Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова» Многопрофильный колледж

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ПРАКТИЧЕСКИХ РАБОТ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОПЦ⊕1 ТЕХНОЛОГИИ АВТОМАТИЗИРОВАННОГО МАШИНОСТРОЕНИЯ

программы подготовки специалистов среднего звена по специальности СПО 15.02.14 Оснащение средствами автоматизации технологических процессов и проитводств (по отраслям)

ОДОБРЕНО

Предметно-цикловой комиссией Автоматизации технологических процессов Председатель: Н.В. Андрюсенко Протокол №6 от 20.02.2019 г. Методической комиссией

Протокол №5 от 21.02.2019 г.

Разработчик

В.И. Шишияева, преподаватель МпК ФГБОУ ВО «МГТУ им. Г.И. Носова»

Методические указания разработаны на основе рабочей программы учебной дисциплины «Технологии автоматизированного машиностроения».

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ	4
2 ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ/ЛАБОРАТОРНЫХ ЗАНЯТИЙ.	
3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ	9
Практическое занятие № 1	9
Практическое занятие № 2	
Практическое занятие № 3	17
Практическое занятие № 4	24
Практическое занятие № 5 Ошибка! Закладка не опреде.	пена.
Практическое занятие № 6	29
Практическое занятие № 7	34
Практическое занятие № 8	36
Практическое занятие № 9	37
Практическое занятие № 10	38
T V 11	
Практическое занятие № 11	39

1 ВВЕДЕНИЕ

Важную часть теоретической и профессиональной практической подготовки студентов составляют практические занятия.

Состав и содержание практических работ направлены на реализацию действующего федерального государственного образовательного стандарта среднего профессионального образования.

Ведущей дидактической целью практических занятий является формирование профессиональных практических умений (умений выполнять определенные действия, операции, необходимые в последующем в профессиональной деятельности).

В соответствии с рабочей программой учебной дисциплины «Технологии автоматизированного машиностроения». предусмотрено проведение практических работ.

В результате их выполнения, обучающийся должен: уметь:

- пользоваться справочной документацией по выбору лезвийного инструмента, режимов резания в зависимости от конкретных условий обработки
- выбирать конструкцию лезвийного инструмента в зависимости от конкретных условий обработки
- производить расчет режимов резания при различных видах обработки.

Содержание практических работ ориентировано на подготовку студентов к освоению профессионального модуля основной профессиональной образовательной программы по специальности и овладению профессиональными компетенциями:

- ПК 1.1. Осуществлять анализ имеющихся решений для выбора программного обеспечения для создания и тестирования модели элементов систем автоматизации на основе технического задания.
- ПК 1.2. Разрабатывать виртуальную модель элементов систем автоматизации на основе выбранного программного обеспечения и технического задания.
- ПК 1.3. Проводить виртуальное тестирование разработанной модели элементов систем автоматизации для оценки функциональности компонентов.
- ПК 2.3. Проводить испытания модели элементов систем автоматизации в реальных условиях с целью подтверждения работоспособности и возможной оптимизации.
- ПК.3.3. Разрабатывать инструкции и технологические карты выполнения работ для подчиненного персонала по монтажу, наладке и техническому обслуживанию систем и средств автоматизации.

- ПК.3.4. Организовывать выполнение производственных заданий подчиненным персоналом.
- ПК 3.5. Контролировать качество работ по монтажу, наладке и техническому обслуживанию систем и средств автоматизации, выполняемых подчиненным персоналом и соблюдение норм охраны труда и бережливого производства.
- ПК.5.1. Выполнять слесарную обработку деталей для изготовления простых приспособлений для ремонта и наладки.
- ПК.5.2. Выполнять ремонт, монтаж, наладку и проверку работо-способности контрольно-измерительных приборов и автоматики.

Обшими компетенциями:

- OК 02. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.
- ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие.
- OК 05. Осуществлять устную и письменную коммуникацию на государственном языке с учетом особенностей социального и культурного контекста.
- ОК 09. Использовать информационные технологии в профессиональной деятельности.
- OK.10. Пользоваться профессиональной документацией на государственном и иностранном языках

Выполнение студентами практических работ по учебной дисциплине дисциплины «Технологии автоматизированного машиностроения» направлено на:

обобщение, систематизацию, углубление, закрепление, развитие и детализацию полученных теоретических знаний по конкретным темам учебной дисциплины;

формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;

развитие интеллектуальных умений у будущих специалистов: аналитических, проектировочных, конструктивных и др.;

выработку при решении поставленных задач профессионально значимых качеств, таких как самостоятельность, ответственность, точность, творческая инициатива.

Продолжительность выполнения практической работы составляет не менее двух академических часов и проводится после соответствующей темы, которая обеспечивает наличие знаний, необходимых для ее выполнения.

2 ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Разделы/темы	Темы практиче- ских/лабораторных заня- тий	Количест- во часов	Требова- ния ФГОС СПО (уметь)
Раздел 1.Основы	ы проектирования техноло-	10	
	еских процессов		
Тема 1.3. Основы бази- рования	Практическая работа №1 «Выбор рациональных схем базирования»	2	Y2, Y3, Y6, 31, Y02.1- Y.02.7; Y.03.1- Y.03.3.
Тема 1.4. Тех- нологичность конструкции детали	Практическая работа №2 «Определение технологичности детали и ее анализ»	2	y2, y3, y6, 31, y02.1- y.02.7; y.03.1- y.03.3.
Тема 1.6. При- пуски на меха- ническую об- работку	Практическая работа №3 «Определение межоперационных припусков, размеров и допусков. Определение размеров заготовки»	2	Y2, Y3, Y6, 31, Y02.1- Y.02.7; Y.03.1- Y.03.3.
Тема 1.7. Принципы про- ектирования правила разра- ботки техно-	Практическая работа №4 «Заполнение бланка маршрутной карты»	2	Y2, Y3, Y6, 31, Y02.1- Y.02.7; Y.03.1- Y.03.3.
логических процессов об- работки дета- лей	Практическая работа №5 «Заполнение бланка операционной карты»	2	Y2, Y3, Y6, 31, Y02.1- Y.02.7; Y.03.1- Y.03.3.
	ботка заготовок на метал- гжущих станках	8	
Тема 2.1. Виды и мето- ды обработки наружных по-	Практическая работа №6 «Разработка станочной операции обработки заготовок на токарном станке»	4	У4,У5, У05.1, У05.3, У05.4,

		I	T700 1
верхностей			У09.1,
тел вращения			У09.2,
			У10.4,
			У10.7.
Тема 2.3. Об-	Практическая работа №7	2	У4,У5,
работка плос-	«Разработать станочную		У05.1,
костей и пазов	операцию обработки паза		У05.3,
	на фрезерном станке».		У05.4,
			У09.1,
			У09.2,
			У10.4,
			У10.7.
Раздел 3. Техно	ология изготовления типо-	8	
	вых деталей		
<i>Тема 3.1. Тех-</i>	Практическая работа №8	4	У1,У4, У5,
нология изго-	«Проектирование ТП изго-	-	У09.1,
товления де-	товления детали «Вал»».		У09.2,
талей имею-	Tobsielini gerasii (Basi///.		У10.2,
щих форму			У10.3,
вала, дисков и			У10.4.
втулок	Практическая работа №9	4	У1,У4, У5,
omy.tok	«Проектирование ТП изго-		У09.1,
	товления детали «Втул-		У09.2,
	ка»».		У10.2,
	Ra////.		У10.2,
			У10.4.
Dandar 4 Ta	L	2	3 10.4.
Тема 4.1.	хнология сборки машин	2	V1 VA VE
	Практическая работа №10	2	У1, У4, У5,
Сборка типо-	«Технология сборки: сбор-		У09.1,
вых соединений	ка изделия в соответствии с		У09.2,
	технологическим задани-		У10.2,
	ем».		У10.3,
			У10.4.
ИТОГО		28	

3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Раздел 1 Основы проектирования технологических процессов

Тема 1.3. Основы базирования

Практическая работа №1 «Выбор рациональных схем базирования»

Формируемые компетенции:

- ПК 1.1. Осуществлять анализ имеющихся решений для выбора программного обеспечения для создания и тестирования модели элементов систем автоматизации на основе технического задания.
- ПК 1.2. Разрабатывать виртуальную модель элементов систем автоматизации на основе выбранного программного обеспечения и технического задания.
- ПК 1.3. Проводить виртуальное тестирование разработанной модели элементов систем автоматизации для оценки функциональности компонентов.

Цель работы:

- 1. Приобретение умения анализировать способ установки заготовки в приспособление для заданной технологической операции.
- Принимать наиболее рациональную схему базирования заготовки.

Выполнив работу, Вы будете уметь:

- выполнять рациональную схему базирования заготовки

Задание:

- 1. Разработайте теоретическую схему базирования заготовки по своему варианту.
 - 2. Заполните таблицу 1 в соответствии с принятой схемой базирования.

Таблица 1 - Характеристика технологической базы

Наименование базы	Число лишаемых степеней свободы
Двойная направляющая база	
Опорная	
Вывод:	

Краткие теоретические сведения

Пример выполнения задания

Содержание операции: Фрезерование шпоночного паза на цилиндрической поверхности заготовки типа «вал» (рисунок 1)

1. Изучаем технические требования на обработку:

Ширина паза 20Н8

Глубина паза 7,9 \pm 0,25

Длина паза 25 с выходом на радиус 40 мм

Положение паза – симметричное относительно оси

- 2. Изучаем способ установки заготовки, заполняем таблицу 1 и разрабатываем схему установки, указывая установочные и зажимные элементы согласно ГОСТ 3.1107 (рисунок 2)
- 3. Разрабатываем схему базирования (рисунок 3), делаем вывод.

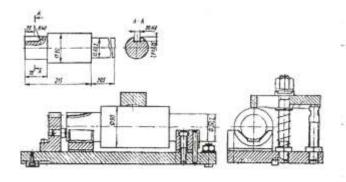


Рисунок 1. Закрепление в приспособлении детали типа «Вал»

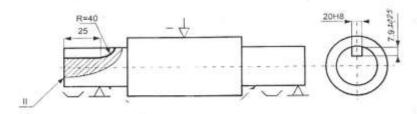


Рисунок 2. - Схема установки заготовки

Рисунок 3. Схема базирования заготовки

Таблица 1 - Характеристика технологической базы

Наименование базы	Число лишаемых степеней свободы			
Двойная направляющая база	Четыре (т.1,2.3.4)			
Опорная Одна (т.5)				
Вывод: Заготовка лишается пяти степеней свободы, что достаточно для				
выполнения заданных технических требований.				

Порядок выполнения работы:

- 1. Изучить методические указания по выполнению работы.
- 2. Получить задание по своему варианту
- 3. Изучить технические требования на обработку.
- 4. Назначить способ установки заготовки.
- 5. Разработать схему базирования.
- 6. Заполнить таблицу 1.
- 7. Ответьте на вопрос:
- 1. Что может служить базой?
- 2. Что такое направляющая база?
- 3. Что такое установочная база?
- 4. Что такое опорная база?
 - 8. Сделать выводы.

Ход работы:

1. Выполнить конспект с необходимыми расчетами

2. Защитить практическую работу

Форма представления результата:

Выполнить работу в письменном виде в тетради для практических работ. Отчет о проделанной работе выполняется в соответствием с заданием. Зачет выставляется после устного собеседования с преподавателем

Тема 1.4. Технологичность конструкции детали

Практическая работа №2 «Определение технологичности детали и ее анализ»

Формируемые компетенции:

- ПК 1.1. Осуществлять анализ имеющихся решений для выбора программного обеспечения для создания и тестирования модели элементов систем автоматизации на основе технического задания.
- ПК 1.2. Разрабатывать виртуальную модель элементов систем автоматизации на основе выбранного программного обеспечения и технического задания.
- ПК 1.3. Проводить виртуальное тестирование разработанной модели элементов систем автоматизации для оценки функциональности компонентов.

Цель работы: Ознакомиться с назначением, областями применения и основными технологическими показателями процессов обработки металлов (материалов) давлением. Получить представление о важнейших закономерностях, применяемом оборудовании и технологических особенностях различных видов обработки.

Выполнив работу, Вы будете уметь:

пользоваться основных видов обработки металлов давлением

Залание:

Заготовку с двумя базовыми отверстиями D1 и D2 надо установить в приспособление на два пальца – один цилиндрический 1d , а другой срезанный d .

$N_{\underline{0}}$	Диаметры базо-	Основные размеры между	Диаметры уста-
Π/Π	вых отв. детали,	осями базовых поверхно-	новочных паль-
	MM	стей, мм	цев, мм

	D1	D2	a	b	L	d1	d2
1	30H11	12 H9	60	75	90	30 f6	
2	10 H8	10 H8	200	150	90	10 f7	
3	70 H9	10 H7	220	150	100	70 f6	
4	16 H10	6 H9	60	70	180	16 f8	
5	20 H7	7 H8	60	80	245	20 f7	
6	15 H6	15 H8	350	300	250	15 f7	
7	100 H9	15 H9	200	270	235	100 f8	
8	12 H8	8 H8	200	150	250	12 f7	
9	75 H10	12 H9	110	115	150	75 f7	
10	80 H8	8 H8	120	120	200	80 f7	
11	50 H8	12 H7	150	150	250	50 f7	
12	140 H9	16 H8	170	170	200	140 f8	
13	130 H9	16 H8	160	180	240	130 f7	
14	120 H9	16 H8	160	190	120	120 f6	
15	18 H14	8 H10	50	50	70	18 f8	

Краткие теоретические сведения

Установка по двум отверстиям и плоскости, перпендикулярной осям отверстий, используется очень широко при обработке деталей малых и средних размеров типа корпусов, плит и др.

Применение этой схемы базирования лишает заготовку всех шести степеней свободы, при этом обеспечивается свободный доступ инструментов для обработки заготовки с пяти сторон, позволяет достаточно просто фиксировать заготовки и приспособления-спутники на поточных и автоматических линиях и станках с ЧПУ.

Плоскость и два отверстия — всегда чистовые базы. Плоскость обрабатывают начисто на одной из первых операций. Отверстия, как правило, развертывают по 6, 7 квалитету. В качестве установочных элементов применяют опорные пластины и два пальца. Конструктивно различают установку на два цилиндрических пальца или на один цилиндрический и один срезанный пальцы. Граница применяемости этих сочетаний определяется точностью диаметров и взаимного расположения базовых отверстий и требуемой точностью выполняемых на операции размеров.

При проектировании приспособлений с двумя пальцами перед конструктором стоит задача определения номинальных диаметров пальцев и назначение допусков на их изготовление и износ. Для решения этой задачи, необходимо руководствоваться условием возможности установки заготовки на два цилиндрических пальца:

S1 min + S2 min ≥ ITo IT π

Более точная установка на два отверстия возможна с применением срезанного пальца. Условие возможности установки на цилиндрический и срезанный пальцы:

$$\frac{d}{b} \ge \text{ITo IT}\Pi$$

Пример.

Заготовку с двумя базовыми отверстиями D1 и D2 надо установить в приспособление на два пальца – один цилиндрический 1d , а другой срезанный d (Puc. 9)

Диаметры базовых отверстий заготовки:

- D1 = 12H8 (+0,027); D2 = 12H8 (+0,027);
- Диаметр установочного цилиндрического пальца:

$$d1 = 12g6 \left(\frac{-0,006}{-0,017}\right)$$

- Расстояние между отверстиями заготовки: $L = 90 \pm 0.05$
- Отклонение размера L заготовки ITld $/2 = 0.1 \div 2 = 0.05$ мм

Требуется:

Определить исполнительный размер срезанного пальца

- .• Определить наибольшую величину смещения (поворота) детали на длине
- L = 200мм при установки ее по плоскости и отверстиям на два пальца (цилиндрический и срезанный).

Решение:

принимаем ITln = 0.015мм (отклонение межцентрового расстояния пальцев)

• Гарантированный зазор М, необходимый для установки детали двумя отверстиями на два пальца (один срезанный) приспособления определим из условия:

$$M = ITlo /2 + ITl\pi /2 - S 1min /2;$$

где S 1min = 0,006мм – минимальный гарантированный зазор в сопряжении цилиндрического пальца

$$M = 0.05 + 0.015 - 0.003 = 0.062 \text{MM}$$

Минимальный зазор в сопряжении отверстия и срезанного пальца.

Порядок выполнения работы:

- 1. Изучить методические указания по выполнению работы.
- 2. Выполнить эскиз операции.
- Решить задачу на определение размера срезанного установочного пальца»
- 4. Выполнить отчет.

Ход работы:

Выполнить конспект с необходимыми расчетами Защитить практическую работу

Форма представления результата:

Выполнить работу в письменном виде в тетради для практических работ. Отчет о проделанной работе выполняется в соответствием с заданием. Зачет выставляется после устного собеседования с преподавателем

Тема 1.6. Припуски на механическую обработку

Практическая работа №3 «Определение межоперационных припусков, размеров и допусков. Определение размеров заготовки»

Формируемые компетенции:

- ПК 1.1. Осуществлять анализ имеющихся решений для выбора программного обеспечения для создания и тестирования модели элементов систем автоматизации на основе технического задания.
- ПК 1.2. Разрабатывать виртуальную модель элементов систем автоматизации на основе выбранного программного обеспечения и технического задания.
- ПК 1.3. Проводить виртуальное тестирование разработанной модели элементов систем автоматизации для оценки функциональности компонентов.

Цель работы: формирование умений применения расходомеров

Выполнив работу, Вы будете:

уметь:

пользоваться поплавковыми и поршневыми расходомерами

Материальное обеспечение:

1. Методические указания по выполнению практических занятий и лабораторных работ

Залание:

изучить назначение, устройство, принцип работы поплавковых и поршневых расходомеров

Краткие теоретические сведения:

Пневматические силовые приводы широко применяют в приспособлениях разнообразных типов. Быстрота, легкость, постоянство силы зажима, возможность ее регулирования и контроля, а также дистанционное управление зажимами являются основными преимуществами пневмоприводов для зажима обрабатываемых заготовок.

Пневматические приводы применяются в крупносерийном и массовом производствах.

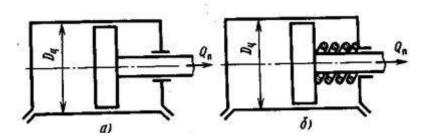


Рисунок 1 - Схема пневматического привода зажима одностороннего (б) и двустороннего (а) действия станочного приспособления

Осевую силу на штоке Qп определяют в зависимости от конструкции пневмоцилиндров:

для одностороннего действия (рис. 1,б)

$$Q_{\pi} = 0.785 \cdot D_{\pi}^{2} \cdot p \cdot \eta - Q_{\pi p}$$

для двустороннего действия (рис. 1,а)

$$Q_{\pi} = 0.785 \cdot D_{\pi}^2 \cdot p \cdot \eta$$

для двустороннего действия штоковой полости

$$Q_{\pi} = 0.785 \cdot \left(D_{\pi}^2 - d_{\pi}^2\right) \cdot p \cdot \eta$$

где Dц – диаметр пневматического или гидравлического цилиндра (поршня), мм;

p – давление сжатого воздуха, p = 0,39 МПа;

 η — коэффициент полезного действия пневмоцилиндра, учитывающий потери в пневмоцилиндре, $\eta = 0.85 \dots 0.90$.

Для проектирования станочных приспособлений применяют рабочие полости цилиндров – диаметры пневмоцилиндров, мм: 20, 25, 30, 40, 50, 60, 75, 100, 125, 150, 200, 250, 300, 360, 400;

диаметры гидроцилиндров, мм: 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75.

Размеры воздухопроводов выбирают в зависимости от диаметра поршня:

взависимости от диаметра поршня:

Диаметр поршня, мм	50-100	125-150			
Внутренний диаметр трубки, мм	4-6	6-8	8-10	10-13	13-16

При определении силы зажима заготовки необходимо учитывать коэффициент запаса, т.е. найденную силу Qп на штоке увеличить на коэффициент запаса Кзап.

Диаметр пневматического цилиндра

$$D = \sqrt{\frac{Q_{\pi} \cdot K_{\text{sam}}}{0,785 \cdot p \cdot \eta}}$$

Расчетный размер диаметра пневмоцилиндра округляют до стандартных величин и определяют действительную осевую силу зажима на штоке.

Время срабатывания пневмоцилиндра:

$$T_{c} = \frac{D_{\pi}^{2} \cdot \ell_{x}}{d_{0}^{2} \cdot v_{B}}$$

где ℓx – длина хода поршня, мм;

 d_0 – диаметр воздухопровода, мм;

 $v_{\scriptscriptstyle B}$ – скорость перемещения воздуха, мм/с

 $(v_B = 18000 \text{ мм/с при p} = 0.39 \text{ МПа}).$

Общее время срабатывания пневмоцилиндра (гидроцилиндра) показывает производительность данного зажимного устройства. Ход поршня ℓx пневмоцилиндра устанавливают по конструктивным особенностям станочного приспособления, обрабатываемой детали и технологического оборудования. Необходимо стремиться к минимальным значениям хода поршня пневмоцилиндра, так как от него зависит быстрота закрепления заготовки в процессе обработки в данном приспособлении.

Пример. Определить основные параметры пневмоцилиндра для станочного приспособления. Операция — чистовое фрезерование. Фреза торцовая. Материал — сталь 45 ГОСТ 1050-74**. Сила резания Pz=4800 Н. Давление сжатого воздуха p=0,39 МПа. Пневмоцилиндр двустороннего лействия.

Решение. Для обеспечения надежности зажима заготовки определяем коэффициент запаса Кзап

K3ап = K0 · K1 · K2 · K3 · K4 · K5 · K6 = 1,5 · 1,2 · 1 · 1 · 1 · 1 · 1 = 1,8. Определим необходимую силу зажима для обрабатываемой заготовки

$$W_{\Pi} = P_z \cdot K_{3a\Pi} = 4800 \cdot 1.8 = 8640 \text{ H}.$$

Определим расчетный диаметр пневматического цилиндра

$$D_{\pi} = \sqrt{\frac{W_{\pi}}{0.785 \cdot p \cdot \eta}} = \sqrt{\frac{8640}{0.785 \cdot 0.39 \cdot 0.85}} = 182,29$$

MM.

где $\eta = 0.85$.

Принимаем стандартный диаметр пневмоцилиндра Dц = 200 мм.

Определим действительную силу зажима пневмоцилиндра двусто роннего действия

$$Q_{\pi} = 0.785 \cdot D_{\pi}^{2} \cdot p \cdot \eta = 0.785 \cdot 200^{2} \cdot 0.39 \cdot 0.85 = 10409$$
 H.

Определим время срабатывания пневмопривода

$$T_{c} = \frac{D_{\pi}^{2} \cdot \ell_{x}}{d_{0}^{2} \cdot V_{B}} = \frac{200^{2} \cdot 40}{10^{2} \cdot 18000} = 0,89$$

где ℓx — длина хода поршня по конструкции приспособления, ℓx = 40 мм; d_0 — диаметр воздухопровода принимается по рекомендациям в зависимости от диаметра пневмоцилиндра, d_0 = 10 мм;

 $v_{\rm B}$ – скорость перемещения сжатого воздуха, $v_{\rm B}$ = 18000 мм/с.

Порядок выполнения работы:

- 1. Изучить методические указания по выполнению работы.
- 2. Эскиз пневмопривода
- 3. Выполнить расчет диаметра пневмопривода
- 4. Выполнить отчет

Ход работы:

Выполнить конспект с необходимыми расчетами Защитить практическую работу

Форма представления результата:

Выполнить работу в письменном виде в тетради для практических работ. Отчет о проделанной работе выполняется в соответствием с заданием. Зачет выставляется после устного собеседования с преподавателем

Тема 1.7. Принципы проектирования правила разработки техноло- гических процессов обработки деталей

Практическая работа №4 «Заполнение бланка маршрутной карты»

Формируемые компетенции:

ПК 2.3. Проводить испытания модели элементов систем автоматизации в реальных условиях с целью подтверждения работоспособности и возможной оптимизации.

Цель работы: формирование умений выполнять расчет цангового зажима

Выполнив работу, Вы будете уметь: определять усилия зажима заготовки

Задание: определить усилия зажима заготовки Р3, при фрезеровании.

Исходные данные: Практическая работа 7 «Выбор режимов резания при фрезеровании по эмпирическим формулам» (ОПЦ 10)

Краткие теоретические сведения

Цангами называют разрезные пружинящие втулки, которые могут центрировать и закреплять заготовки по внешней и внутренней поверхностям. Цанговые механизмы широко применяются для зажима пруткового материала, а также коротких штучных заготовок.

Конструкции цанг бывают двух типов: тянущие и толкающие.

Первые применяются для закрепления пруткового материала, вторые для закрепления штучных заготовок. Так как радиальное перемещение всех лепестков цанги происходит одновременно и с одинаковой скоростью, то механизм приобретает свойство самоцентрирования. Число лепестков цанги зависит от её рабочего диаметра d и профиля зажимаемых заготовок. При d<=30 цанга имеет три лепестка, при 30<d<60 мм четыре, при d>80 мм- шесть. Для сохранения работоспособности цанги деформация её лепестков не должна выходить за пределы упругой зоны. Это предъявляет повышенные требования к точности базового диаметра заготовки, который должен быть выполненный не грубее 9 квалитета. Цанги изготавливают из стали У8А или 65Г, крупные цанги из стали 15ХА или 12ХНЗА.

Погрешность центрирования обусловлена неточностью изготовления цанговых патронов и составляет 0,05...0,1 мм.

Описание конструкции и работы приспособления

Продольные прорези превращают каждый лепесток цанги в консольно-закрепленную балку, которая получает радиальные упругие перемещения при продольном движении цанги за счет взаимодействия конусов цанги и корпуса. Так как радиальные перемещения всех лепестков цанги происходят одновременно и с одинаковой скоростью, то механизм приобретает свойство самоцентрирования.

Т.к. радиальные перемещения всех лепестков цанги происходят одновременно и с одинаковой скоростью, то цанговый механизм приобретает свойство самоцентрирования.

Схема механизма с тянущей цангой

За счёт тянущей силы Q, создаваемой воздухом, нагнетаемым в пневмоцилиндр через золотник лепестки цанги начинают сжимать заготовку. Усилие передаётся штоком. Происходит выборка зазора у. Таким образом заготовка и центрируется и закрепляется.

По-сравнению с трёхкулачковым патроном, цанговый механизм обеспечивает более быстрое закрепление заготовки, а также центрирование. Очень удобен и применяется в серийном производстве. К недостаткам можно отнести - узкий диапазон закрепляемых заготовок, т.е. для каждого диаметра существует своя цанга.

Силовой расчет заключается в определении диаметра поршня пневмоцилиндра обеспечивающего надежное закрепление заготовки в

процессе обработки. Для этого необходимо провести расчет цангового зажима (рис. 1).

Условие неподвижности детали на оправке определяется уравнением моментов [6]:

$$\sum\! \boldsymbol{M}_{pp} \! \geq \! k_s \cdot \boldsymbol{M}_{pes}$$

где $\sum M_{35}$ - суммарный момент резания от всех лепестков цангового зажима;

$$\sum M_{\rm mp} = z \cdot Q \cdot f_{\rm mp} \cdot \frac{d}{2}$$

где z - число лепестков цангового зажима;

Q – сила от одного лепестка;

fтр – коэффициент трения на рабочей поверхности оправки;

d – рабочий диаметр цангового зажима;

kз – коэффициент запаса;

$$M_{pes} = P_z \cdot \frac{D}{2}$$

где Мрез – момент резания, действующий на деталь (Мрез=Мпр);

Pz – окружная сила при обработке;

D – диаметр обработки.

Предварительно определим окружную силу резания, возникающую в процессе обработки [2]:

$$P_z = \frac{10 \cdot C_p \cdot t^x \cdot s_z^y \cdot B^x \cdot z}{D^q \cdot n^w} \cdot k_{mp}$$

где Ср, х, у, q, - коэффициент и показатели степени окружной силы;

t – глубина резания, мм;

sz – подача на один зуб, мм;

В – ширина фрезерования, мм;

z – число зубьев фрезы;

D – диаметр фрезы, мм;

n – частота вращения фрезы, об/мин;

Кмр – поправочный коэффициент.

$$P_{z} = \frac{10 \cdot 68, 2 \cdot 0, 65^{0.86} \cdot 0, 2^{0.72} \cdot 6^{1} \cdot 4}{6^{0.86} \cdot 700^{0}} \cdot 1,15 = 874H$$

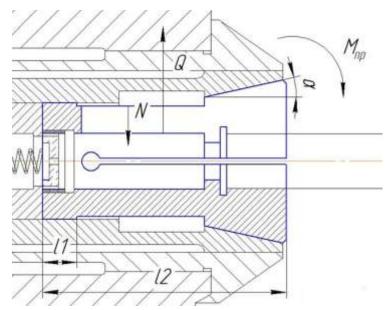


Рисунок 1 - План действующих сил в цанговом зажиме

$$M_{pes} = 874 \cdot \frac{20.8 \cdot 10^{-6}}{2} = 10 H \cdot M$$

Требуемая сила закрепления детали от одного лепестка цанги определяется по формуле:

$$Q = \frac{M_{rp}}{z \cdot f_{rp} \cdot \frac{d}{2}} = \frac{10}{3 \cdot 0.16 \cdot \frac{18}{2}} = 2.315H$$

Для создания этой силы от лепестков на деталь необходимо преодолеть силу упругого сопротивления лепестков в пределах радиального зазора между цангой и отверстием.

Сила упругого сопротивления одного лепестка цанговой втулки:

$$N = \frac{3 \cdot E \cdot J}{\left(2 \cdot l\right)^3} \cdot \frac{S}{2}$$

где E – модуль упругости материала цанги (для стали E=2,1·106 $M\Pi a$);

S – диаметральный зазор до закрепления, мм;

е. длина лепестка цанги до места заделки, мм;

J – момент инерции сечения сектора лепестков цанги:

$$J = \frac{d^3 \cdot h}{8} \cdot \left(\alpha + \sin \alpha_1 \cdot \cos \alpha_1 - \frac{2 \cdot (\sin \alpha)^2}{\alpha_1} \right)$$

где h – толщина лепестка цангового втулки, мм;

α – половина угла конуса цанговой втулки;

а1 – половина угла сектора лепестка.

$$J = \frac{18^{\frac{3}{5}} \cdot 7}{8} \cdot \left(0,209 + \sin 30^{\circ} \cdot \cos 30^{\circ} - \frac{2 \cdot \left(\sin 12^{\circ}\right)^{2}}{0,523}\right) = 2,433$$

MM;

$$N = \frac{3 \cdot 2.1 \cdot 10^6 \cdot 2.433}{(2 \cdot 78)^3} \cdot \frac{0.1}{2} = 0.202 H$$

Сила тяги на штоке определяется по формуле:

$$W = z \cdot \{(Q+N) \cdot \left[tg(\alpha + \varphi_1) + tg\varphi_2 \right] \}_{(2.23)}$$

где ϕ 1=arctg frp1, ϕ 2=arctg frp2 – углы трения на конусе и на рабочей поверхности цанговой втулки.

$$W = 3 \cdot \{(2,315 + 0,202) \cdot | tg(12^{\circ} + 5,7^{\circ}) + tg11,3^{\circ} \} = 3,919$$

Н

Требуемая сила на штоке пневмоцилиндра определяется по формуле:

$$W' = W \cdot \frac{l_2}{l_1} \cdot \frac{1}{\eta} + q_{np}$$

где $\ell 1$ и $\ell 2$ – плечи рычага;

 η — коэффициент, учитывающий трение в опоре рычага; q пр — сила пружины возврата привода.

$$W = 3.919 \cdot \frac{78}{11} \cdot \frac{1}{0.96} + 300 = 329$$
H.

Диаметр цилиндра определяем по формуле:

$$D = \frac{\pi}{16} \cdot (D + D_1)^2 \cdot \rho_s - Q,$$

$$D = \frac{\pi}{16} \cdot (37.5 + 18)^2 \cdot 0.4 - 2.315 = 240$$
_{MM.}

где *р* – давление воздуха;

η – коэффициент полезного действия привода;

По ГОСТ 6540-68 принимается диаметр цилиндра D=160 мм.

где µ – коэффициент сцепления, равный 0,3...1;

k – коэффициент надежности, равный 1,2...1,5;

Мрез – момент резания, равный Pz·r;

r – расстояние от оси до точки приложения силы резания;

α – половина угла при вершине конуса цанги;

ф – угол трения в цанге

Порядок выполнения работы:

- 1. Изучить методические указания по выполнению работы.
- 2. Выполнить эскиз операции.
- 3. Решить задачу на определение расчета цангового зажима.
- 4. Выполнить отчет.

Ход работы:

Выполнить конспект с необходимыми расчетами Защитить практическую работу

Форма представления результата:

Выполнить работу в письменном виде в тетради для практических работ. Отчет о проделанной работе выполняется в соответствием с заданием. Зачет выставляется после устного собеседования с преподавателем.

Практическая работа №5 «Заполнение бланка операционной карты»

Формируемые компетенции:

ПК 2.3. Проводить испытания модели элементов систем автоматизации в реальных условиях с целью подтверждения работоспособности и возможной оптимизации

Цель работы: формирование умений выполнять расчет силы зажима в кулачковом патроне

Выполнив работу, Вы будете уметь: расчитывать силы зажима в кулачковом патроне

Задание:

Подобрать пневматический цилиндр для совместной работы с трехкулачковым самоцентрирующим рычажным патроном.

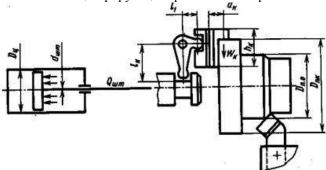


Рисунок 1 - Схема обработки поверхности наружного диаметра детали при использовании трехкулачкового патрона с пневматическим приводомзажима

Операция — токарная черновая. Наружный диаметр обрабатываемой поверхности Do.п , мм, диаметр заготовки Dп.к , мм, длина заготовки Lз , мм, глубина резания t , мм,

Подача scт = 1,04 мм/об; частота вращения шпинделя станка n = 315 об/мин; скорость резания V = 1,7 м/с.

Токарно-винторезный станок 16К20; патрон трехкулачковый с рычажным аготовки — сталь 45 ГОСТ 1050—74**.

Исходные данные:

№	Наружный	Диаметр	Глубина	Длина заго-
---	----------	---------	---------	-------------

п/	диаметр обра-	заготовки	резания	товки,мм
П	батываемой			
	поверхности			
	D _{оп}	D_3	t	L
1	30	36	3	90
2	40	50	3,5	90
3	70	75	2,5	100
4	36	45	4	110
5	52	60	3	145
6	28	35	3,5	150
7	42	50	2,5	135
8	62	70	3	150
9	75	85	3	150
10	80	92	3,5	100
11	50	60	2,5	150
12	40	52	4	100
13	30	40	3	130
14	52	60	2,5	120
15	42	50	3	108

Краткие теоретические сведения

В машиностроении наибольшее применение имеют трехкулачковые самоцентрирующиеся клиновые и рычажные патроны с винтовым и механизированным приводом для перемещения кулачков. С механизированным приводом перемещения кулачков патроны используют в крупносерийном и массовом производствах для закреплении штучных заготовок на различных токарных станках.

Основные размеры клиновых и рычажных патронов выбирают по ГОСТ 24351–80.

Определим силу, передаваемую штоком пневмоцилиндра,

$$Q_{\pi} = W_{\kappa} \cdot n_{\kappa} \cdot K_{\tau p} \cdot \left(1 + \frac{3 \cdot a_{\kappa}}{h_{\kappa}} \cdot f_{\kappa}\right) \cdot \frac{\ell_{1}}{\ell_{\kappa}}$$

где Wк — сила зажима на одном кулачке, H; пк — число кулачков; Ктр — коэффициент, учитывающий дополнительные силы трения в патроне (Ктр = 1,05); ак — вылет кулачка от его опоры до центра приложения силы зажима (конструктивно ак = 40 мм); hк — длина направляющей части кулачка, мм; fк — коэффициент трения в направляющих кулачках, fк = 0,1; ℓ 1 и ℓ к — плечи рычага привода, мм (конструктивно ℓ 1 = 20 мм и ℓ к = 100 мм до оси штока).

Сила зажима на каждом кулачке

$$W_{_{K}} = \frac{P_{_{Z}} \cdot sin \frac{\alpha}{2} \cdot D_{_{\text{O.II}}}}{n_{_{K}} \cdot f_{_{\text{T.II}}} \cdot D_{_{\text{II.K}}}} \cdot K_{_{\text{SaII}}}$$

где $Do.\pi-$ диаметр обрабатываемой поверхности заготовки, мм; $fr.\pi-$ коэффициент трения на рабочих поверхностях кулачков, с гладкой поверхностью $fr.\pi=0,25$, с кольцевыми канавками $fr.\pi=0,35$, с крестообразными канавками $fr.\pi=0,45$, с зубьями параллельно оси патрона $fr.\pi=0,8$; $Dn.\kappa-$ диаметр зажимаемой поверхности детали, мм; Кза $\pi-$ коэффициент запаса.

Передаваемая штоком сила в пневмоцилиндрах двустороннего действия.

$$Q_{\text{int}} = \frac{\pi \cdot D_{\pi}^2}{4} \cdot p \cdot \eta_{\pi}$$

где Dц – диаметр поршня пневмоцилиндра, мм; η ц – коэффициент полезного действия пневмопривода, η ц = 0,85.

Диаметр поршня пневмоцилиндра

$$D_{\pi} = 1{,}44 \cdot \sqrt{\frac{Q_{\text{mt}}}{p}}$$

Установлен ряд стандартизованных диаметров вращающихся пневмоцилиндров двустороннего действия: 150, 200, 300, 400 мм.

Время срабатывания пневмоцилиндра

$$T_{c} = \frac{D_{\pi}^{2} \cdot \ell_{x}}{d_{B}^{2} \cdot V_{B}}$$

где ℓx – длина хода поршня, мм (устанавливается конструктивно).

Пример.

Операция — токарная черновая. Наружный диаметр обрабатываемой поверхности Do.n = 95 мм, диаметр заготовки Dn.k = 103 мм, длина заготовки L3 = 110 мм. Глубина резания t = 3 мм, подача sct = 1,04 мм/об; частота вращения шпинделя станка n = 315 об/мин; скорость резания v = 1,7 м/с. Токарно-винторезный станок 16K20; патрон трехкулачковый с рычажным перемещением кулачков, осуществляемый зажим от вращаю-

щегося пневматического цилиндра двустороннего действия (рис. 1). Материал заготовки – сталь 45 ГОСТ 1050–74**.

Решение. Определим силу резания на данной операции:

$$P_z = C_p \cdot t^{x_p} \cdot s^{y_p} \cdot K_p^{n_p} = 300 \cdot 3^1 \cdot 1,04^{0.75} \cdot 6,06^{-0.15} = 5617,62$$
 H.

где Cp – коэффициент силы резания; Cp = 300; xp, yp, np – показатели степени для тангенциальной силы резания Pz,

$$xp = 1$$
; $yp = 0.75$; $np = -0.15$.

Определим поправочный коэффициент Кр

$$K_p = K_{M_p} \cdot K_{\phi_p} \cdot K_{\gamma_p} \cdot K_{\lambda_p} \cdot K_{r_p} = 4,85 \cdot 1 \cdot 1,25 \cdot 1 \cdot 1 = 6,06$$

 $K_{_{M_p}}$ – коэффициент, учитывающий влияние механических свойств конструкционных сталей на силы резания,

$$K_{M_p} = \left(\frac{\sigma_B}{75}\right)^{n_p} = \left(\frac{610}{75}\right)^{0.75} = 4.85$$

где ов – временное сопротивление разрыву, МПа.

Для стали $45 \, \text{ов} = 610 \, \text{МПа};$

np- показатель степени для расчета коэффициента , np=0.75;

$$K_{_{M_p}}$$
 K_{ϕ_p} , K_{γ_p} , K_{λ_p} , K_{r_p} – поправочные коэффициенты,

учитывающие влияние геометрических параметров режущей части инструмента на составляющие силы резания при обработке стали,

$$K_{\gamma_p}=1{,}25;K_{\phi_p}=K_{\lambda_p}=K_{r_p}=1$$

Определим коэффициент запаса для самоцентрирующегося трех-кулачкового патрона с пневматическим приводом зажима

$$K_{3}$$
a $\pi = K_0 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5 \cdot K_6 = 1,5 \cdot 1 \cdot 1,2 \cdot 1 \cdot 1 \cdot 1,5 = 2,7.$

где K0 – гарантированный коэффициент запаса при всех случаях обработки (см. табл. 1 и 2).

Определим силу зажима детали одним кулачком патрона

$$W_{_{K}} = \frac{P_{_{Z}} \cdot \sin \frac{\alpha}{2} \cdot D_{_{0.\Pi}}}{n_{_{K}} \cdot f_{_{K.\Pi}} \cdot D_{_{\Pi.K}}} \cdot K_{_{3A\Pi}} = \frac{5617,62 \cdot \sin \frac{180}{2} \cdot 95}{3 \cdot 0,8 \cdot 103} \cdot 2,7$$
= 5828,96 H,

где пк – число кулачков в патроне, пк = 3 шт.;

 $f \tau. \pi - \kappa o = 0$, фициент трения на рабочих поверхностях кулачков, $f \tau. \pi = 0$, 8 (с зубьями параллельно оси патрона).

Определим силу Qшт на штоке механизированного привода трехкулачкового патрона

$$Q_{\text{mir}} = W_{\text{K}} \cdot n_{\text{K}} \cdot K_{\text{Tp}} \cdot \left(1 + \frac{3 \cdot a_{\text{K}}}{h_{\text{K}}} \cdot f_{\text{K}}\right) \cdot \frac{\ell_{1}}{\ell_{\text{K}}} = 5828,96 \cdot 3 \cdot 1,05 \cdot \left(1 + \frac{3 \cdot 40}{65} \cdot 0,1\right) \cdot \frac{20}{100} = 4351,61 \text{ H},$$

где Ктр — коэффициент, учитывающий дополнительные силы трения в патроне, Ктр = 1,05; ак — вылет кулачка от середины его опоры в пазу патрона до центра приложения силы зажима на одном кулачке, ак = 40 мм; hк — длина направляющей части кулачка, hк = 65 мм; fк — коэффициент трения кулачка, fK = 0,1; ℓ 1 и ℓ k — размеры короткого и длинного плеч двухплечевого рычага (конструктивно ℓ 1 = 20 мм и ℓ k = 100 мм до оси штока).

Определим диаметр поршня цилиндра и выберем ближайший больший стандартный размер пневматического вращающегося цилиндра

$$D_{\pi} = 1,44 \cdot \sqrt{\frac{Q_{mr}}{p}} = 1,44 \cdot \sqrt{\frac{4351,61}{0,39}} = 152,1$$

где p — давление сжатого воздуха, МПа, p = 0,39 МПа. Принимаем диаметр пневмоцилиндра Dq = 200 мм.

Определим действительную силу зажима детали по принятому диаметру пневмоцилиндра:

$$Q_{\text{m.m.}} = \frac{\pi \cdot D_{\pi}^{2}}{4} \cdot p \cdot \eta_{\pi} = \frac{3,14 \cdot 200^{2}}{4} \cdot 0,39 \cdot 0,85 = 10409,1$$
H.

где η – коэффициент полезного действия, η = 0,85. Определим время срабатывания пневмоцилиндра

$$T_{c} = \frac{D_{\pi}^{2} \cdot \ell_{x}}{d_{B}^{2} \cdot V_{B}} = \frac{200^{2} \cdot 35}{10^{2} \cdot 20000} = 0,7$$

где ℓx – длина хода поршня, мм (для диаметра $D \mu = 200$ мм $\ell x = 35$ мм); рекомендуется $d B = 8 \dots 10$ мм, d B = 10 мм;

 v_B — скорость перемещения сжатого воздуха, m_c , $v_B = 15000 - 25000$ m_c ; принимаем $v_B = 20000$ m_c .

Порядок выполнения работы:

- 1. Изучить методические указания по выполнению работы.
- 2. Получить у преподавателя исходные данные для выполнения работы в соответствие с вариантом.
 - 3. Изучить расчет силы зажима в кулачковом патроне
 - 4. Выполнить эскиз операции.
- 5. Решить задачу на определение силы зажима в кулачковом патроне
 - 6. Выполнить отчет.

Ход работы:

Выполнить конспект с необходимыми расчетами Защитить практическую работу

Форма представления результата:

Выполнить работу в письменном виде в тетради для практических работ. Отчет о проделанной работе выполняется в соответствием с заданием. Зачет выставляется после устного собеседования с преподавателем.

Раздел 2. Обработка заготовок на металлорежущих станках

Тема 2.1. Виды и методы обработки наружных поверхностей тел вращения

Практическая работа №6 «Разработка станочной операции обработки заготовок на токарном станке с ЧПУ»

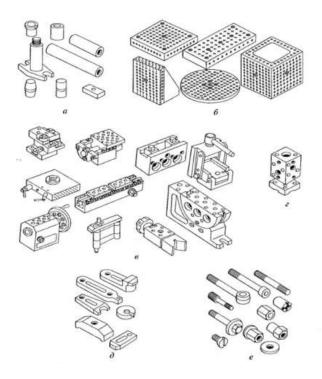
Формируемые компетенции:

- ПК.3.3. Разрабатывать инструкции и технологические карты выполнения работ для подчиненного персонала по монтажу, наладке и техническому обслуживанию систем и средств автоматизации.
- ПК.3.4. Организовывать выполнение производственных заданий подчиненным персоналом.
- ПК 3.5. Контролировать качество работ по монтажу, наладке и техническому обслуживанию систем и средств автоматизации, выполняемых подчиненным персоналом и соблюдение норм охраны труда и бережливого производства.

Цель работы: формирование умений пользоваться приспособлениями УСП для обработки детали на заданном станке.

Выполнив работу, Вы будете:

уметь: применять универсальные сборные приспособления для обработки детали на заданном станке.


Материальное обеспечение:

1. Методические указания по выполнению практических занятий

Задание: изучить компоновку приспособлений УСП для обработки детали на заданном станке.

Краткие теоретические сведения:

Современное машиностроительное производство характеризуется высоким уровнем автоматизации и гибкости, за счет использования станков с ЧПУ и систем автоматизированного проектирования на различных этапах производства изделий. Для сокращения затрат на подготовку производства новых деталей в единичном и мелкосерийном производстве используют переналаживаемые станочные приспособления многократного применения. К этой группе приспособлений относятся универсальносборные приспособления (УСП) (рис.1).

а -проставки; б -плиты; в -различные механизмы; г -корпус приспособления; д-прихваты; е-элементы

Рис.1. Набор деталей и сборочных единиц УСП

Универсально-сборные приспособления (УСП) являются системой стандартных средств технологического оснащения металлорежущего оборудования.

Особенность технологической подготовки производства с применением УСП заключается в том, что вместо специальных приспособлений заводу достаточно иметь универсальный набор взаимозаменяемых деталей и узлов. При необходимости из них собирают разнообразные приспособления для выполнения конкретных операций.

Приспособления собирают без чертежей и схем, не затрачивая времени на проектирование и изготовление специальных приспособлений. Стоимость комплекта деталей УСП окупается в течение короткого периода за счет незначительных затрат времени на сборку и возможности многократной оборачиваемости элементов УСП.

Техническая и экономическая обоснованность применения УСП объясняется тем, что цикл сборки приспособления из элементов УСП по времени в 40...50 раз и по трудоемкости в 10...15 раз меньше по сравнению с циклом изготовления специальных приспособлений.

Кроме того, элементы УСП характеризуются высокой оборачиваемостью, т.е. каждый элемент УСП применяется в различных компоновках от 60 до 100 раз в течение года.

Срок службы основных элементов УСП достигает 12...15 лет, что определяет низкую себестоимость компоновок УСП.

Таким образом, применять приспособления УСП следует в тех случаях, когда специальную оснастку использовать нецелесообразно в силу высокой стоимости и большого цикла проектирования и изготовления.

Элементы приспособлений УСП соединяются между собой по схеме «шпонка—шпоночный паз» и фиксируются болтами, шпильками, винтами и гайками. Шпоночные пазы на элементах УСП выполняются T и Π -образными.

В зависимости от ширины Т-образного шпоночного паза выделяют три серии таких приспособлений: УСП-8, УСП-12, УСП-16. Универсально-сборные приспособления с шириной Т-образного шпоночного паза 8 мм (УСП-8) предназначены для обработки заготовок массой до 5 кг и максимальными габаритными размерами 480×180×240 мм. Применяются преимущественно в приборостроительной и электронной промышленности.

Базовые детали.

К этой группе относятся квадратные, прямоугольные, круглые и облегченные плиты и т.п., т.е. все детали, которые обычно служат основаниями универсально-сборных приспособлений (рис.2). Конструктивной особенностью базовых деталей является наличие на их рабочих поверхностях сетки T-образных и Π -образных шпоночных пазов с шагом, кратным $30 \, \mathrm{мм}$.

Рис.2 - Базовые плиты: а) квадратная б) круглая

На пересечении осей T-образных и Π -образных шпоночных пазов расположены резьбовые отверстия. На нижних плоскостях плит различного исполнения находятся пазы для точной ориентации УСП относительно T-образных пазов стола станка.

Ориентация круглых плит относительно поворотных головок, делительных дисков и т.п. осуществляется кольцевой выточкой и шпоночным пазом, расположенным на нижней плоскости таких плит.

Корпусные детали. К этой группе относятся опоры, косынки, Детали этой группы предназначены для образования корпуса приспособления. Кроме того, они могут выполнять функции базовых деталей при создании малогабаритных приспособлений или могут использоваться в качестве соединительных элементов при монтаже крупногабаритных приспособлений. В основном детали этой группы взаимозаменяемы. При отсутствии на участке сборки УСП той или иной корпусной детали ее заменяют другой деталью или блоком деталей этой же группы.

Широкая номенклатура и многообразие конструкций корпусных деталей позволяет создавать большое число разнообразных универсально-сборных приспособлений. Конструктивной особенностью деталей 7 данной группы является наличие Т-образных и П-образных шпоночных пазов на их рабочих поверхностях.

Установочные детали предназначены для установки корпусных элементов относительно базовых деталей и относительно друг друга, а также для установки заготовок в приспособлениях.

Направляющие детали. К этой группе относятся переходные и кондукторные втулки, валики и колонки. Они служат для направления режущего инструмента и для настройки размеров приспособления

Прижимные детали предназначены для закрепления заготовок в приспособлениях. К этой группе относятся различные прихваты и планки

Крепежные детали. Ряд деталей этой группы имеет узкое специальное назначение и ограниченную область применения, но монтаж приспособлений без них затруднителен. В эту группу включены болты, винты, шпильки, гайки, шайбы. Они служат для соединения между собой элементов приспособления и для закрепления обрабатываемой детали

Порядок выполнения работы:

- 1. Изучить комплект деталей УСП по каталогам и стандартам.
- 2. Разработать схемы базирования и закрепления заготовки в приспособлении для заданного вида обработки.
- 3. Выбрать из комплекта УСП детали, необходимые для сборки приспособления по разработанным схемам.

- 4. Собрать приспособление из элементов УСП.
- 5. Выполнить отчет.

Ход работы:

Выполнить конспект с необходимыми расчетами Защитить практическую работу

Форма представления результата:

Выполнить работу в письменном виде в тетради для практических работ. Отчет о проделанной работе выполняется в соответствием с заданием. Зачет выставляется после устного собеседования с преподавателем.

Раздел 3. Вспомогательные инструменты для металлорежущих станков

Тема 2.2. Обработка отверстий

Практическая работа №7 «Разработка станочной операции обработки отверстий на сверлильном станке с ЧПУ»

Формируемые компетенции:

- ПК.3.3. Разрабатывать инструкции и технологические карты выполнения работ для подчиненного персонала по монтажу, наладке и техническому обслуживанию систем и средств автоматизации.
- ПК.3.4. Организовывать выполнение производственных заданий подчиненным персоналом.
- ПК 3.5. Контролировать качество работ по монтажу, наладке и техническому обслуживанию систем и средств автоматизации, выполняемых подчиненным персоналом и соблюдение норм охраны труда и бережливого производства.
- ПК.5.1. Выполнять слесарную обработку деталей для изготовления простых приспособлений для ремонта и наладки.
- ПК.5.2. Выполнять ремонт, монтаж, наладку и проверку работоспособности контрольно-измерительных приборов и автоматики.

Цель работы: формирование умений снятия характеристик гидронасоса по температуре и обработки результатов.

Материальное обеспечение:

- 1. Методические указания по выполнению практических занятий и лабораторных работ
- 2. Лабораторный стенд

Задание:

- произвести диагностирование гидронасоса по температуре

Краткие теоретические сведения:

Оправка с разрезной втулкой (рисунок 1).

Конической частью 1 оправку 2 вставляют в конус шпинделя станка. Зажим и разжим детали на оправке производится механизированным приводом. Тяга 7 движется влево и головка 5 тяги с шайбой 4 перемещает разрезную втулку 6 по конусу оправки, пока она не зажмет заготовку на оправке.

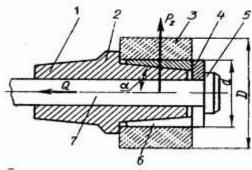


Рисунок 1 – Оправка с разрезной втулкой для обработки заготовок полых деталей

Крутящий момент от вертикальной силы резания Р должен быть меньше момента от сил трения на цилиндрической поверхности разрезной втулки 6 оправки.

Осевая сила на штоке механизированного привода для оправки.

$$P_{u} = \frac{KP_{z}D}{\frac{2}{3}f\left(\frac{D_{1}^{3} - d^{3}}{D_{1}^{2} - d^{2}}\right)}$$

где $\alpha=15^{\circ}$ - половина угла конуса оправки, град; $\varphi=60$ - угол трения на поверхности контакта оправки с разрезной втулкой, град;

f=0,1-0,15 - коэффициент трения сцепления.

к -- коэффициент запаса;

Рz -- вертикальная составляющая сила резания, Н (кгс);

D -- наружный диаметр поверхности обрабатываемой детали, мм;

D1 -- наружный диаметр быстросменной шайбы, мм;

d -- диаметр цилиндрической установочной части оправки, мм;

Порядок выполнения работы:

- 1. Изучить методические указания по выполнению работы.
- 2. Получить у преподавателя исходные данные для выполнения работы в соответствие с вариантом.
 - 3. Выполнить эскиз.
 - 4. Произвести расчет оправки разрезной втулкой
 - 5. Выполнить отчет.

Ход работы:

Выполнить конспект с необходимыми расчетами Защитить практическую работу

Форма представления результата:

Выполнить работу в письменном виде в тетради для практических работ. Отчет о проделанной работе выполняется в соответствием с заданием. Зачет выставляется после устного собеседования с преподавателем.

Тема 2.3. Обработка плоскостей и пазов

Практическая работа №8 «Разработать станочную операцию обработки паза на фрезерном станке с ЧПУ»

Формируемые компетенции:

- ПК.3.3. Разрабатывать инструкции и технологические карты выполнения работ для подчиненного персонала по монтажу, наладке и техническому обслуживанию систем и средств автоматизации.
- ПК.3.4. Организовывать выполнение производственных заданий подчиненным персоналом.

- ПК 3.5. Контролировать качество работ по монтажу, наладке и техническому обслуживанию систем и средств автоматизации, выполняемых подчиненным персоналом и соблюдение норм охраны труда и бережливого производства.
- ПК.5.1. Выполнять слесарную обработку деталей для изготовления простых приспособлений для ремонта и наладки.
- ПК.5.2. Выполнять ремонт, монтаж, наладку и проверку работоспособности контрольно-измерительных приборов и автоматики.

Порядок выполнения работы:

- 1. Изучить методические указания по выполнению работы.
- 2. Получить у преподавателя исходные данные для выполнения работы в соответствие с вариантом.
 - 3. Выполнить эскиз.
 - 4. Произвести расчет оправки разрезной втулкой
 - 5. Выполнить отчет.

Ход работы:

Выполнить конспект с необходимыми расчетами Защитить практическую работу

Форма представления результата:

Выполнить работу в письменном виде в тетради для практических работ. Отчет о проделанной работе выполняется в соответствием с заданием. Зачет выставляется после устного собеседования с преподавателем.

Раздел 3. Технология изготовления типовых деталей

Тема 3.1. Технология изготовления деталей имеющих форму вала, дисков и втулок

Практическая работа №9 «Проектирование ТП изготовления детали «Вал»

Формируемые компетенции:

- ПК.4.1. Контролировать текущие параметры и фактические показатели систем
- автоматизации в соответствии с требованиями нормативно-технической документации для выявления возможных отклонений.
- ПК.4.2. Осуществлять диагностику причин возможных неисправностей и отказов систем для выбора методов и способов их устранения.

- ПК.4.3. Организовывать работы по устранению неполадок, отказов оборудования и ремонту систем в рамках своей компетенции.
- ПК.5.1. Выполнять слесарную обработку деталей для изготовления простых приспособлений для ремонта и наладки.
- ПК.5.2. Выполнять ремонт, монтаж, наладку и проверку работо-способности контрольно-измерительных приборов и автоматики.
- ПК.5.3. Составлять и макетировать простые и средней сложности схемы.

Порядок выполнения работы:

- 1. Изучить методические указания по выполнению работы.
- 2. Получить у преподавателя исходные данные для выполнения работы в соответствие с вариантом.
 - 3. Выполнить эскиз.
 - 4. Произвести расчет оправки разрезной втулкой
 - 5. Выполнить отчет.

Ход работы:

Выполнить конспект с необходимыми расчетами Защитить практическую работу

Форма представления результата:

Выполнить работу в письменном виде в тетради для практических работ. Отчет о проделанной работе выполняется в соответствием с заданием. Зачет выставляется после устного собеседования с преподавателем.

Практическая работа №10 «Проектирование ТП изготовления детали «Втулка»

Формируемые компетенции:

- Π К.5.1. Выполнять слесарную обработку деталей для изготовления простых приспособлений для ремонта и наладки.
- ПК.5.2. Выполнять ремонт, монтаж, наладку и проверку работо-способности контрольно-измерительных приборов и автоматики.

Порядок выполнения работы:

- 1. Изучить методические указания по выполнению работы.
- 2. Получить у преподавателя исходные данные для выполнения работы в соответствие с вариантом.
 - 3. Выполнить эскиз.

- 4. Произвести расчет оправки разрезной втулкой
- 5. Выполнить отчет.

Ход работы:

Выполнить конспект с необходимыми расчетами Защитить практическую работу

Форма представления результата:

Выполнить работу в письменном виде в тетради для практических работ. Отчет о проделанной работе выполняется в соответствием с заданием. Зачет выставляется после устного собеседования с преподавателем.

Раздел 4. Технология сборки машин

Тема 4.1. Сборка типовых соединений

Практическая работа №11 «Технология сборки: сборка изделия в соответствии с технологическим заланием»

Формируемые компетенции:

ПК 2.3. Проводить испытания

Порядок выполнения работы:

- 1. Изучить методические указания по выполнению работы.
- 2. Получить у преподавателя исходные данные для выполнения работы в соответствие с вариантом.
 - 3. Выполнить эскиз.
 - 4. Произвести расчет оправки разрезной втулкой
 - 5. Выполнить отчет.

Ход работы:

Выполнить конспект с необходимыми расчетами Защитить практическую работу

Форма представления результата:

Выполнить работу в письменном виде в тетради для практических работ. Отчет о проделанной работе выполняется в соответствием с заданием. Зачет выставляется после устного собеседования с преподавателем.

Критерии оценки:

- Оценка «отлично» ставится, если задание выполнено верно и даны полные ответы на вопросы.
- Оценка «хорошо» ставится, если ход выполнения задания верный, но была допущена одна или две ошибки, либо в ответах на вопросы допущена неточность.
- Оценка «удовлетворительно» ставится, если приведено неполное выполнение задания (упущены важные технические характеристики), либо в ответах на вопросы допущены грубые ошибки.
- Оценка «неудовлетворительно» ставится, если задание не выполнено.