эквидистантно линии выступов (задается в процентах от значения Rmax).

Значение уровня сечения профиля р выбирают из ряда: 5; 10; 15; 20; 25; 30; 40; 50; 60; 70; 80; 90% от Rmax. Значение относительной опорной длины профиля выбирают из ряда: 10; 15; 20; 25; 30; 40; 50; 60; 70; 80; 90%.


Порядок выполнения работы:

- 1. Рассчитать основные параметры шероховатости;
- 2. Проверить полученные значения с заданными в задании;
- 3. Выполнить отчет о проделанной работе.

Ход работы:

Пример: На выданной профилограмме определить параметры шероховатости Rmax, Rz, Sm, tp.

Профилограмма записана с вертикальным увеличением профилографа $V_B = 2000$ и горизонтальным увеличением $V_\Gamma = 100$.

Для обработки профилограммы задаются значения базовой длины $\ell=2,5$ мм и уровня сечения профиля p=25%. Параметры шероховатости, полученные по профилограмме, сравнить с заданными

Определение параметров шероховатости производится в следующей последовательности:

1. Определить длину базового участка по формуле

$$Lb = \ell \cdot V_{\Gamma} = 2.5 \cdot 100 = 250 \text{ MM},$$

выделить длину базового участка на профилограмме.

- 2. Провести среднюю линию приближенным способом.
- 3. Провести линию выступов и линию впадин, определить параметр Rmax.
- 4. Определить параметр шероховатости Rz.

Для этого отмерить от средней линии значения пяти наибольших выступов профиля y_{pi} и пяти наибольших впадин y_{vi} на длине базового участка, результаты измерений занести в соответствующую таблицу.

 Таблица

 Измеренные расстояния, мм

 Ууі

 23
 17
 23
 19
 15
 18
 20
 25
 26

значение параметра Rz рассчитать по формуле

$$Rz = \frac{\sum_{i=1}^{5} |y_{pi}| + \sum_{i=1}^{5} |y_{vi}|}{5} \cdot 10^{3}$$

$$Rz = \frac{(23+17+23+19+15)+(18+20+25+26+30)}{5\cdot 2000} \cdot 10^3 = 0,0216 = 21,6 \text{ MKM}$$

Действительное значение Rz сравнить с заданным, дать заключение о годности поверхности по данному параметру. Так как Rz изм.21,6 < Rz, поверхность по параметру Rz следует считать годной.

5.Определение среднего шага неровностей Sm. Для этого измерить расстояния S_{m1} , S_{m2} , $S_{m3}...S_{mi}$ в мм на длине базового участка, результаты измерений занести в таблицу

Таблица

Из	Измеренные расстояния <i>Sm</i> , в мм							
Число шагов	1	2	3	4	5			
Sm, мм	34	75	38	38	36			

значение параметра Sm рассчитать по формуле

$$S_m = \frac{1}{V_{\Gamma} \cdot r} \sum_{i=1}^{n} S_{mi}$$

$$S_m = \frac{34 + 75 + 38 + 38 + 36}{100 \cdot 5} = 0,442 \text{ mm}$$

Действительное значение Sm сравнить с заданным, дать заключение о годности поверхности по заданному параметру. Так как Sm изм. 0,442 < Sm зад.0,5, поверхность по параметру Sm следует считать годной.

- 6.Определение относительной опорной длины профиля tp. Для этого:
- определить значение заданного уровня сечения профиля:

т.к. p = 25% от Rmax, то при Rmax = 45 мм p = 25.45/100 = 11,25 мм;

- отложить от линии выступов вниз величину р = 11,25 мм и провести линию, параллельную средней линии профиля;
- на этой линии измерить отрезки bi , попавшие внутрь выступов, результаты измерений занести в таблицу;

Таблица

Измеренные отрезки b _i , мм								
Число	1	2	3	4	5	6	7	
отрезков								
b _i , мм	10	6	10	15	11	11	5	

• значение параметра tp определить по формуле

$$t_p = \frac{1}{V_{\mathit{\Gamma}} \cdot l} \sum_{i=1}^n b_i \cdot 100\%$$

$$t_p = \frac{10 + 6 + 10 + 15 + 11 + 5}{25 \cdot 100} \cdot 100\% = \frac{68}{250} \cdot 100\% = 27\%$$

Действительное значение tp сравнить с заданным и дать заключение о годности поверхности по данному параметру.

T.к. $t_{25}30$ зад.> $t_{25}27$ изм., условие годности не выполнено, поверхность по параметру tp следует считать негодной.

Таблица 1

Числовые значения параметров шероховатости Ra, Rz, Rmax, Sm, S для простановки на чертежах должны выбираться из таблицы 1, независимо от размерности параметра

	1000	100	10	1	0.100	0.010
	800	80	8	0.8	0.080	0.008
	630	63	6,3	0.63	0.063	0,006
	500	50	5	0.5	0.050	0,005
	400	40	4	0.4	0.040	0,004
	320	32	3.2	0.32	0.032	0.003
	250	25	2.5	0.25	0.025	0.002
	200	20	2	0.2	0.020	
1600	160	16	1.6	0.16	0.016	
1250	125	12,5	1.25	0.125	0.0125	

Значение уровня сечения профиля р выбирают из ряда: 5; 10; 15; 20; 25; 30; 40; 50; 60; 70; 80; 90% от Rmax. Значение относительной опорной длины профиля выбирают из ряда: 10; 15; 20; 25; 30; 40; 50; 60; 70; 80; 90%.

Таблица 2 Соотношение параметров Ra, Rz, Rmax и базовой длины

<i>Ra</i> , мкм	Rz, Rmax, мкм	1, мм
До 0.025	До 0.10	0.08
Свыше 0.025 до 0.4	Свыше 0.10 до 1.6	0.25
Свыше 0.4 до 3.2	Свыше 1.6 до 12.5	0.8
Свыше 3.2 до 12.5	Свыше 12.5 до 50	2.5
Свыше 12.5 до 100	Свыше 50 до 400	8.0

Форма представления результата:

Отчет о проделанной работе

Критерии оценки:

— «Отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.

- «Хорошо» теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.
- «Удовлетворительно» теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

Тема 1.5 Шероховатость поверхности

Лабораторное занятие № 2

Контроль размеров деталей штангенинструментами. Обозначение на чертеже.

Цель: Научиться определять линейные размеры с помощью штангенциркуля.

Выполнив работу, Вы будете: уметь:

Материальное обеспечение: конспект лекций, инструкции для выполнения задания, детали машин, штангенциркуль.

Задание:

- 1 Определить размеры детали с помощью штангенциркуля.
- 2.Выполнить эскиз детали.

Краткие теоретические сведения:

Метрология – наука об измерениях, методах расчета и средствах обеспечения их единства и способах достижения требуемой точности.

Метрологию подразделяют на теоретическую, прикладную и законодательную.

Прикладная метрология – занимается вопросами практического применения в различных сферах деятельности результатов теоретических исследований в рамках метрологии.

Теоретическая метрология занимается вопросами фундаментальных исследований, созданием системы единиц измерений, физических постоянных, разработкой новых методов измерения.

Законодательная метрология включает совокупность взаимообусловленных правил и норм, направленных на обеспечение единства измерений, которые возводятся в ранг правовых положений, имеют обязательную силу и находятся под контролем государства.

Можно выделить три главные функции измерений:

- 1) учет продукции, исчисляющейся по массе, длине, объему, расходу, мощности, энергии.
- 2) измерения, проводимые для контроля и регулирования технологических процессов и для обеспечения нормального функционирования транспорта и связи.

3) измерений физических величин, технических параметров, состава и свойств веществ, проводимые при научных исследованиях, испытаниях и контроле продукции в различных отраслях народного хозяйства

Объектами метрологии являются единицы величин, средства измерений, эталоны, методики выполнения измерений.

Измерение – совокупность операций, выполняемых с помощью технического средства, хранящего единицу величины, позволяющего сопоставить измеряемую величину с ее единицей и получить значение величины (длины, высоты и другие параметры деталей).

Погрешность измерений – отклонение результата измерений от истинного (действительного) значения измеряемой величины.

Средство измерений – техническое устройство, предназначенное для измерений (Закон РФ «Об обеспечении единства измерений»).

Эталон – средство измерения, предназначенное для воспроизведения и хранения единицы величины с целью передачи ее средствами измерений данной величины.

Единство измерений – состояние измерений, при котором их результаты выражены в узаконенных единицах величин, а погрешности измерений не выходят за установленные границы с заданной вероятностью.

Итак, первым условием единства измерений является представление результатов измерений в узаконенных единицах, которые были бы одними и теми же по всюду, где проводятся измерения и используют их результаты. В Росси , как и в большинстве других стран, узаконенными единицами являются единицы величины Международной системы единиц, принятой Генеральной конференцией по мерам и весам, рекомендованные Международной организацией законодательной метрологии. Второе условие единства измерений – погрешность измерений не превышает (с заданной вероятностью) установленных пределов. Погрешности измерений средства измерений указываются в придаваемом к нему техническом документе – паспорте, ТУ и пр.

Главным нормативным актом по обеспечению единства измерений является Закон РФ. Он направлен на защиту прав и законных интересов граждан, экономики страны от отрицательных последствий недостоверных результатов измерений.

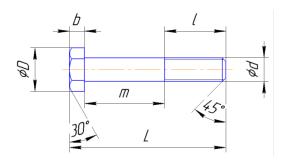
В странах на методы контроля (испытаний, измерений, анализа) должно быть соблюдено главное условие обеспечения единства измерений – указаны погрешности измерений для заданной вероятности.

Методика работы со штангенциркулем.

На основной линейке-штанге нанесены миллиметровые деления, а на подвижной рамке находится вспомогательная шкала-нониус. Интервал деления нониуса и число деления зависит от величины отсчета. Если интервал деления основной шкалы = 1мм, то при

величине отсчета по нониусу 0,1мм он будет иметь 10 делений, а при отсчете по нониусу 0,05 мм-20 делений.

Порядок выполнения работы:


- 1 Изучить методику работы со штангенциркулем.
- 2 Определить размеры детали.
- 3 Выполнить эскиз делали.

Ход работы:

Пример:

С полученной детали снять размеры.

Выполнить эскиз детали с указанием размеров.

Форма представления результата:

Отчет о проделанной работе.

Критерии оценки:

- «Отлично» теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.
- «Хорошо» теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.
- «Удовлетворительно» теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ощибки.