Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

Многопрофильный колледж

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ЛАБОРАТОРНЫХ И ПРАКТИЧЕСКИХ ЗАНЯТИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОПЦ.05 Техническая механика

для обучающихся специальности
13.02.11 Техническая эксплуатация электрического и электромеханического оборудования
(по отраслям)

ОДОБРЕНО

Предметно-цикловой комиссией «Монтажа и эксплуатации электрооборудования» Председатель Л.А. Закирова Протокол № 6 от 25.01.2023г.

Методической комиссией МпК

Протокол № 4 от 08.02.2023г.

Разработчик (и):

преподаватель ФГБОУ ВО «МГТУ им. Г.И. Носова» Многопрофильный колледж

Л.М. Сарсенбаева

Методические указания по выполнению практических и лабораторных работ разработаны на основе рабочей программы учебной дисциплины «Техническая механика».

Содержание практических работ ориентировано на подготовку обучающихся к освоению профессиональных модулей программы подготовки специалистов среднего звена по специальности 13.02.11 Техническая эксплуатация электрического и электромеханического оборудования (по отраслям) и овладению профессиональными компетенциями.

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ	3
2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ	
Практическое занятие №1	
Лабораторное занятие №1	
Практическое занятие № 3	
Практическое занятие № 4	

1 ВВЕДЕНИЕ

Важную часть теоретической и профессиональной практической подготовки обучающихся составляют практические и лабораторные занятия.

Состав и содержание практических и лабораторных занятий направлены на реализацию Федерального государственного образовательного стандарта среднего профессионального образования.

Ведущей дидактической целью практических занятий является формирование профессиональных практических умений (умений выполнять определенные действия, операции, необходимые в последующем в профессиональной деятельности).

Ведущей дидактической целью лабораторных занятий является экспериментальное подтверждение и проверка существенных теоретических положений (законов, зависимостей).

В соответствии с рабочей программой учебной дисциплины «Техническая механика» предусмотрено проведение практических и лабораторных занятий.

В результате их выполнения, обучающийся должен:

уметь:

- У1. определять напряжения в конструкционных элементах
- У2. проводить сборочно-разборочные работы в соответствии с характером соединений деталей и сборочных единиц;
 - У3. производить расчеты механических передач и простейших сборочных единиц;
 - У4. читать кинематические схемы.

Содержание практических и лабораторных занятий ориентировано на подготовку обучающихся к освоению профессионального модуля программы подготовки специалистов среднего звена по специальности и овладению *профессиональными компетенциями*:

- ПК 1.1. Выполнять наладку, регулировку и проверку электрического и электромеханического оборудования
- ПК 1.2. Организовывать и выполнять техническое обслуживание и ремонт электрического и электромеханического оборудования
 - ПК 5.1 Проводить ремонт простых деталей и узлов электроаппаратов и электрических машин.

А также формированию общих компетенций:

- ОК 01 Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- OК 02 Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности
- ОК 03 Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных ситуациях
 - ОК 04 Эффективно взаимодействовать и работать в коллективе и команде
- ОК 05 Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста
- ОК 09 Пользоваться профессиональной документацией на государственном и иностранном языках.

Выполнение обучающихся практических и лабораторных работ по учебной дисциплине «Техническая механика» направлено на:

- обобщение, систематизацию, углубление, закрепление, развитие и детализацию полученных теоретических знаний по конкретным темам учебной дисциплины;
- формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;

- формирование и развитие умений: наблюдать, сравнивать, сопоставлять, анализировать, делать выводы и обобщения, самостоятельно вести исследования, пользоваться различными приемами измерений, оформлять результаты в виде таблиц, схем, графиков;
- приобретение навыков работы с различными приборами, аппаратурой, установками и другими техническими средствами для проведения опытов;

Практические и лабораторные занятия проводятся после соответствующей темы, которая обеспечивает наличие знаний, необходимых для ее выполнения.

2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Тема 1.4 Плоская система произвольно расположенных сил

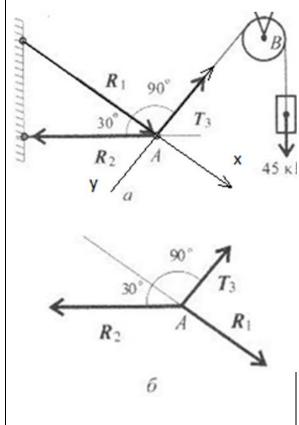
Практическое занятие №1 Определение реакции связей

Пель:

- изучить способ разложения силы на составляющие,
- изучить способы сложения сил, линии действия которых сходятся в одной точке;
- изучить геометрический и аналитический способы определения равнодействующей силы и уметь ими пользоваться.

Выполнив работу, Вы будете:

уметь:


У4. читать кинематические схемы;

Конспект лекций, интернет-ресурсы, линейка, транспортир, карандаш, ластик.

Задание:

Груз подвешен на стержнях и канатах и находится в равновесии, определить реакции связи в стержнях графически и аналитически.

Краткие теоретические сведения:

Дано:

 $F_1 = 25 \text{ kH}$

 $q = 2 \kappa H/M$

m = 100 к H • м a = 1 м

Найти:

Rax

Ray

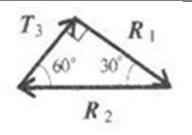
 M_R

Решение:

- 1. Вычертить по варианту расчетную схему. Принять точку A с лева в подвижном шарнире, точку B с права в неподвижном шарнире. Указать на схеме искомые реакции связи Ray, Rby, Rbx. Принять оси X и У. (рис.а)
- 2. Заменяем распределенную нагрузку q сосредоточенной силой G. (рис.б)

$$G = q \cdot l = 2 \cdot 6 = 12 \text{ kH}$$

3. Составим уравнения равновесия. Сумма моментов относительно точки ${\bf A}$


$$\Sigma M_a = 0$$
; $100 + 12 \cdot 3M - R_{EV}$

Из уравнения выражаем неизвестную Rву.

$$R_{\rm gy} = \frac{100 + 12 \cdot 3M + 25 \cdot 14M \cdot \cos 45^{\circ}}{10M} = \frac{10M \cdot 34.66 \text{ kH}}{10M}$$

Реакция направлена верно.

Сумма моментов относительно точки В.

В

$$\Sigma M_z = 0$$
; $100 - 12 \cdot 7M + R_z \cdot 10M + 25 \cdot 2M \cdot \cos 45^0 = 0$

Из уравнения выражаем неизвестную Ray.

$$R_{ay} = \frac{-100 + 12 \cdot 7\text{M} - 25 \cdot 2\text{M} \cdot \cos 45^{\circ}}{10\text{M}} = -5.1 \text{ kH}$$

Знак минус говорит о том что реакция направлена Меняем направление реакции на неверно. схеме. (рис. б) Сумма всех сил на ось Х

$$\Sigma F_{\rm x} = 0$$
; $R_{\rm BX} + 25 \cdot \cos 45^{\circ} = 0$

Из уравнения выражаем неизвестную Rвх. $R_{\rm EX} = -25 \cdot \cos 45^{\circ} = -17,5 \text{ кH}$

$$R_{\rm pv} = -25 \cdot \cos 45^{\circ} = -17.5 \text{ kH}$$

Знак минус говорит о том что реакция направлена Меняем направление реакции на неверно. схеме. (рис. б)

4. Проверку составив уравнение суммы проекций относительно оси У.

$$\Sigma F_y = 0$$
; $R_{ay} - 25 \cdot \cos 45^0 - R_{ay} - 12 = 0$

Проверка выполнено верно, балка находиться равновесии

$$R_{\rm av} = 5.1 \text{ kH}, R_{\rm ex} = 17.5 \text{ kH}$$

Порядок выполнения работы:

- 1. Оформить работу в тетрадь.
- 2. По алгоритму выполнить решение графического метода.
- 3. По алгоритму выполнить решение аналитического метода.

Форма представления результата:

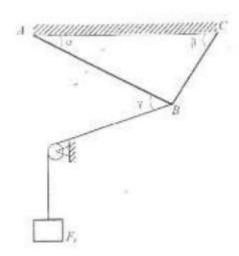
Оформленная задача в тетради для практических и лабораторных работ

Критерии оценки:

Оценка 3 - один из способов рассчитан верно.

Оценка 4 -оба способа посчитаны верно.

Оценка 5 - защита работы (по принятой преподавателем оси составить уравнение проекций).


Самостоятельная работа:

Расчетно-графическая работа.

Вариант	α, Μ	т, кН∙м	F ₂ , κΗ	F ₁ , κΗ	Схема
1	0,3	14	5	10	a
2	0,3	13	5,5	12	б
3	0,4	12	6	14	В
4	0,4	11	6,5	16	Γ
5	0,2	10	7	18	Д
6	0,2	9	7,5	20	e
7	0,5	8	8	22	a
8	0,5	7	8,5	24	б
9	0,1	6	9	26	В

10	0,1	14	9,5	28	Γ
11	0,3	13	9,5	10	Д
12	0,3	12	9	12	e
13	0,4	11	8,5	14	a
14	0,4	10	8	16	б
15	0,2	9	7,5	18	В
16	0,2	8	7	20	Γ
17	0,5	7	6,5	22	Д
18	0,5	6	6	24	e
19	0,1	14	5,5	26	a
20	0,1	13	5	28	б
21	0,1	14	5	10	В
22	0,1	13	5,5	12	Γ
23	0,5	12	6	14	Д
24	0,5	11	6,5	16	e
25	0,2	10	7	18	a
26	0,2	9	7,5	20	б
27	0,4	8	8	22	В
28	0,4	7	8,5	24	Γ
29	0,3	6	9	26	Д
30	0,3	14	9,5	28	e

Груз подвешен на стержнях и канатах и находится в равновесии, определить реакции связи в стержнях графически и аналитически. Данные для своего варианта взять из таблицы.

Тема 2.2 Растяжение и сжатие

Лабораторное занятие №1 Испытание образцов материалов на растяжение и сжатие.

Цель: получение диаграммы растяжения стального образца для вычисления механических характеристик материала. Получение диаграммы сжатия для разных материалов для вычисления механических характеристик материалов.

Выполнив работу, Вы будете:

уметь:

У4. читать кинематические схемы;

Материальное обеспечение:

Испытательный стенд виртуальной лабораторной работы приближенный к реальной установке «Разрывная машина ГСМ-50», Испытательный стенд виртуальной лабораторной работы приближенный к реальной установке «Пресс гидравлический ПГ-100», конспект лекций, линейка, карандаш, ластик

Задание:

- 1 построить диаграмму растяжения материала
- 2 построить диаграмму сжатия стали и древесины

Краткие теоретические сведения:

Растяжение

- 1. Проводя эксперимент снимать значения усилия P кH и абсолютного удлинения ΔI для 12 характерных точек.
 - 2. Перевести усилие P из кH в H (кило 10^3).(см. столбик 4)
 - 3. Посчитать относительную деформацию $\epsilon = \Delta l/l_0$ (см. столбик 5)
- 4. Посчитать напряжение $\sigma(\text{МПа}) = P(H)/A(\text{мм}^2)$, где A площадь сечения образца, находим по формуле $A = \pi d_0^2/4$. (см. столбик 6)
- 5. Начертить диаграмму растяжения по результатам вычислений в координатных осях напряжение относительная деформация.
 - 6. Определить модуль упругости материала $E(M\Pi a) = \sigma/\epsilon$. (см. столбик 7)

1	2	3	4	5	6	7
№ 1	Р, кН	Δ1, м	P, H	3	σ, МПа	Е, МПа
1	19,9667	4,157e-006	19966,7	$\frac{4,57*10^{-3}(\textit{MM})}{20(\textit{MM})}$	$\frac{19966,7(H)}{314(MM^2)}$	19966,7(<i>H</i>) 0,00022

7. Чертим диаграмму.

Сжатие

- 1. .Проводя эксперимент снимать значения усилия P кH и абсолютного удлинения Δl для 12 характерных точек.
- 2. Перевести усилие P из кH в H (кило 10^3).(см. столбик 4)
- 3. Посчитать относительную деформацию $\varepsilon = \Delta l/l_0$ (см. столбик 5)
- 4. Посчитать напряжение $\sigma(\text{МПа}) = P(H)/A(\text{мм}^2)$, где A площадь сечения образца, находим по формуле $A = \pi d_0^2/4$. (см. столбик 6)
- 5. Начертить диаграмму сжатия по результатам вычислений в координатных осях напряжение относительная деформация.
- 6. Определить модуль упругости материала $E(M\Pi a) = \sigma/\epsilon$. (см. столбик 7)

1	2	3	4	5	6	7
№ 1	Р, кН	Δ1, м	P, H	3	σ, МПа	Е, МПа
1	19,9667	4,157e-006	19966,7	$\frac{4,57*10^{-3}(\textit{MM})}{20(\textit{MM})}$	$\frac{19966,7(H)}{314(\textit{MM}^2)}$	19966,7(<i>H</i>) 0,00022

7. Чертим диаграммы для двух экспериментов.

Порядок выполнения работы:

- 1 Оформить работу в тетрадь.
- 2 По алгоритму выполнить решение.

Форма представления результата:

Оформленная задача в тетради для практических и лабораторных работ

Критерии оценки:

Оценка 3 – верно построена диаграмма растяжения.

Оценка 4 – верно построена диаграмма сжатия и растяжения.

Оценка 5 – устная защита работы по конспекту.

Практическое занятие № 3

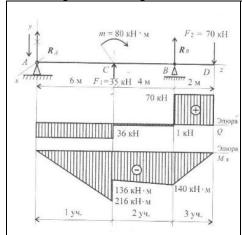
Эпюры поперечных сил и изгибающих моментов. Расчёт на прочность при изгибе

Цель: научиться строить эпюры поперечных сил и изгибающих моментов.

Выполнив работу, Вы будете:

уметь:

У1. определять напряжения в конструкционных элементах


Материальное обеспечение:

Конспект лекций, интернет-ресурсы, линейка, карандаш, ластик

Задание:

По методу сечений построить эпюры изгибающих моментов и поперечной силы. Определить опасное сечение.

Краткие теоретические сведения:

Потго

F1 = 30 kH

 $M = 55 \text{ kH*}_{M}$

Найти:

d

Решение:

1. Определяем реакции опор, составляя уравнения равновесия.

$$\Sigma M_{A} = 0; -F_{1} \cdot 6 + M - R_{b} \cdot 10 + F_{2} \cdot 12 = 0$$

$$R_{b} = \frac{-F_{1} \cdot 6 + M + F_{2} \cdot 12}{10} = 71 \text{ kH}$$

Реакция направлена верно

$$\Sigma M_B = 0$$
; $R_A \cdot 10 + M - F_2 \cdot 2 + F_1 \cdot 4 = 0$
 $R_A = \frac{-M + F_2 \cdot 2 - F_1 \cdot 4}{10} = -36 \text{ kH}$

Знак минус говорит о том что реакция направлена неверно. Меняем направление реакции на схеме.

$$\Sigma F_{v} = 0$$
; $-R_{a} + F_{1} + R_{B} - F_{2} = 0$

Проверка сошлась, значит реакции определили верно.

2. Для упрощения расчета можно использовать расчет внутренних факторов по характерным точкам.

В точке А приложена реакция направленная вниз.

$$Q_{\rm a} = R_a = -36 \text{ kH}$$

 $M_{\rm a} = 0$

В точке С приложена внешняя сила направленная вверх — скачок вверх на величину 35 кН. С другой стороны момент 80 кН·м, следовательно появляется скачок момента.

$$M_{\rm c}^{
m c.neba} = R_a \cdot 6 = -36 \cdot 6 = -216 \
m kH \cdot M$$
 $M_{\rm c}^{
m c.npaBa} = M_{\rm c}^{
m c.neba} + M = -216 + 80 = -136 \
m kH \cdot M$ $Q_{\rm c} = -R_a + F_1 = -36 + 35 = -1 \
m kH$

В точке В слева и справа момент имеет одинаковые значения.

$$\mathbf{M_B} = -R_a \cdot 10 + F_1 \cdot 4 + \mathbf{M} = -36 \cdot 10 + 35 \cdot 4 + 80$$

= -140 kH · M
 $Q_{\mathrm{B}} = F_2 = 70$ kH

Точка Д приложена сила.

$$Q_{\mathrm{A}} = F_2 = 70 \mathrm{ \ \kappa H}$$
 $M_{\mathrm{A}} = 0$

- **3.** Строим эпюры Q и $M_{_{\rm ИЗГ.}}$
- 4. Подбираем размеры балки в опасном сечении по условию прочности.

$$W_x = \frac{M_B}{[\sigma]} = \frac{216 \cdot 10^6}{160} = 1350 \cdot 10^3 \text{ mm}^3$$

Выбираем двутавр №50.

Ответ: Выбираем двутавр №50.

Порядок выполнения работы:

1 Оформить работу в тетрадь.

2 По алгоритму выполнить решение.

Форма представления результата:

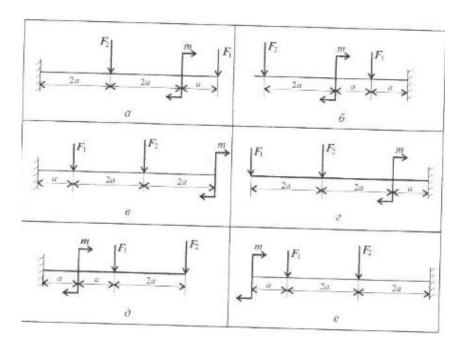
Оформленная задача в тетради для практических и лабораторных работ

Критерии оценки:

Оценка 3 – верно определены поперечные силы участков.

Оценка 4 – верно определены моменты изгибов.

Оценка 5 – устная защита работы по конспекту.


Самостоятельная работа:

Расчетно-графическая работа.

По методу сечений построить эпюры изгибающих моментов и поперечной силы. Определить опасное сечение. Данные для своего варианта взять из таблицы.

Вариант	$M_1, H\cdot M$	F ₁ , κH	F ₂ , κH	а, м	Схема
1	3	10	4,4	0,2	a
2	4	11	4,8	0,2	б
3	5	12	7,8	0,3	В
4	6	13	8,4	0,3	Γ
5	7	14	12	0,4	Д
6	7	15	12,8	0,4	e
7	6	16	17	0,5	a
8	5	17	18	0,5	б
9	4	18	22,8	0,6	В
10	3	19	24	0,6	Γ
11	4,4	3	10	0,2	Д
12	4,8	4	11	0,2	e

13	7,8	5	12	0,3	a
14	8,4	6	13	0,3	б
15	12	7	14	0,4	В
16	12,8	7	15	0,4	Γ
17	17	6	16	0,5	Д
18	18	5	17	0,5	e
19	22,8	4	18	0,6	a
20	24	3	19	0,6	б
21	10	4,4	3	0,2	В
22	11	4,8	4	0,2	Γ
23	12	7,8	5	0,3	Д
24	13	8,4	6	0,3	e
25	14	12	7	0,4	a
26	15	12,8	7	0,4	б
27	16	17	6	0,5	В
28	17	18	5	0,5	Γ
29	18	22,8	4	0,6	Д
30	19	24	3	0,6	e

Тема 3.6 Соединения деталей машин. Редукторы

Практическое занятие № 4 Определение кинематических и силовых характеристик передач

Цель: научиться определять кинематические и силовые характеристики приводов, состоящих из ряда последовательно соединенных передач.

Выполнив работу, Вы будете:

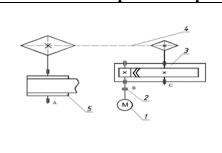
уметь:

У3. производить расчеты механических передач и простейших сборочных единиц;

У4. читать кинематические схемы.

Материальное обеспечение:

Конспект лекций, интернет-ресурсы, линейка, циркуль, карандаш, ластик


Задание:

Для привода машины, состоящего из механических передач определить угловые скорости и частоты вращения на валах, мощности и вращающие моменты на валах с учетом к.п.д., передаточные числа всех ступеней и привода, к.п.д. привода.

Принять: $\eta_{\text{подш}}$ =0,99 - для пары подшипников;

- $\eta_{\text{цп}} = 0.95 для цепной передачи;$
- $\eta_{pm} = 0.96 для ременной передачи;$
- η_{зуб}=0,97 для зубчатой передачи;
- ηчп=0,77-0,85 для червячной передачи.

Краткие теоретические сведения:

Дано:

Описание привода

Найти:

Составить кинематическую схему

Решение:

- 1. Исходя из описания привода изобразить последовательно передачи.
- Электродвигатель, муфта, цилиндрический шевронный редуктор, цепная передача, ленточный конвейер.
- **2.** Указать позиции на схеме 1-электродвигатель, 2-муфта, 3-редуктор, 4-цепная передача, 5-конвейер.

Ответ: графическое изображение привода

Порядок выполнения работы:

- 1. Начертить схему привода в соответствии с вариантом.
- 2. Пронумеровать валы.
- 3. Определить передаточное отношение каждой ступени.

$$u_i = \frac{D_2}{D_1} \left(\frac{Z_2}{Z_1} \right) \left(\frac{Z_4}{Z_3} \right) \left(\frac{Z_6}{Z_5} \right)$$

4. Определить передаточного число привода.

$$\mathbf{u} = \mathbf{u}_1 \cdot \mathbf{u}_2 \cdot (\mathbf{u}_3)$$

5. Определить частоту вращения валов.

$$n_1 = n_{\partial \theta};$$
 $n_2 = \frac{n_1}{u_1};$ $n_3 = \frac{n_2}{u_2};$ $n_4 = \frac{n_3}{u_3};$ $n_4 = \frac{n_1}{u};$

6. Определить частоту вращения валов.

$$\omega_k = \frac{\pi n_k}{30} (pa\partial/c)$$

7. Определить мощности на валы.

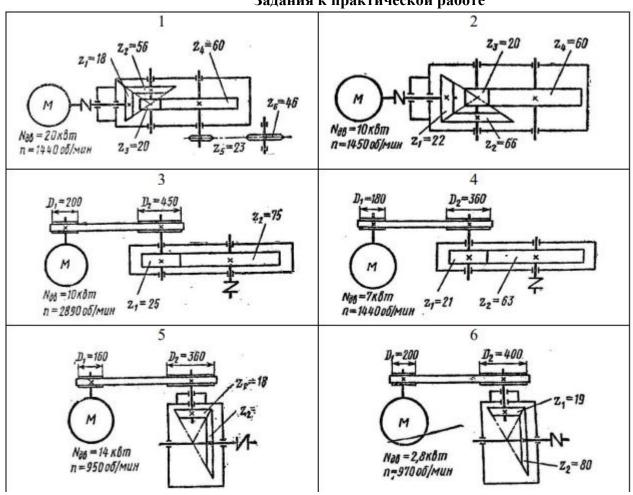
$$P_{I}=P_{\partial s}$$
 или $P_{I}=P_{\partial s}\cdot\eta_{no\partial u}$ $P_{2}=\frac{P_{1}}{u_{1}}\cdot\eta_{I};$ $P_{3}=\frac{P_{2}}{u_{2}}\cdot\eta_{2};$ $P_{4}=\frac{P_{3}}{u_{3}}\cdot\eta_{3}$

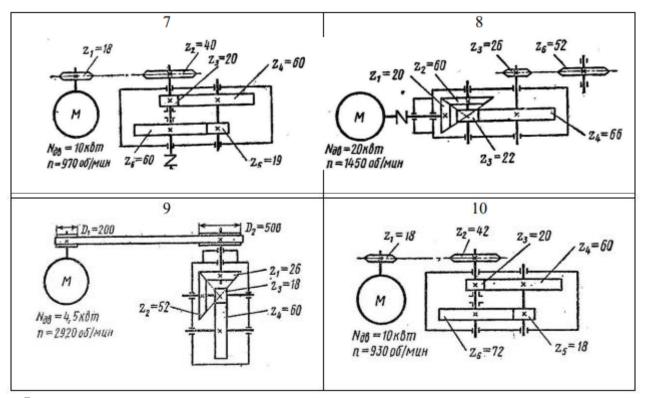
8. Определить К.П.Д. привода

$$\eta = \eta_{nodu}^{k} \cdot \eta_{nep} \cdot \eta_{nep} \cdots$$

где κ — число пар подшипников.

Уточнить мощность


$$P_4 = \frac{P_{\partial a}}{u} \cdot \eta$$


9. Определить вращающие моменты на валах

$$T = \frac{P_k}{\omega_k} (H_M)$$
; где P - Bm ; ω - pad/c .

10. Вывод

Задания к практической работе

Форма представления результата:

Оформленная задача в тетради для практических и лабораторных работ

Критерии оценки:

Оценка 3 – верно изображены кинематические схемы передач.

Оценка 4 – последовательность соединения выполнена верно.

Оценка 5 – устная защита работы по конспекту.

Самостоятельная работа:

Расчетно-графическая работа

Изучить последовательность работы привода и вычертить схему согласно заданию, указать позиции на схеме.