Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

Многопрофильный колледж

УТВЕРЖД Дире / С.А. Махнов 08.02.2

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ

ЕН.01 Математика

для обучающихся специальности

15.02.03 Техническая эксплуатация гидравлических машин, гидроприводов и гидропневмоавтоматики

ОДОБРЕНО

Предметной комиссией «Математических Методической комиссией МпК и естественнонаучных дисциплин» Председатель Е. С. Корытникова Протокол № 6 от 25.01.2023 Протокол № 4 от 08.02.2023

Разработчик:

преподаватель ФГБОУ ВО «МГТУ им. Г.И. Носова» Многопрофильный колледж

И. А. Панфилова

Методические указания по выполнению практических работ разработаны на основе рабочей программы учебной дисциплины «Математика».

Содержание практических работ ориентировано на подготовку обучающихся к освоению профессионального модуля программы подготовки специалистов среднего звена по специальности 15.02.03 Техническая эксплуатация гидравлических машин, гидроприводов и гидропневмоавтоматики и овладению профессиональными компетенциями.

СОДЕРЖАНИЕ

1 Введение	4
2 Методические указания	5
Практическое занятие 1	5
Практическое занятие 2	6
Практическое занятие 3	9
Практическое занятие 4	12
Практическое занятие 5	14
Практическое занятие 6	16
Практическое занятие 7	19
Практическое занятие 8	21
Практическое занятие 9	24
Практическое занятие 10	26
Практическое занятие 11	29
Практическое занятие 12	32
Практическое занятие 13	34
Практическое занятие 14	36
Практическое занятие 15	37
Практическое занятие 16	41

1 ВВЕДЕНИЕ

Важную часть теоретической и профессиональной практической подготовки обучающихся составляют практические занятия.

Состав и содержание практических занятий направлены на реализацию Федерального государственного образовательного стандарта среднего профессионального образования.

Ведущей дидактической целью практических занятий является формирование профессиональных практических умений (умений выполнять определенные действия, операции, необходимые в последующем в профессиональной деятельности) или учебных практических умений решать задачи по математике, необходимых в последующей учебной деятельности.

В соответствии с рабочей программой учебной дисциплины EH.01 «Математика» предусмотрено проведение практических занятий.

В результате их выполнения, обучающийся должен:

уметь:

- У1 анализировать сложные функции и строить их графики;
- У2 выполнять действия над комплексными числами;
- УЗ вычислять значения геометрических величин;
- У4 производить операции над матрицами и определителями;
- У5 решать задачи на вычисление вероятности с использованием элементов комбинаторики;
- У6 решать прикладные задачи с использованием элементов дифференциального и интегрального исчислений;
 - У7 решать системы линейных уравнений различными методами.
 - Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;
 - Уо 01.03 определять этапы решения задачи;
 - Уо 02.01 определять задачи для поиска информации;
- Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Содержание практических занятий ориентировано на подготовку обучающихся к освоению профессионального модуля программы подготовки специалистов среднего звена по специальности и овладению *профессиональной компетенцией*:

ПК 2.1 Участвовать в проектировании гидравлических и пневматических приводов по заданным условиям и разрабатывать принципиальные схемы.

А также формированию общих компетенций:

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.
- ОК 02 Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности.

Выполнение обучающимися практических работ по учебной дисциплине «Математика» направлено на:

- обобщение, систематизацию, углубление, закрепление, развитие и детализацию полученных теоретических знаний по конкретным темам учебной дисциплины;
- формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;
- формирование и развитие умений: наблюдать, сравнивать, сопоставлять, анализировать, делать выводы и обобщения;
- выработку при решении поставленных задач профессионально значимых качеств, таких как самостоятельность, ответственность, точность, творческая инициатива.

Практические занятия проводятся после соответствующей темы, которая обеспечивает наличие знаний, необходимых для ее выполнения

2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Тема 1 Комплексные числа Практическое занятие № 1

Действия над комплексными числами в алгебраической форме

Цель: Научиться выполнять действия над комплексными числами, записанными в алгебраической форме.

Выполнив работу, Вы будете:

уметь:

- У2 выполнять действия над комплексными числами;
- Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;
- Уо 01.03 определять этапы решения задачи;
- Уо 02.01 определять задачи для поиска информации;
- Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение: индивидуальные задания, конспекты лекций.

Задание:

- 1. Даны комплексные числа: z_1 = (7;1), z_2 =(-1,5;1,5), z_3 =(4;-3). Записать эти числа в алгебраической форме.
- 2. Вычислить:
 - 1) $z_1 + z_2$;
 - 2) $z_2 z_3$;
 - $3) \ \frac{z_1}{z_2};$
 - 4) $z_2 \cdot z_3$;
 - 5) z_1^5 ;
- 3. Вычислить: $\frac{1+3i}{i-3} + \frac{4-5i}{1+3i} i^8$

Порядок выполнения работы:

- 1. Запишите комплексные числа в алгебраической форме z = a + bi
- 2. Выполните действия над комплексными числами в алгебраической форме, используя формулы:

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i;$$

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i;$$

$$z_1 \cdot z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i;$$

$$\frac{z_1}{z_2} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 - a_1 b_2}{a_2^2 + b_2^2}i.$$

Ход работы:

1. Даны комплексные числа: z_1 = (7;1), z_2 =(-1,5;1,5), z_3 =(4;-3). Записать эти числа в алгебраической форме.

Решение: Т.к. алгебраическая форма комплексного числа имеет вид: z = a + bi, то числа в алгебраической форме будут записаны в виде:

$$z_1 = 7 + i$$
; $z_2 = -1.5 + 1.5i$; $z_3 = 4 - 3i$.

2. Вычислить:

$$z_1+z_2=(7-1.5)+(1+1.5)i=5.5+2.5i;$$

$$z_2-z_3=(-1.5-4)+(1.5+3)i=-5.5+4.5i;$$

$$\frac{z_1}{z_3}=\frac{7+i}{4-3i}=\frac{(7+i)(4+3i)}{(4-3i)(4+3i)}=\frac{28+4i+21i+3i^2}{16-9i^2}=\frac{28+25i-3}{16+9}=\frac{25+25i}{25}=1+i;$$

$$z_2\cdot z_3=(-1.5+1.5i)(4-3i)=-6+4.5i+6i-4.5i^2=-6+10.5i+4.5=-1.5+10.5i;$$

$$z_1^5=(7+i)^5=((7+i)^2)^2(7+i)=(49+14i+i^2)^2(7+i)=(48+14i)^2(7+i)=(2304+1344i+196i^2)(7+i)=(2304+1344i-196)(7+i)=(2108+1344i)(7+i)=13412+11516i$$
 3. Вычислить: $\frac{1+3i}{i-3}+\frac{4-5i}{1+3i}-i^8$

Решение:

$$\frac{1+3i}{i-3} + \frac{4-5i}{1+3i} - i^8 = -2, 1 - 2, 7i;$$
1)
$$\frac{1+3i}{i-3} = \frac{(1+3i)(-i-3)}{(i-3)(-i-3)} = \frac{-i-3-3i^2-9i}{-i^2+9} = \frac{-10i}{10} = -i$$
2)
$$\frac{4-5i}{1+3i} = \frac{(4-5i)(1-3i)}{(1+3i)(1-3i)} = \frac{4-12i-5i+15i^2}{1-9i^2} = \frac{-11-17i}{10} = -1, 1 - 1, 7i$$
3)
$$i^8 = (i^2)^4 = (-1)^4 = 1$$
4)
$$-i - 1, 1 - 1, 7i - 1 = -2, 1 - 2, 7i$$

Форма представления результата: выполненная работа.

Критерии оценки:

- «Отлично» умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89~% всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 1 Комплексные числа Практическое занятие № 2

Действия над комплексными числами в тригонометрической форме

Цель: Научиться выполнять действия над комплексными числами в тригонометрической форме.

Выполнив работу, Вы будете:

уметь:

У2 выполнять действия над комплексными числами;

Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;

Уо 01.03 определять этапы решения задачи;

Уо 02.01 определять задачи для поиска информации;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение: индивидуальные задания, конспекты лекций. Задание:

- 1. Даны комплексные числа: $z_1 = (-3, -5)$, $z_2 = (-7, 2, 7, 2)$, $z_3 = (2, 6)$. Записать эти числа в тригонометрической форме.
- 2. Вычислите: $z_2 \cdot z_3$; $\frac{z_1}{z_2}$; z_1^5 ; $\sqrt{z_2}$.
- 3. Выполните действия и запишите результат в алгебраической форме: a) $(3 \cdot (\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4}))^2$ b) $\frac{24(\cos 75^0 + i \sin 75^0)}{3(\cos 30^0 + i \sin 30^0)}$

a)
$$(3 \cdot (\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4}))^2$$
 b) $\frac{24(\cos \frac{\pi}{4})}{3(\cos \frac{\pi}{4})}$

Краткие теоретические сведения:

Тригонометрической формой комплексных чисел называется запись их в виде:

$$z = r(\cos\varphi + i \cdot \sin\varphi).$$

При выполнении действий над комплексными числами в тригонометрической форме используются следующие формулы:

$$\begin{split} z_1 \cdot z_2 &= r_1 \cdot r_2 (\cos \left(\varphi_1 + \varphi_2\right) + i sin \left(\varphi_1 + \varphi_2\right)) \\ \frac{z_1}{z_2} &= \frac{r_1}{r_2} (\cos \left(\varphi_1 - \varphi_2\right) + i sin \left(\varphi_1 - \varphi_2\right)) \\ z^n &= r^n (cosn\varphi + i sin n\varphi) \end{split}$$

Для извлечения корня п-й степени из комплексного числа в тригонометрической форме $z = r(\cos \phi + i \cdot \sin \phi)$ используется формула:

$$\omega_k = \sqrt[n]{r} \cdot (\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n})$$
, где $\sqrt[n]{r}$ - арифметический корень, k=0, 1, 2, ..., n-1.

Алгоритм перехода от алгебраической формы к тригонометрической:

Пусть комплексное число задано в алгебраической форме z = a + bi.

- 1) Модуль r = |z| однозначно определяется по формуле $r = \sqrt{a^2 + b^2}$.
- 2) Аргумент ϕ определяется из ϕ формул $\cos \varphi = \frac{a}{r}$, $\sin \varphi = \frac{b}{r}$.

Значения аргумента комплексного числа можно находить и так:

- Определить, в какой четверти находится вектор (использовать геометрическую интерпретацию числа) z = a + bi
- Решив уравнение $tg\varphi = \frac{b}{a}$, получаем, что $\arg z = \varphi = arctg^{\frac{b}{2}}$ для внутренних точек 1 и 4 четвертей, $\arg z = \varphi = arctg^{\frac{b}{a}} + \pi$ для внутренних точек 2 четверти, $\arg z = \varphi = arctg \frac{b}{a} - \pi$ для внутренних точек 3 четверти.

Если точка z лежит на действительной или мнимой оси, то arg z можно найти непосредственно.

3) Найдя модуль и аргумент комплексного числа, его можно записать в тригонометрической или показательной форме $z = r(\cos\varphi + i \sin\varphi)$ или $z = re^{i\varphi}$.

Порядок выполнения работы:

- 1.Запишите заданные числа в тригонометрической форме, используя алгоритм перехода к тригонометрической форме.
- 2.Выполните необходимые действия.

Ход работы:

Даны комплексные числа: z_1 =(7;1), z_2 =(-1,5;1,5), z_3 =(4;-3).

1. Записать числа z_1 , z_2 и z_3 в тригонометрической форме.

Решение:

1)
$$z_1 = 7 + i$$

 $|z_1| = \sqrt{49 + 1} = \sqrt{50} = 5\sqrt{2}$,

Число находится в первой четверти, значит

$$\varphi = arctg \frac{1}{7} = arctg 0,1429.$$

$$z_1 = 7 + i = 5\sqrt{2}(\cos 8^{\circ}8' + i\sin 8^{\circ}8').$$

2)
$$z_2 = -1.5 + 1.5i$$

$$|z_2| = \sqrt{(-1.5)^2 + 1.5^2} = \sqrt{2.25 + 2.25} = \sqrt{4.5} \approx 2.1$$

Число находится во второй четверти, значит $\varphi = arctg \frac{b}{a} + \pi = arctg (-1) + \pi = -\frac{\pi}{4} + \pi = \frac{3\pi}{4};$ $z_2 = -1.5 + 1.5i = 2.1(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}).$

3)
$$z_3 = 4 - 3i$$

$$|z_2| = \sqrt{9 + 16} = \sqrt{25} = 5.$$

Число находится в четвертой четверти, значит $\varphi = arctg^{\frac{-3}{A}} = arctg(-0.75) = -36^{\circ\circ}52'$.

$$z_3 = 4 - 3i = 5(\cos(-36^{\circ}52' + i\sin(-36^{\circ}52')).$$

- 2. Вычислите:
 - 1) $z_2 \cdot z_3$
 - 2) $\frac{z_1}{z_3}$;
 - 3) z_1^5 ;
 - 4) $\sqrt{z_2}$;

Решение:

$$z_2 \cdot z_3 = 2.1 \cdot 5 \left(\cos \left(135^\circ - 36^\circ 52^\prime \right) + i \sin \left(135^\circ - 36^\circ 52^\prime \right) \right) = 10.5 \left(\cos 98^\circ 8^\prime + i \sin 98^\circ 8^\prime \right);$$

$$\frac{z_1}{z_3} = \frac{5\sqrt{2}}{5} \left(\cos \left(8^{\circ}8^{'} - \left(-36^{\circ}52^{'} \right) \right) + i sin \left(8^{\circ}8^{'} + 36^{\circ}52^{'} \right) \right) = \sqrt{2} (\cos 45^{\circ} + i sin 45^{\circ});$$

$$z_1^5 = \left(5\sqrt{2}\right)^5 \left(\cos 5 \cdot 8^{\circ} 8^{'} + i \sin 5 \cdot 8^{\circ} 8^{'}\right) = 12500\sqrt{2} (\cos 40^{\circ} 40^{'} + i \sin 40^{\circ} 40^{'});$$

Воспользуемся формулой:

$$\omega_{k} = \sqrt[n]{r} (\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n})$$

В нашем примере n=2.

$$\begin{split} \sqrt{z_2} &= \omega_k = \sqrt{\frac{3\sqrt{2}}{2}} \left(\cos\frac{135^\circ + 360^\circ k}{2} + i\sin\frac{135^\circ + 360^\circ k}{2}\right); \\ \omega_0 &= \sqrt{\frac{3\sqrt{2}}{2}} \left(\cos\frac{135^\circ + 360^\circ \cdot 0}{2} + i\sin\frac{135^\circ + 360^\circ \cdot 0}{2}\right) = \sqrt{2.1} (\cos 67^\circ 30' + i\sin 67^\circ 30'); \\ \omega_1 &= \sqrt{\frac{3\sqrt{2}}{2}} \left(\cos\frac{135^\circ + 360^\circ \cdot 1}{2} + i\sin\frac{135^\circ + 360^\circ \cdot 1}{2}\right) = \sqrt{2.1} (\cos 247^\circ 30' + i\sin 247^\circ 30') \end{split}$$

2. Выполните действия и запишите результат в алгебраической форме:
$$(2 \cdot (\cos \frac{5\pi}{24} + i \sin \frac{5\pi}{24}))^6 = 2^6 \left(\cos \frac{5\pi}{24} \cdot 6 + i \sin \frac{5\pi}{24} \cdot 6\right) = 64 \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4}\right) = 64 \left(-\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}\right) = -32\sqrt{2} - 32\sqrt{2}i$$

$$\frac{24(\cos 75^{0}+i\sin 75^{0})}{3(\cos 15^{0}+i\sin 15^{0})} = \frac{24}{3}\left(\cos (75^{\circ}-15^{\circ})+i\sin (75^{\circ}-15^{\circ})\right) = 8(\cos 60^{\circ}+i\sin 60^{\circ}) = 8\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right) = 4+4\sqrt{3}i$$

Форма представления результата: выполненная работа.

Критерии оценки:

- умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заланий.

Тема 2 Линейная алгебра Практическое занятие №3

Действия с матрицами

Цель работы: Научиться выполнять действия над матрицами.

Выполнив работу, Вы будете:

уметь:

У4 производить операции над матрицами и определителями;

У7 решать системы линейных уравнений различными методами;

Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;

Уо 01.03 определять этапы решения задачи;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение: индивидуальные задания, учебники, конспекты лекций.

Задание:

- 1.
- Найти матрицу $C = A^2 + 3AB$, где $A = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix}$; $B = \begin{pmatrix} 5 & -1 \\ 1 & 3 \end{pmatrix}$. Выяснить, является матрица $A^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{5}{3} & -\frac{2}{3} \end{pmatrix}$ обратной к матрице $A = \begin{pmatrix} 2 & 3 \\ 5 & 6 \end{pmatrix}$. 2.
- Даны матрицы: $A = \begin{pmatrix} -3 & 2 & -3 \\ 1 & 5 & -2 \\ 2 & 4 & -1 \end{pmatrix}$ и $B = \begin{pmatrix} 1 & 0 & -5 \\ 3 & -4 & 1 \\ 0 & -2 & 2 \end{pmatrix}$. Найдите: A+B; 2A; AB; BA. **3.**

Краткие теоретические сведения:

Матрицей называется прямоугольная таблица чисел. Матрица записывается в виде:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} ... & a_{1n} \\ a_{21} & a_{22} ... & a_{2n} \\ a_{m1} & a_{m2} ... & a_{mn} \end{pmatrix}$$

Действия над матрицами:

1.Сложение.

Операция сложения вводится только для матриц одинаковых размеров. При сложении матриц их соответствующие элементы складываются.

$$\mathbf{A} + \mathbf{B} = \mathbf{C} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} \cdots & a_{2n} + b_{2n} \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & a_{mn} + b_{mn} \end{pmatrix}$$

2. Умножение на число.

При умножении матрицы на число каждый ее элемент умножается на это число.

$$kA = \begin{pmatrix} ka_{11} & ka_{12} \cdots & ka_{1n} \\ ka_{21} & ka_{22} \cdots & ka_{2n} \\ ka_{m1} & ka_{m2} & ka_{mn} \end{pmatrix}.$$

3.Умножение матриц.

Операция умножения матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй.

Чтобы найти элемент матрицы, стоящий в i-той строке в k-том столбце, нужно вычислить сумму произведений элементов і-той строки первой матрицы на соответствующие элементы ктого столбца второй.

Порядок выполнения работы:

- 1. Запишите задание.
- 2. Определите, какие действия, и по каким правилам необходимо выполнить. Прочитайте

10

3. Выполните действия. Проверьте правильность вычислений.

Ход работы:

1. Найти матрицу $C = A^2 + 3AB$, если

$$A = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix}; B = \begin{pmatrix} 5 & -1 \\ 1 & 3 \end{pmatrix}$$

а) Найдем A^2 , умножая матрицу саму на себя

$$A^2 = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 7 & -9 \\ -3 & 4 \end{pmatrix}$$

5) Найдем матрицу 3A, умножив все элементы матрицы A на 3. $3A = 3\begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -6 & 9 \\ 3 & -3 \end{pmatrix}$

$$3A = 3\begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -6 & 9 \\ 3 & -3 \end{pmatrix}$$

в) Найдем произведение ЗАВ

$$3AB = \begin{pmatrix} -6 & 9 \\ 3 & -3 \end{pmatrix} \cdot \begin{pmatrix} 5 & -1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} -21 & 33 \\ 12 & -12 \end{pmatrix}$$

г) Найдем матрицу C, складывая соответствующие элементы $C = \begin{pmatrix} 7 & -9 \\ -3 & 4 \end{pmatrix} + \begin{pmatrix} -21 & 33 \\ 12 & -12 \end{pmatrix} = \begin{pmatrix} -14 & 24 \\ 9 & -8 \end{pmatrix}$

$$C = \begin{pmatrix} 7 & -9 \\ -3 & 4 \end{pmatrix} + \begin{pmatrix} -21 & 33 \\ 12 & -12 \end{pmatrix} = \begin{pmatrix} -14 & 24 \\ 9 & -8 \end{pmatrix}$$

2. Найдем произведение $A \cdot A^{-1}$ и $A^{-1} \cdot A$:

$$A \cdot A^{-1} = \begin{pmatrix} 2 & 3 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ \frac{5}{2} & -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

$$A^{-1} \cdot A = \begin{pmatrix} -2 & 1 \\ \frac{5}{3} & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E.$$

В соответствии с определением данные матрицы являются взаимообратными.

3.Даны матрицы:
$$A = \begin{pmatrix} -3 & 2 & -3 \\ 1 & 5 & -2 \\ 2 & 4 & -1 \end{pmatrix}$$
 и $B = \begin{pmatrix} 1 & 0 & -5 \\ 3 & -4 & 1 \\ 0 & -2 & 2 \end{pmatrix}$.

$$A + B = \begin{pmatrix} -3 & 2 & -3 \\ 1 & 5 & -2 \\ 2 & 4 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & -5 \\ 3 & -4 & 1 \\ 0 & -2 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 2 & -8 \\ 4 & 1 & -1 \\ 2 & 2 & 1 \end{pmatrix};$$

$$C = A \cdot B = \begin{pmatrix} -3 & 2 & -3 \\ 1 & 5 & -2 \\ 2 & 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -5 \\ 3 & -4 & 1 \\ 0 & -2 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -2 & 11 \\ 16 & -16 & -4 \\ 14 & -14 & -8 \end{pmatrix};$$

$$c_{11} = -3 \cdot 1 + 2 \cdot 3 + (-3) \cdot 0 = 3$$

$$c_{12} = -3 \cdot 0 + 2 \cdot (-4) + (-3) \cdot (-2) = -2$$

$$c_{12} = -3 \cdot 0 + 2 \cdot (-4) + (-3) \cdot (-2) = -2;$$

$$c_{13} = -3 \cdot (-5) + 2 \cdot 1 + (-3) \cdot 2 = 11;$$

$$c_{21} = 1 \cdot 1 + 5 \cdot 3 + (-2) \cdot 0 = 16;$$

$$c_{22} = 1 \cdot 0 + 5 \cdot (-4) + (-2) \cdot (-2) = -16;$$

$$c_{23} = 1 \cdot (-5) + 5 \cdot 1 + (-2) \cdot 2 = -4;$$

$$c_{31} = 2 \cdot 1 + 4 \cdot 3 + (-1) \cdot 0 = 14;$$

$$c_{32} = 2 \cdot 0 + 4 \cdot (-4) + (-1) \cdot (-2) = -14;$$

$$c_{33} = 2 \cdot (-5) + 4 \cdot 1 + (-1) \cdot 2 = -8$$

$$B \cdot A = \begin{pmatrix} 1 & 0 & -5 \\ 3 & -4 & 1 \\ 0 & -2 & 2 \end{pmatrix} \cdot \begin{pmatrix} -3 & 2 & -3 \\ 1 & 5 & -2 \\ 2 & 4 & -1 \end{pmatrix} = \begin{pmatrix} -13 & -18 & 2 \\ -11 & -10 & -2 \\ 2 & -2 & 2 \end{pmatrix}.$$

Форма предоставления результата: выполненная работа.

Критерии оценки:

- «Отлично» умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.

- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 2 Линейная алгебра Практическое занятие №4

Вычисление определителей

Цель работы: научиться вычислять определители второго и третьего порядков.

Выполнив работу, Вы будете:

уметь:

У4 производить операции над матрицами и определителями;

У7 решать системы линейных уравнений различными методами;

Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;

Уо 01.03 определять этапы решения задачи;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение: индивидуальные задания, учебники, конспекты лекций.

Задание:

Вычислить определители:

1)
$$\begin{vmatrix} -3 & 5 \\ 2 & 2 \end{vmatrix}$$
 2) $\begin{vmatrix} 3 & 3 & -5 \\ 1 & 1 & 2 \\ 2 & -1 & 7 \end{vmatrix}$ 3) $\begin{vmatrix} 10 & -2 & 1 \\ -15 & 5 & -2 \\ 3 & -2 & -1 \end{vmatrix}$ 4) $\begin{vmatrix} 3 & 5 & 7 & 8 \\ -1 & 7 & 0 & 1 \\ 0 & 5 & 3 & 2 \\ 1 & -1 & 7 & 4 \end{vmatrix}$

Краткие теоретические сведения:

Определителем квадратной матрицы второго порядка (определителем второго порядка) называется число, равное разности произведений элементов главной диагонали и элементов побочной диагонали.

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 \cdot b_2 - a_2 \cdot b_1$$

Определителем квадратной матрицы третьего порядка (определителем третьего порядка) называется число, равное

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{21} a_{32} a_{13} - a_{13} a_{22} a_{31} - a_{12} a_{21} a_{33} - a_{23} a_{32} a_{11}$$

Определителем квадратной матрицы n-го порядка называется число, равное сумме произведений элементов любой строки или столбца на их алгебраические дополнения.

12

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} + a_{14}A_{14}$$

$$A_{ij} = (-1)^{i+j} M_{ij}$$

Минором некоторого элемента a_{ij} определителя n-го порядка называется определитель (n-1)-го порядка, полученный из исходного определителя путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент.

Порядок выполнения работы:

- 1 Запишите определитель, определите какого он порядка.
- 2 Используя соответствующее определение, вычислите значение определителя.

Ход работы:

Вычислить определители:

1)
$$\begin{vmatrix} 2 & -4 \\ 3 & 6 \end{vmatrix} = 2 \cdot 6 - 3 \cdot (-4) = 12 + 12 = 24$$

2)
$$\begin{vmatrix} 5 & -2 & 1 \\ 3 & 1 & -4 \\ 6 & 0 & -3 \end{vmatrix} = 5 \cdot 1 \cdot (-3) + (-2) \cdot (-4) \cdot 6 + 3 \cdot 0 \cdot 1 -$$

$$-6 \cdot 1 \cdot 1 - 3 \cdot (-2) \cdot (-3) - 0 \cdot (-4) \cdot 5 = -15 + 48 - 6 - 18 =$$

$$=48-39=9$$

$$\begin{vmatrix} 4 & 0 & 5 \\ -6 & 2 & -7 \\ 1 & -3 & 2 \end{vmatrix} = 4 \cdot 2 \cdot 2 + 0 \cdot (-7) \cdot 1 + (-6) \cdot (-3) \cdot 5 -$$

$$-5 \cdot 2 \cdot 1 - (-6) \cdot 0 \cdot 2 - (-3) \cdot (-7) = 16 + 0 + 90 - 10 - 0 - 84 = 12$$

$$\begin{vmatrix} 3 & 5 & 7 & 8 \\ -1 & 7 & 0 & 1 \\ 0 & 5 & 3 & 2 \\ 1 & -1 & 7 & 4 \end{vmatrix} = 3A_{11} + (-1)A_{21} + 0A_{31} + 1A_{41} = 3 \cdot \begin{vmatrix} 7 & 0 & 1 \\ 5 & 3 & 2 \\ -1 & 7 & 4 \end{vmatrix} + 1 \cdot \begin{vmatrix} 5 & 7 & 8 \\ 5 & 3 & 2 \\ -1 & 7 & 4 \end{vmatrix} +$$

$$0 \cdot \begin{vmatrix} 5 & 7 & 8 \\ 7 & 0 & 1 \\ -1 & 7 & 4 \end{vmatrix} - 1 \cdot \begin{vmatrix} 5 & 7 & 8 \\ 7 & 0 & 1 \\ 5 & 3 & 2 \end{vmatrix} = 122$$

$$4)$$

Форма представления результата: выполненная работа.

Критерии оценки:

- «Отлично» умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.

— «Неудовлетворительно» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 2 Линейная алгебра Практическое занятие №5

Решение систем линейных уравнений методом Крамера.

Цель работы: научиться решать системы линейных уравнений, используя формулы Крамера.

Выполнив работу, Вы будете:

уметь:

У4 производить операции над матрицами и определителями;

У7 решать системы линейных уравнений различными методами;

Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;

Уо 01.03 определять этапы решения задачи;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение:

Индивидуальные задания, учебники, конспекты лекций.

Задание:

Решить системы линейных уравнений:

1)
$$\begin{cases} 3x - 5y = 11 \\ 2x + 3y = 20 \end{cases}$$
 2)
$$\begin{cases} 3x + 3y - 5z = -2 \\ x + y + 2z = 3 \\ 2x - y + 7z = 27 \end{cases}$$

Краткие теоретические сведения:

Пусть дана система двух линейных уравнений с двумя неизвестными: $\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$

Составим определитель из коэффициентов при неизвестных. Этот определитель называется определителем системы: $\Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$

Составим определители каждой неизвестной. Определитель Δ_1 получается из определителя Δ путем замены первого столбца коэффициентов столбцом из свободных членов. $\Delta_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}$

Определитель Δ_2 получается из определителя Δ путем замены второго столбца коэффициентов столбцом из свободных членов.

14

$$\Delta = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}$$

Пусть дана система трех линейных уравнений с тремя неизвестными: $\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$

Составим определитель из коэффициентов при неизвестных. Этот определитель называется определителем системы: $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

Составим определители каждой неизвестной. Определитель Δ_1 получается из определителя Δ путем замены первого столбца коэффициентов столбцом из свободных членов.

$$\Delta_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}.$$

Определитель Δ_2 получается из определителя Δ путем замены второго столбца коэффициентов столбцом из своболных членов.

$$\Delta_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

Определитель Δ_3 получается из определителя Δ путем замены третьего столбца коэффициентов столбцом из свободных членов.

15

$$\Delta_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}$$

Чтобы вычислить значения неизвестных, воспользуемся формулами Крамера:

$$x_1 = \frac{\Delta_1}{\Delta}$$
; $x_2 = \frac{\Delta_2}{\Delta}$; $x_3 = \frac{\Delta_3}{\Delta}$.

Порядок выполнения работы:

- 1. Запишите систему уравнений.
- 2.Запишите и вычислите определитель системы.
- 3. Вычислите определители каждой неизвестной.
- 4. Найдите значения неизвестных, используя формулы Крамера.

Ход работы:

Рассмотрим пример:

Решить систему уравнений:

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 0; \\ 2x_1 - x_2 + 4x_3 = 5; \\ 3x_1 + x_2 - x_3 = 5 \end{cases}$$

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{pmatrix}; \quad \Delta A = \begin{vmatrix} 1 & 2 & -3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{vmatrix} = 10 \neq 0$$

Вычислим определители каждой переменной:

$$\Delta_{1} = \begin{vmatrix} 0 & 2 & -3 \\ 5 & -1 & 4 \\ 5 & 1 & -1 \end{vmatrix} = 0 - 15 + 40 - 15 + 10 - 0 = 20$$

$$\Delta_{2} = \begin{vmatrix} 1 & 0 & -3 \\ 2 & 5 & 4 \\ 3 & 5 & -1 \end{vmatrix} = -5 - 30 + 0 + 45 - 0 - 20 = -10$$

$$\Delta_{3} = \begin{vmatrix} 1 & 2 & 0 \\ 2 & -1 & 5 \\ 3 & 1 & 5 \end{vmatrix} = -5 + 0 + 30 - 0 - 20 - 5 = 0$$

$$x_{1} = \frac{\Delta_{1}}{\Delta} = \frac{20}{10} = 2; \ x_{2} = \frac{\Delta_{2}}{\Delta} = \frac{-10}{10} = -1; \ x_{3} = \frac{\Delta_{3}}{\Delta} = \frac{0}{10} = 0$$

Ответ: (2;-1;0).

Форма представления результата: выполненная работа.

Критерии оценки:

- «Отлично» умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 2 Линейная алгебра Практическое занятие №6

Решение систем линейных уравнений матричным методом

Цель работы: Научиться решать системы линейных уравнений с помощью обратной матрицы.

Выполнив работу, Вы будете:

уметь:

У4 производить операции над матрицами и определителями;

У7 решать системы линейных уравнений различными методами;

Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;

Уо 01.03 определять этапы решения задачи;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение: Индивидуальные задания, учебники, конспекты лекций.

Задание:

Решить систему линейных уравнений:

1)
$$\begin{cases} 2x_1 - 3x_2 = -7 \\ 6x_1 + 2x_2 = 12 \end{cases}$$
 2)
$$\begin{cases} 2x_1 - 3x_2 + 4x_3 = 11 \\ x_1 + 2x_2 - 3x_3 = 9 \\ -3x_1 - 4x_2 + x_3 = -25 \end{cases}$$

Краткие теоретические сведения:

Пусть задана система линейных уравнений: $\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2\\ \dots\\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n \end{cases}$

Составим матричное уравнение: АХ = В, где $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}; B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix};$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

Чтобы найти неизвестную матрицу X, нужно $A^{-1} \cdot B$

Чтобы вычислить обратную матрицу, нужно:

- а) вычислить определитель матрицы A ($\Delta A \neq 0$);
- б) найти алгебраические дополнения для каждого элемента матрицы A и составить из них союзную матрицу A^* .
 - в) транспонировать матрицу A^* из алгебраических дополнений $A^{*T} = \begin{pmatrix} A_{11} \ A_{21} \ \dots A_{n1} \\ A_{12} \ A_{22} \ \dots A_{n2} \\ \dots \dots \dots \\ A_{1n} \ A_{2n} \ \dots A_{nn} \end{pmatrix}$;

г) найти обратную матрицу:
$$A^{-1}=\frac{1}{\Delta A}\begin{pmatrix} A_{11}\ A_{21}\ ...A_{n1}\\ A_{12}\ A_{22}\ ...A_{n2}\\\\ A_{1n}\ A_{2n}\ ...A_{nn} \end{pmatrix}$$

Чтобы найти неизвестную матрицу X, нужно умножить обратную матрицу A^{-1} на матрицу B, состоящую из свободных членов.

Порядок выполнения работы:

- 1. Запишите систему линейных уравнений.
- 2. Составьте матричное уравнение.
- 3. Вычислите обратную матрицу.
- 4. Найдите значения неизвестных.
- 5. Запишите ответ.

Ход работы:

Решить систему линейных уравнений:

1)
$$\begin{cases} 2x_1 - 3x_2 = -7 \\ 6x_1 + 2x_2 = 12 \end{cases}$$

$$\Delta = \begin{vmatrix} 2 & 3 \\ 3 & -5 \end{vmatrix} = -10 - 9 = -19 \neq 0 \Rightarrow$$
обратная матрица есть. $A^{-1} = -\frac{1}{12} \begin{pmatrix} -5 & -3 \\ 2 & 2 \end{pmatrix}$.

$$X = A^{-1}C = -\frac{1}{19} \begin{pmatrix} -5 & -3 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \end{pmatrix} = -\frac{1}{19} \begin{pmatrix} -20 & -18 \\ -12 & +12 \end{pmatrix} = -\frac{1}{19} \begin{pmatrix} -38 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}.$$

2)
$$\begin{cases} 2x_1 - 3x_2 + 4x_3 = 11 \\ x_1 + 2x_2 - 3x_3 = 9 \\ -3x_1 - 4x_2 + x_3 = -25 \end{cases}$$

$$\Delta = \begin{vmatrix} 2 & 3 & 1 \\ 3 & -2 & -2 \\ 8 & -1 & 5 \end{vmatrix} = 2 \begin{vmatrix} -2 & -2 \\ -1 & 5 \end{vmatrix} - 3 \begin{vmatrix} 3 & -2 \\ 8 & 5 \end{vmatrix} + \begin{vmatrix} 3 & -2 \\ 8 & -1 \end{vmatrix} = -104.$$

Вычислим алгебраические дополнения

$$A_{11} = \begin{vmatrix} -2 & -2 \\ -1 & 5 \end{vmatrix} = -12; \qquad A_{21} = -\begin{vmatrix} 3 & 1 \\ -1 & 5 \end{vmatrix} = -16;$$

$$A_{31} = \begin{vmatrix} 3 & 1 \\ -2 & -2 \end{vmatrix} = -4;$$

$$A_{12} = -\begin{vmatrix} 3 & -2 \\ 8 & 5 \end{vmatrix} = -31; \qquad A_{22} = \begin{vmatrix} 2 & 1 \\ 8 & 5 \end{vmatrix} = 2;$$

$$A_{32} = -\begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix} = 7;$$

$$A_{13} = \begin{vmatrix} 3 & -2 \\ 8 & -1 \end{vmatrix} = 13; \quad A_{23} = -\begin{vmatrix} 2 & 3 \\ 8 & -1 \end{vmatrix} = 26; \quad A_{33} = \begin{vmatrix} 2 & 3 \\ 3 & -2 \end{vmatrix} = -13.$$

Составим обратную матрицу:
$$A^{-1} = -\frac{1}{104} \begin{pmatrix} -12 & -16 & -4 \\ -31 & 2 & 7 \\ 13 & 26 & -13 \end{pmatrix}.$$

Решим матричное урави

$$X = A^{-1}C = -\frac{1}{104} \begin{pmatrix} -12 & -16 & -4 \\ -31 & 2 & 7 \\ 13 & 26 & -13 \end{pmatrix} \begin{pmatrix} 10 \\ -4 \\ -14 \end{pmatrix} = -\frac{1}{104} \begin{pmatrix} -120 + 64 + 56 \\ -310 - 8 - 98 \\ 130 - 104 + 182 \end{pmatrix} = -\frac{1}{104} \begin{pmatrix} 0 \\ -416 \\ 208 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix}.$$

Ответ: (0;4;-2).

$$\begin{cases}
0 + 12 - 2 = 10 \\
0 - 8 + 4 = -4 \\
0 - 4 - 10 = -14
\end{cases}$$
 (верно)

Форма представления результата: выполненная работа.

Критерии оценки:

- умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.

— «Неудовлетворительно» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 2 Линейная алгебра Практическое занятие №7

Решение систем линейных уравнений методом Гаусса.

Цель работы: научиться решать системы линейных уравнений методом последовательного исключения переменных (методом Гаусса).

Выполнив работу, Вы будете:

уметь:

У4 производить операции над матрицами и определителями;

У7 решать системы линейных уравнений различными методами;

Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;

Уо 01.03 определять этапы решения задачи;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение: Индивидуальные задания, учебники, конспекты лекций. **Задание:**

Решить системы линейных уравнений:

1.
$$\begin{cases} 3x - 2y + z = 10 \\ x + 5y - 2z = -15 \\ 2x - 2y - z = 3 \end{cases}$$
 2.
$$\begin{cases} x_1 + x_2 - 3x_3 + 2x_4 = 6, \\ x_2 + x_3 + 3x_4 = 16, \\ x_1 - 2x_2 - x_4 = -6, \\ 2x_1 - 3x_2 + 2x_3 = 6 \end{cases}$$

Краткие теоретические сведения:

Метод Гаусса является одним из наиболее универсальных методов решения систем линейных уравнений. Он состоит в последовательном исключении неизвестных.

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому виду. На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.

На практике удобнее работать не с системой уравнений, а с расширенной матрицей, выполняя все элементарные преобразования над ее строками.

Элементарными преобразованиями матрицы являются:

- перестановка строк местами;
- -умножение некоторой строки на любое, не равное нулю число;
- -прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на одно и то же число

Порядок выполнения работы:

- 1. Запишите систему линейных уравнений.
- 2. Составьте расширенную матрицу.
- 3. Выполните элементарные преобразования строк матрицы, исключая последовательно переменные. В результате должна получиться ступенчатая матрица.
 - 4. По ступенчатой матрице составьте систему.
 - 5. Последовательно найдите значения всех неизвестных.
 - 6. Запишите ответ.

Ход работы:

Рассмотрим пример:

1) Решить систему уравнений:

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 0; \\ 2x_1 - x_2 + 4x_3 = 5; \\ 3x_1 + x_2 - x_3 = 5 \end{cases}$$

Составим расширенную матрицу из коэффициентов при неизвестных и свободных членов:

20

$$(A|B) = \begin{pmatrix} 1 & 2 & -3 & 0 \\ 2 & -1 & 4 & 5 \\ 3 & 1 & -1 & 5 \end{pmatrix}$$

Выполним элементарные преобразования над строками матрицы:

$$\begin{pmatrix} 1 & 2 & -3 & 0 \\ 2 & -1 & 4 & 5 \\ 3 & 1 & -1 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 & 0 \\ 0 & -5 & 10 & 5 \\ 0 & -5 & 8 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 & 0 \\ 0 & 1 & -2 & -1 \\ 0 & -5 & 8 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 & 0 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & -5 & 8 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 & 0 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 & 0 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 2 & -1 \end{pmatrix}$$

Полученной матрице соответствует система уравнений:

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 0 \\ x_2 - 2x_3 = -1; \\ -2x_3 = 0 \end{cases}$$

Начиная снизу вверх, находим значения неизвестных:

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 0 \\ x_2 - 2x_3 = -1 \\ x_3 = 0 \end{cases}; \begin{cases} x_1 + 2x_2 - 3x_3 = 0 \\ x_2 = -1 \\ x_3 = 0 \end{cases}; \begin{cases} x_1 + 2 \cdot (-1) = 0 \\ x_2 = -1 \\ x_3 = 0 \end{cases};$$

$$\begin{cases} x_1 = 2 \\ x_2 = -1 \\ x_3 = 0 \end{cases}$$

Ответ: (2;-1;0).

$$2) \begin{cases} x_1 + x_2 - 3x_3 + 2x_4 = 6, \\ x_2 + x_3 + 3x_4 = 16, \\ x_1 - 2x_2 - x_4 = -6, \\ 2x_1 - 3x_2 + 2x_3 = 6 \end{cases}$$

$$\begin{pmatrix} 1 & 1 - 3 & 2 & 6 \\ 0 & 1 & 1 & 3 & 16 \\ 1 - 2 & 0 - 1 - 6 \\ 2 & - 3 & 2 & 0 & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & - 3 & 2 & 6 \\ 0 & 1 & 1 & 3 & 16 \\ 0 & 3 - 3 & 3 & 12 \\ 0 & - 5 & 8 - 4 - 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 - 3 & 2 & 6 \\ 0 & 1 & 1 & 3 & 16 \\ 0 & 0 - 5 & 8 - 4 - 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 - 3 & 2 & 6 \\ 0 & 1 & 1 & 3 & 16 \\ 0 & 0 & 1 & 1 & 3 & 16 \\ 0 & 0 & 1 & 1 & 3 & 16 \\ 0 & 0 & 1 & 1 & 6 \\ 0 & 0 & 1 & 1 & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 - 3 & 2 & 6 \\ 0 & 1 & 1 & 3 & 16 \\ 0 & 0 & 1 & 1 & 6 \\ 0 & 0 & 1 & 1 & 6 \\ 0 & 0 & 1 & 1 & 6 \\ 0 & 0 & 0 & -2 - 4 \end{pmatrix}$$
$$\begin{pmatrix} x_1 + x_2 - 3x_3 + 2x_4 = 6, \\ x_2 + x_3 + 3x_4 = 16, \\ x_3 + x_4 = 6, \\ -2x_4 = -4 \end{pmatrix}$$

Начиная снизу вверх, находим значения неизвестных:

$$\begin{cases} x_1 = 8 \\ x_2 = 6 \\ x_3 = 4 \\ x_4 = 2 \end{cases}$$

Ответ: (8;6;4;2).

Форма представления результата: выполненная работа.

Критерии оценки:

- «Отлично» умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 3 Производная функции и ее применение Практическое занятие № 8

Дифференцирование сложных функций

Цель: Научиться находить производные сложных функций.

Выполнив работу, Вы будете:

уметь:

У1 анализировать сложные функции и строить их графики;

У6 решать прикладные задачи с использованием элементов дифференциального и интегрального исчислений;

Уо 01.02	анализировать задачу и/или проблему и выделять её составные части;
Уо 01.03	определять этапы решения задачи;

Уо 02.01 определять задачи для поиска информации;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение: индивидуальные задания, конспекты лекций, таблица производных.

Задание:

Найти производные функций

1.
$$y = (5x^3 - 2x)^6$$

2.
$$f(x) = 3\sin(2x - \frac{\pi}{4})$$

3.
$$f(x) = arcsin4x + arccos^2x$$

4.
$$f(x) = log_5(7x^4 - 5x^3 + 1)$$

$$f(x) = ln \sqrt{\frac{1 + \cos x}{1 - \cos x}}$$

Порядок выполнения работы:

- 1. Определите вид функции. Если функция является сложной, то введите промежуточный аргумент.
- 2. Определите, какими правилами дифференцирования нужно воспользоваться. Примените соответствующее правило.
- 3. Используя таблицу производных, найдите производные функций.
- 4. Раскройте скобки и приведите подобные, если это упростит запись функции.

Ход работы:

Найти производные функций:

1.
$$g(x) = (1 - 4x^2)^{10}$$

Функция является сложной степенной. Введем промежуточный аргумент $u = 1 - 4x^2$. Для дифференцирования нужно воспользоваться формулой $(u^n)' = nu^{n-1} \cdot u'$

$$y' = 10(1 - 4x^2)^9 \cdot (1 - 4x^2)' = 10(1 - 4x^2)^9(-8x) = -80x(1 - 4x^2)^9$$

$$2. \quad f(x) = \sin\frac{1}{2}x \cdot \cos 2x$$

Функция представляет собой произведение двух сложных тригонометрических функций. Поэтому сначала воспользуемся правилом дифференцирования $(U \cdot V)' = U'V + UV'$

$$f'(x) = (\sin \frac{1}{2}x \cdot \cos 2x)' = (\sin \frac{1}{2}x)' \cos 2x + \sin \frac{1}{2}x(\cos 2x)'$$

Введем промежуточный аргумент: для первой функции $u = \frac{1}{2}x$, для второй функции u = 2x.

При дифференцировании используем следующие формулы: $(\sin u)' = \cos u \cdot u', (\cos u)' = -\sin u u'.$

22

$$\begin{split} f'(x) &= (\sin\frac{1}{2}x \cdot \cos 2x)^{'} = (\sin\frac{1}{2}x)^{'} \cos 2x + \sin\frac{1}{2}x (\cos 2x)^{'} \\ &= \cos\frac{1}{2}x \cdot \left(\frac{1}{2}x\right)^{'} \cdot \cos 2x + \sin\frac{1}{2}x \cdot (-\sin 2x) \cdot (2x)^{'} = \frac{1}{2}\cos\frac{1}{2}x \cdot \cos 2x - 2\sin\frac{1}{2}x \cdot \sin 2x. \end{split}$$

3.
$$y = \frac{2^{3x+5x^2}}{\log_2(3+10x)}$$

Функция представляет собой частное двух сложных функций. Поэтому сначала воспользуемся правилом дифференцирования $\left(\frac{v}{v}\right)' = \frac{v'v - vv'}{v^2}$

$$y' = \frac{(2^{3x+5x^2})' \cdot \log_2(3+10x) - 2^{3x+5x^2} \cdot (\log_2(3+10x))'}{(\log_2(3+10x))^2}$$

Введем промежуточный аргумент: для первой функции $u = 3x + 5x^2$, для второй функции u = 3 + 10x.

При дифференцировании используем следующие формулы: $(a^u)' = a^u lna \cdot u'$, $(\log_a u)' = \frac{1}{ulna} \cdot u'$.

$$y' = \frac{(2^{3x+5x^2})' \cdot \log_2{(3+10x)} - 2^{3x+5x^2} \cdot (\log_2{(3+10x)})'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x) \ln 2}(3+10x)'}{(\log_2{(3+10x)})^2} = \frac{2^{3x+5x^2} \ln 2 \left(3x+5x^2\right)' \log_2{(3+10x)} - 2^{3x+5x^2} \frac{1}{(3+10x)} \log_2{(3+10x)} + 2^{3x+5x^2} \frac{1}{(3+10x)} \log_$$

$$4. f(x) = \arcsin\frac{3}{5}x + \arccos 5x$$

Функция представляет собой сумму двух сложных обратных тригонометрических функций. Поэтому сначала воспользуемся правилом дифференцирования (U+V)'=U'+V'.

$$f'(x) = \left(\arcsin\frac{3}{5}x\right)' + (\arccos 5x)'$$

Введем промежуточный аргумент: для первой функции $u = \frac{3}{5}x$, для второй функции u = 5x.

При дифференцировании используем следующие формулы: $(arcsinu)' = \frac{u'}{\sqrt{1-u^2}}$; $(arccosu)' = -\frac{u'}{\sqrt{1-u^2}}$

$$f'(x) = \left(\arcsin\frac{3}{5}x\right)' + \left(\arccos5x\right)' = \frac{1}{\sqrt{1-\left(\frac{3}{5}x\right)^2}} \left(\frac{3}{5}x\right)' - \frac{1}{\sqrt{1-(5x)^2}} \left(5x\right)' = \frac{3}{5\sqrt{1-\frac{9}{25x^2}}} - \frac{5}{\sqrt{1-25x^2}}$$

$$5. f(x) = \arccos \sqrt{1 - e^{2x}}$$

Функция является сложной обратной тригонометрической. Введем промежуточный аргумент $u = \sqrt{1-e^{2x}}$. Для дифференцирования нужно воспользоваться формулой $(arccosu)' = -\frac{u'}{\sqrt{1-u^2}}$.

$$f'(x) = \left(arccos\sqrt{1-e^{2x}}\right)' = -\frac{1}{\sqrt{1-(1-e^{2x})}} \cdot \left(\sqrt{1-e^{2x}}\right)'.$$

Промежуточный аргумент является также сложной функцией. Введем и для него новый промежуточный аргумент $u = 1 - e^{2x}$.

Для дифференцирования нужно воспользоваться формулой

$$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$$

$$f'(x) = \left(arccos\sqrt{1 - e^{2x}}\right)' = -\frac{1}{\sqrt{1 - (1 - e^{2x})}} \cdot \left(\sqrt{1 - e^{2x}}\right)' = -\frac{1}{\sqrt{1 - 1 + e^{2x}}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 - e^{2x}\right)' = -\frac{1}{e^{x}} \cdot \frac{1}{2\sqrt{1 - e^{2x}}} \cdot \left(1 -$$

Форма представления результата: выполненная работа.

Критерии оценки:

- «Отлично» умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 3 Производная функции и ее применение Практическое занятие № 9

Исследование функций на монотонность, экстремумы, выпуклость - вогнутость, перегиб.

Цель работы: Научиться применять производную для исследования функции.

Выполнив работу, Вы будете:

уметь:

У1 анализировать сложные функции и строить их графики;

У6 решать прикладные задачи с использованием элементов дифференциального и интегрального исчислений;

Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;

Уо 01.03 определять этапы решения задачи;

Уо 02.01 определять задачи для поиска информации;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение: Индивидуальные задания, таблица производных, конспекты лекций, учебники.

Задание:

1. Исследуйте функцию на монотонность:

$$f(x) = x^5 - x^3 - 2x$$

- **2.** Найдите экстремумы функции: $f(x) = x^4 4x^3$
- **3.** Исследуйте функцию на монотонность и экстремумы: $f(x) = 3x^5 25x^3 + 60x$
- 4. Найдите промежутки выпуклости функции:

$$f(x) = x^4 - 10x^3 + 36x^2 + 100$$

Краткие теоретические сведения:

Алгоритм нахождения экстремумов функции и интервалов ее монотонности с помощью первой производной

- 1. Найти область определения функции и интервалы, на которых функция непрерывна.
- 2. Найти производную функции f'(x).
- 3. Найти критические точки функции y = f(x), т.е. точки, принадлежащие области определения функции, в которых производная f'(x) обращается в нуль или не существует.
- 4. Исследовать характер изменения функции f(x) и знак производной f'(x) в промежутках, на которые найденные критические точки делят область определения функции y = f(x).
- 5. Относительно каждой критической точки определить, является ли она точкой максимума, минимума или не является точкой экстремума.

Помни: критическая точка x_0 есть точка минимума, если она отделяет промежуток, в котором f'(x) < 0, от промежутка, в котором f'(x) > 0, и точка максимума - в противном случае. Если же в соседних промежутках, разделенных критической точкой x_0 , знак производной не меняется, то в точке x_0 функция экстремума не имеет.

- 6. Вычислить значения функции в точках экстремума.
- 7. Записать результат исследования функции: промежутки монотонности и экстремумы.

Алгоритм нахождения выпуклостей функции и точек перегиба:

- 1. Находим вторую производную.
- 2. Находим точки, в которых f''(x) = 0 или не существует.
- 3. Исследуем знак второй производной слева и справа от найденных точек и делаем вывод об интервалах выпуклости и о наличии точек перегиба.
- 4. Находим значение функции в точках перегиба.

Порядок выполнения работы:

- 1) Запишите функцию.
- 2) Определите, каким алгоритмом нужно воспользоваться для выполнения задания.
- 3) Примените соответствующий алгоритм.
- 4) Запишите ответ.

Форма представления результата: выполненная работа. Критерии оценки:

- «Отлично» умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 3 Производная функции и ее применение Практическое занятие № 10

Решение прикладных задач с помощью производной

Цель: Научиться решать прикладные задачи с применением дифференциального исчисления.

Выполнив работу, Вы будете:

уметь:

- У1 анализировать сложные функции и строить их графики;
- У6 решать прикладные задачи с использованием элементов дифференциального и интегрального исчислений;
 - Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;
 - Уо 01.03 определять этапы решения задачи;
 - Уо 02.01 определять задачи для поиска информации;
- Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение:

Раздаточный материал (карточки с заданиями), таблицы производных.

Задание:

- 1. Точка движется по закону $x(t) = 2t^3 3t$. Чему равна скорость в момент времени t = 1?
- 2. Уравнение движения материальной точки вдоль оси имеет вид $s(t) = -0, 5t^3 + t + 2$ (м). Найти ускорение a(t) точки в момент времени t = 2 с.
- 3. Закон изменения температуры T тела в зависимости от времени t задан уравнением $T=0.2t^2$. C какой скоростью нагревается тело в момент времени 10 c?
- 4. Маховик, задерживаемый тормозом, за tc поворачивается на угол $\varphi = 5t 0.4t^2$ (рад). Определить угловую скорость ω маховика в момент времени t=2 c и найти момент остановки вращения.
- 5. Определить силу давления воды на стенку шлюза, длина которого 20 м, а высота 5 м (считая шлюз доверху заполненным водой).
- 6. В воду опущена прямоугольная пластинка, расположенная вертикально. Ее горизонтальная сторона равна 1 м, вертикальная 2 м. Верхняя сторона находится на глубине 0,5 м. Определить силу давления воды на пластинку.

Краткие теоретические сведения:

Путь, пройденный телом

Пусть задан путь s=f(t) движения материальной точки. Скорость данной материальной точки в момент времени t есть производная от пути s по времени t: v(t)=s'(t).

Вторая производная — скорость изменения первой производной, т.е. *ускорение* изменения исходной функции: a = s''(t) = v'(t).

Если твердое тело вращается вокруг оси, то угол поворота $^{\varphi}$ есть функция от времени t. Угловая скорость вращения в данный момент t численно равна производной $^{\omega} = \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t}$.

Определение силы давления жидкости на вертикально расположенную пластинку.

Из физики известно, что сила P давления жидкости на горизонтально расположенную площадку S, глубина погружения которой равна h, определяется по формуле $^{P=9,81\gamma hS}$ (4), где $^{\gamma}$ – плотность жидкости.

Для вычисления силы давления жидкости на вертикально расположенную пластинку произвольной формы, если ее верхний край погружен на глубину $^{\alpha}$, а нижний – на глубину b, выведена следующая формула:

$$P = 9.81 \gamma \int_a^b xy \ dx$$
, где xy — площадь полосы.

Если верхний край пластинки совпадает с поверхностью жидкости, то a=0 и формула примет вид $P=9.81\gamma\int_0^b xy\;dx$.

Порядок выполнения работы:

- 1. Прочитать задачу и определить способ ее решения.
- 2. Применить формулу дифференциального исчисления для решения задачи.
- 3. Записать ответ.

Ход работы:

1. Задание. Тело движется прямолинейно по закону $s(t) = \frac{2}{3}t^3 - 2t^2 + 4t$ (м). Определить скорость его движения в момент t = 10 с.

Решение. Искомая скорость - это производная от пути, то есть

$$v(t) = s'(t) = \left(\frac{2}{3}t^3 - 2t^2 + 4t\right)' = \left(\frac{2}{3}t^3\right)' - (2t^2)' + (4t)' =$$

$$= \frac{2}{3}(t^3)' - 2(t^2)' + 4(t)' = \frac{2}{3} \cdot 3t^2 - 2 \cdot 2t + 4 \cdot 1 = 2t^2 - 4t + 4$$

В заданный момент времени

$$v(10) = 2 \cdot 10^2 - 4 \cdot 10 + 4 = 200 - 40 + 4 = 164 \,(\text{m/c}).$$

Other. $v(10) = 164 \, (\text{M/c})$.

2. Закон изменения температуры T тела в зависимости от времени t задан уравнением $T=0.2t^2$. C какой скоростью нагревается тело в момент времени 10 c?

Скорость нагревания тела есть производная температуры T по времени t: $\frac{d\tau}{dt} = (0.2t^2)^r = 0.4t$

Скорость нагревания тела при t =10 c:

$$\left(\frac{d\tau}{dt}\right)_{t=10} = 0.4 \cdot 10 = 4$$
 (град/с).

3. Маховик за время поворачивается на угол $\varphi = 8t - 0.5t^2$. Определить угловую скорость ω в конце 3-й секунды. Найти момент, когда прекратится вращение.

Имеем $\varphi' = 8 - t$. Так как $\omega = (8 - t)$ рад/с, то при t = 3 получим $\omega = 5$ (рад/с). Вращение прекратится в момент, когда $\omega = 8 - t = 0$, т.е. при t = 8 с.

4. Определить силу давления воды на стенку шлюза, длина которого 20 м, а высота 5 м (считая шлюз доверху заполненным водой).

Здесь
$$y = f(x) = 20$$
, $a = 0$, $b = 5$ м, $\gamma = 1000$ кг/м³.

Находим

$$P = 9810 \int_{0}^{5} 20x \, dx = 9810 * 20 \frac{x^{2}}{2} \Big|_{0}^{5} = 9810 * 10 * 25 = 2,45 * 10^{6} \, (H).$$

5. В воду опущена прямоугольная пластинка, расположенная вертикально. Ее горизонтальная сторона равна 1 м, вертикальная 2 м. Верхняя сторона находится на глубине 0,5 м. Определить силу давления воды на пластинку.

Решение:

Здесь
$$y = 1$$
, $a = 0.5$, $b = 2 + 0.5 = 2.5$ (м), $\gamma = 1000$ кг/м³. Следовательно,

$$P = 9810 \int_{a}^{b} xy \ dx = 9810 \int_{a}^{b} x \ dx = 9810 \frac{x^{2}}{2} \Big|_{0,5}^{2,5} = 9810 \frac{2,5^{2} - 0,5^{2}}{2} = 29430 \ (H).$$

Форма представления результата: выполненная работа.

Критерии оценки:

- «Отлично» умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 4 Интеграл и его приложения Практическое занятие № 11

Вычисление неопределенных интегралов

Цель работы: Научиться интегрировать функции, используя различные методы интегрирования.

Выполнив работу, Вы будете:

уметь:

У1 анализировать сложные функции и строить их графики;

У6 решать прикладные задачи с использованием элементов дифференциального и интегрального исчислений;

Уо 01.02 анализировать задачу и/или проблему и выделять её составные	части;
--	--------

Уо 01.03 определять этапы решения задачи;

Уо 02.01 определять задачи для поиска информации;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение:

Индивидуальные задания, таблица интегралов, конспекты лекций, учебники.

Задание:

Найдите неопределенные интегралы:

1)
$$\int (8x^4 - 6x^2 + 2x - 3) dx$$

2)
$$\int \frac{3x^4 + 2x^2 - 3x + 7}{x^2} dx$$

3)
$$\int \cos(10x-5) dx$$

4)
$$\int 3^{4x^2} x dx$$

5)
$$\int \frac{5dx}{25+16x^2}$$

6)
$$\int \frac{x^2 dx}{(1-2x^3)^2}$$

7)
$$\int \frac{2x^4 - 4x^2 - 3x - 1}{\sqrt[3]{x}} \, dx$$

8)
$$\int (x^2 + 5x + 7) \cdot lnxdx;$$

9)
$$\int e^{2x} \cos 3x dx$$
;

$$10) \int (x^2 + 4x + 3)e^{2x} dx.$$

Порядок выполнения работы:

1. Записать задание и определить, каким из методов интегрирования необходимо воспользоваться.

- 2. Если интеграл можно найти методом непосредственного интегрирования, то, используя свойства интегралов, приведите интеграл к табличным формулам. Проинтегрируйте.
- 3. Если интеграл можно найти методом подстановки, то введите новую переменную, найдите ее дифференциал. После введения новой переменной заданный интеграл приводится к новому интегралу, который является табличным. Найдите полученный интеграл. В случае неопределенного интеграла вернитесь к старой переменной.
- 4. Если интеграл нельзя найти вышеуказанными способами, то примените формулу интегрирования по частям $\int U dV = UV \int V dU$. Этот метод заключается в том, что подынтегральное выражение представляется каким-либо образом в виде произведения двух сомножителей U и dV. Затем, после нахождения dU и V, используйте формулу интегрирования по частям.

-Интегралы вида $\int P(x)e^{kx}dx$, $\int P(x)sinkxdx$, $\int P(x)coskxdx$, где P(x)- многочлен, k- число.

Удобно положить U = P(x), а все остальные множители принять за dV.

-Интегралы вида $\int P(x) arcsinx dx$, $\int P(x) arccosx dx$, $\int P(x) lnx dx$, $\int P(x) arctgx dx$ $\int P(x) arcctgx dx$.

Удобно положить P(x)dx = dV, а остальные множители принять за U.

- Интегралы вида $\int e^{ax} \sinh x dx$, $\int e^{ax} \cosh x dx$, где a и b числа. За U можно принять функцию $U = e^{ax}$.

Ход работы: Найти интегралы:

1)
$$\int \frac{6x^4 - 5x^2 + 3x + 4}{x^2} dx$$

Чтобы найти этот интеграл, нужно сначала привести подынтегральное выражение к табличному виду. Для этого применяем почленное деление:

$$\int \frac{6x^4 - 5x^2 + 3x + 4}{x^2} dx$$

$$= \int \left(\frac{6x^4}{x^2} - \frac{5x^2}{x^2} + \frac{3x}{x^2} + \frac{4}{x^2}\right) dx$$

$$= \int \left(6x^2 - 5 + \frac{3}{x} + 4x^{-2}\right) dx$$

$$= 6 \int x^2 dx - 5 \int dx$$

$$+ 3 \int \frac{dx}{x} + 4 \int x^{-2} dx = \frac{6x^3}{3} - 5x + 3\ln|x| + \frac{4x^{-1}}{-1} + C = 2x^3 - 5x + 3\ln|x| - \frac{4}{x} + C$$

2)
$$\int \frac{15x^2 dx}{(1-x^3)^4}$$

Этот интеграл можно найти с помощью метода подстановки. Введем новую переменную.

$$\int \frac{15x^2 dx}{\left(1 - x^3\right)^4} = \begin{bmatrix} 1 - x^3 = t \\ d(1 - x^3) = dt \\ -3x^2 dx = dt \\ x^2 dx = -\frac{dt}{3} \end{bmatrix} = \int \frac{15dt}{-3t^4} = -5 \int t^{-4} dt = -5\frac{t^{-3}}{-3} + C = \frac{5}{3t^3} + C = \frac{5}{3(1 - x^3)^3} + C$$

3)
$$\int (x^3 - 4x) \ln x \cdot dx$$

Этот интеграл можно найти с помощью метода интегрирования по частям, он относится ко второму виду, поэтому U = lnx, $dV = (x^2 - 4x)dx$.

$$dU = \frac{1}{x}dx$$
, $V = \int (x^3 - 4x)dx = \frac{x^4}{4} - 2x^2$

Используя формулу интегрирования по частям, получаем

$$\int (x^3 - 4x) \ln x \cdot dx = \ln x \left(\frac{x^4}{4} - 2x^2\right) - \int \left(\frac{x^4}{4} - 2x^2\right) \frac{1}{x} dx =$$

$$\ln x \left(\frac{x^4}{4} - 2x^2\right) - \int \left(\frac{x^3}{4} - 2x\right) dx = \ln x \left(\frac{x^4}{4} - 2x^2\right) - \frac{x^4}{16} + x^2 + C$$
4)
$$\int (x^2 - 2x) \cos 4x dx$$

Этот интеграл можно найти с помощью метода интегрирования по частям, он относится к первому виду, поэтому $U = x^2 - 2x$, dV = cos4xdx.

$$dU=(2x-2)dx, \qquad V=\int cos4xdx=\frac{1}{4}sin4x$$

$$\int (x^2 - 2x) \cos 4x \, dx = \left(x^2 - 2x\right) \frac{1}{4} \sin 4x - \int \frac{1}{4} \sin 4x (2x - 2) \, dx =$$

$$\left(x^2 - 2x\right) \frac{1}{4} \sin 4x - \frac{1}{4} \int \sin 4x (2x - 2) \, dx = \frac{1}{4} \left(x^2 - 2x\right) \sin 4x - \frac{1}{2} \int \sin 4x (x - 1) \, dx =$$

Чтобы найти оставшийся интеграл, снова применяем формулу интегрирования по частям.

$$U = x - 1$$
, $dV = \sin 4x dx$.

$$\begin{split} dU &= dx, \qquad V = \int \sin 4x dx = -\frac{1}{4} \cos 4x \\ &= \frac{1}{4} (x^2 - 2x) \sin 4x - \frac{1}{2} ((x - 1) \left(-\frac{1}{4} \cos 4x \right) - \int -\frac{1}{4} \cos 4x dx = \\ &\frac{1}{4} (x^2 - 2x) \sin 4x - \frac{1}{2} ((x - 1) \left(-\frac{1}{4} \cos 4x \right) + \frac{1}{4} \int \cos 4x dx = \\ &= \frac{1}{4} (x^2 - 2x) \sin 4x + \frac{1}{8} ((x - 1) (\cos 4x) - \frac{1}{8} \int \cos 4x dx = \\ &\frac{1}{4} (x^2 - 2x) \sin 4x + \frac{1}{8} ((x - 1) (\cos 4x) - \frac{1}{32} \sin 4x + C \end{split}$$

Форма предоставления результата: выполненная работа

Критерии оценки:

– «Отлично» - умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.

- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, заданий выполнено, некоторые из выполненных заданий содержат ошибки. большинство Безошибочно выполнено 70-79 % всех заданий.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 4 Интеграл и его приложения Практическое занятие № 12

Вычисление определенных интегралов

Цель работы: Научиться находить определенные интегралы, используя различные методы интегрирования.

Выполнив работу, Вы будете:

уметь:

У1 анализировать сложные функции и строить их графики;

У6 решать прикладные задачи с использованием элементов дифференциального и интегрального исчислений;

Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;

Уо 01.03 определять этапы решения задачи;

Уо 02.01 определять задачи для поиска информации;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение:

Индивидуальные задания, таблица интегралов, конспекты лекций, учебники.

Задание:

Вычислите определенные интегралы:

$$1. \int_{-2}^{3} (4x^3 + 3x^2 + 2x + 1) dx$$

1.
$$\int_{1}^{4} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$$

2.
$$\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{dx}{3\sqrt{1-x^2}}$$
3.
$$\int_{-2}^{5} \frac{dx}{\sqrt[3]{(x+3)^2}}$$

3.
$$\int_{-2}^{5} \frac{dx}{\sqrt[3]{(x+3)^2}}$$

4.
$$\int_0^{\frac{\pi}{6}} e^{\sin x} \cos x dx$$

$$5. \int_{\frac{\pi}{3}}^{\pi} \frac{dx}{\sin^2 \frac{x}{3}}$$

Порядок выполнения работы:

1. Записать задание и определить, каким из методов интегрирования необходимо воспользоваться.

- 2. Если интеграл можно найти методом непосредственного интегрирования, то, используя свойства интегралов, привести интеграл к табличным формулам. Проинтегрировать. Вычислить значение определенного интеграла по формуле Ньютона-Лейбница.
- 3. Если интеграл можно найти методом подстановки, то ввести новую переменную, найти ее дифференциал. После введения новой переменной заданный интеграл приводится к новому интегралу, который является табличным. Если интеграл определенный, то необходимо вычислить новые пределы интегрирования. Найти полученный интеграл.

Ход работы:

1)
$$\int_{-1}^{3} (4x^3 - 3x^2 + 2x + 5) dx$$

$$\int_{-1}^{3} (4x^{3} - 3x^{2} + 2x + 5) dx = 4 \int_{-1}^{3} x^{3} dx - 3 \int_{-1}^{3} x^{2} dx + 2 \int_{-1}^{3} x dx + 5 \int_{-1}^{3} dx = x^{4} - x^{3} + x^{2} + 5x|_{-1}^{3} = 2$$

$$\int_{0}^{0.4} \frac{5dx}{4+25x^{2}}$$

Этот интеграл можно найти с помощью метода подстановки. Введем новую переменную.

$$\int_{0}^{0,4} \frac{5dx}{4+25x^{2}} = \frac{5}{4} \int_{0}^{0,4} \frac{dx}{1+\frac{25}{4}x^{2}} = \frac{5}{4} \int_{0}^{0,4} \frac{dx}{1+\left(\frac{5}{2}x\right)^{2}} = \begin{bmatrix} \frac{\frac{5}{2}x = t}{\frac{5}{2}dx = dt} \\ \frac{\frac{5}{2}dx = dt}{dx = \frac{2}{5}dt} \\ x_{H} = 0 & t_{H} = 0 \\ x_{B} = 0,4 & t_{B} = 1 \end{bmatrix} = \frac{\frac{5}{2}x = t}{\frac{5}{2}dx = dt}$$

$$= \frac{5}{4} \cdot \frac{2}{5} \int_{0}^{1} \frac{dt}{1+t^{2}} = \frac{1}{2} \operatorname{arctg} t |_{0}^{1} = \frac{1}{2} (\operatorname{arctg} 1 - \operatorname{arctg} 0) = \frac{1}{2} \cdot \frac{\pi}{4} = \frac{\pi}{8}.$$

3)
$$\int_0^{\frac{\pi}{3}} \frac{\sin x dx}{\cos^4 x}$$

Этот интеграл можно найти с помощью метода подстановки. Введем новую переменную.

$$\int_{0}^{\frac{\pi}{3}} \frac{\sin x dx}{\cos^{3} x} = \begin{bmatrix} \cos x = t \\ d\cos x = dt \\ -\sin x dx = dt \\ \sin x dx = -dt \\ x_{H} = 0 \ t_{H} = \cos 0 = 1 \\ x_{B} = \frac{\pi}{3} \ t_{B} = \cos \frac{\pi}{3} = \frac{1}{2} \end{bmatrix} = \int_{1}^{0,5} \frac{-dt}{t^{3}} = -\frac{t^{-2}}{-2} \Big|_{1}^{0,5} = \frac{1}{2t^{2}} \Big|_{1}^{0,5} = \frac{1}{2 \cdot 0.25} - \frac{1}{2} = 2 - 0.5 = 1.5$$

Форма представления результата: выполненная работа

Критерии оценки:

- «Отлично» умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.

— «Неудовлетворительно» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 4 Интеграл и его приложения Практическое занятие № 13

Применение определенного интеграла

Цель работы: научиться применять интегрирование для решения задач геометрии.

Выполнив работу, Вы будете:

уметь:

У1 анализировать сложные функции и строить их графики;

УЗ вычислять значения геометрических величин;

У6 решать прикладные задачи с использованием элементов дифференциального и интегрального исчислений;

Уо 01.02	анализировать задачу	и/или проблему	и выделять её составные части;
----------	----------------------	----------------	--------------------------------

Уо 01.03 определять этапы решения задачи;

Уо 02.01 определять задачи для поиска информации;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение:

Индивидуальные задания, таблица интегралов, конспекты лекций, учебники.

Задание:

Найти площади плоских фигур, ограниченных линиями:

a)
$$y = x^2 + 1$$
, $y = 0$, $x = 1$, $x = 4$;

6)
$$y = \ln x, y = 0, x = 1, x = e$$
;

B)
$$y^2 = x^3; x = 4$$
.

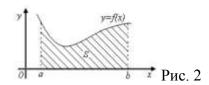
Краткие теоретические сведения:

Геометрический смысл определенного интеграла

Пусть функция y = f(x) непрерывна на отрезке [a;b] и принимает на этом отрезке неотрицательные значения, т.е. f(x) > 0 при $x \in [a;b]$. Фигура, образованная линиями x = a, x = b, y = 0, y = f(x), называется криволинейной трапецией (рис. 1). Определенный интеграл от неотрицательной функции имеет простой геометрический смысл: это площадь криволинейной трапеции.

Площади плоских фигур

1. Если функция f(x) неотрицательна на отрезке [a;b], то площадь S под кривой y = f(x) на [a;b] (рис. 2) численно равна определенному интегралу от f(x) на данном отрезке: $S = \int_a^b f(x) dx$ (геометрический смысл определенного интеграла).



2. Если функция f(x) — неположительная на отрезке [a;b], то площадь S под кривой y=f(x) на [a;b] (рис. 3) равна определенному интегралу от f(x) на [a;b], взятому со знаком «минус»: $S=-\int\limits_{-b}^{b}f(x)dx$.

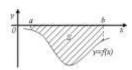


Рис. 3

3. Если функция $f_2(x) \ge f_1(x)$ на отрезке [a;b], то площадь S фигуры, заключенной между кривыми $y = f_2(x)$ и $y = f_1(x)$ на [a;b] (рис. 4) определяется формулой $S = \int_{-\infty}^{b} (f_2(x) - f_1(x)) dx$.

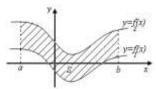


Рис 4

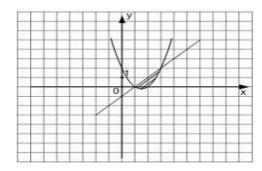
Порядок выполнения работы:

- 1. Изобразите фигуру на координатной плоскости;
- 2. Определите, является ли фигура криволинейной трапецией.
- 3. Вычислите площадь фигуры.

Ход работы:

Найти площадь фигуры, ограниченной графиками функций $y = x^2 - 3x + 2$ и y = x - 1. Найдем пределы интегрирования - точки пересечения графиков функций, для этого

приравняем правые части исходных функций и решим получившееся уравнение $x^2 - 3x + 2 = x - 1$. Корнями этого уравнения являются числа x = 1 и x = 3, следовательно, они и являются пределами интегрирования.



Значит, площадь фигуры равна:

$$S = \int_{1}^{3} (x-1)dx - \int_{1}^{3} (x^2 - 3x + 2)dx = \frac{x^2}{2} - x - (\frac{x^3}{3} - \frac{3x^2}{2} + 2x) = 4,5 - 3 - 0,5 + 1 - (\frac{27}{3} - 3 \cdot 4,5 + 6 - \frac{1}{3} + 1,5 - 2) = 1\frac{1}{3}$$
 (кв. ед.)

Форма представления результата: выполненная работа.

Критерии оценки:

- «Отлично» умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 5 Элементы теории вероятностей Практическое занятие №14

Решение комбинаторных задач

Цель работы: Научиться отличать сочетания от размещений, применять формулы для вычисления всех выборок без повторений.

Выполнив работу, Вы будете:

уметь:

У5 решать задачи на вычисление вероятности с использованием элементов комбинаторики;

Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;

Уо 01.03 определять этапы решения задачи;

Уо 02.01 определять задачи для поиска информации;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение:

Индивидуальные задания, справочные материалы, конспекты лекций.

Задание:

- 1. В соревнованиях участвует 10 человек, трое из них займут 1-е, 2-е и 3-е место. Сколько существует различных вариантов?
- 2. Из группы, в которой учится 12 человек, необходимо выбрать 3 человека в совет колледжа. Сколько существует различных способов такого выбора.
- 3. На книжной полке выставлены 8 книг различных авторов. Сколько способов имеется для расстановки этих книг в разном порядке?

Порядок выполнения работы

- 1. Определите вид выборки без повторения.
- 2. Выберете соответствующую формулу для вычисления возможных комбинаций.
- 3. Произведите вычисления, используя понятие факториала.

Ход работы:

1. Кодовый замок открывается последовательным набором четырёх разных цифр. Требуется определить число возможных кодов, которые можно подобрать для этого замка.

Решение.

Возможных цифр всего десять(1,2,3,4,5,6,7,8,9,0). Каждая набранная комбинация кода отличается от другой комбинации хотя бы одной цифрой $(1,4,5,7 \neq 2,4,5,7)$, либо порядком набора одинаковых цифр $(1,4,5,7 \neq 4,5,7,1)$,поэтому для подсчёта числа возможных комбинаций кодов используем формулу числа размещений.

2. Формула размещений имеет вид: $A_n^m = \frac{n!}{(n-m)!}$. В нашем случае n=4, m=10. Производим расчёт $A_{1D}^4 = \frac{10!}{(1D-4)!} = \frac{10!}{6!} = \frac{10!}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 10 \cdot 9 \cdot 8 \cdot 7 = 5040$

Производим расчёт
$$A_{10}^4 = \frac{10!}{(10-4)!} = \frac{10!}{6!} = \frac{10!}{6!54 \cdot 3 \cdot 2 \cdot 1} = 10 \cdot 9 \cdot 8 \cdot 7 = 5040$$

3.Сколько существует способов выбора трёх человек из десяти? Решение.

В данном случае при выборе для нас важен только состав по три человека, порядок выбора роли не играет, поэтому в отличие от первого примера число способов подсчитаем по формуле сочетаний.

Формула сочетаний имеет вид $6C_n^m = \frac{n!}{m!(n-m)!}$. В нашем случае n=10, m=3. Производим расчёт: $C_{10}^3 = \frac{10!}{3!(10-3)!} = \frac{10!}{3!7!} = \frac{7! \cdot 3 \cdot 9 \cdot 10}{3 \cdot 2 \cdot 1 \cdot 7!} = 120$.

Производим расчёт:
$$C_{1D}^3 = \frac{1D!}{2!(1D-2)!} = \frac{1D!}{2!(1D-2)!} = \frac{1D!}{2!(1D-2)!} = \frac{7! \cdot 9 \cdot 9 \cdot 1D}{2!(1D-2)!} = 120.$$

4.Сколько различных четырёхзначных чисел можно составить из цифр1,2,3.4 9 цифры не повторяются)?

Решение.

По условию дано множество из четырёх элементов, которые требуется расположить в порядке. Значит, требуется найти количество перестановок их четырёх определённом элементов.

Формула перестановок из п –элементов имеет вид: $P_n = n!$ В нашем случае n = 4.

Произведём расчёт: P₄ =4!=4·3·2·1=24.

Форма представления результата: выполненное задание

Критерии оценки:

Оценка "отлично" ставится, если работа выполнена в полном объёме с соблюдением необходимой последовательности действий; в ответе правильно и аккуратно выполнены все записи и вычисления.

Оценка "хорошо" ставится, если выполнены требования к оценке "отлично", но допущены 2-3 недочета.

Оценка "удовлетворительно" ставится, если работа выполнена не полностью, но объём выполненной части таков, что позволяет получить правильные результаты и выводы; в ходе проведения работы были допущены ошибки.

Оценка "неудовлетворительно" ставится, если работа выполнена не полностью или объём выполненной части работы не позволяет сделать правильных выводов.

Тема 5 Элементы теории вероятностей Практическое занятие №15

Решение задач на вычисление вероятности с использованием элементов комбинаторики

Цель работы: Научиться находить вероятность событий, используя формулы комбинаторики.

Выполнив работу, Вы будете:

уметь:

X 7 /	решать задачи на вычисление в		
V 5	namati aanamii na di miiachama da d	ΑΝΟ ΕΙΙΛΟΤΙΙΑ Ο ΙΙΟΠΛΠΙΟΛΟΡΟΙΙΙΙΑ	M AREMEUTAD KAMAMUTATANIKU.
33	исшать задачи на вычисисние вс	сиолипости с использованис	м элементов комоннаторики.

Уо 01.02	OHOHHAHAAAAAT AAT	тону и/ини проблама	и придодити об осоти	DILLIO HOOTH.
YO UT UZ	анализировать зал	тачу и/или проблему	и вылелять ее соста	авные части

Уо 01.03 определять этапы решения задачи;

Уо 02.01 определять задачи для поиска информации;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение: Индивидуальные задания, конспекты лекций.

Задание:

- **1.** Готовясь к докладу, студент выписал из книги цитату, но, забыв номер страницы, на которой она находилась, написал номер наудачу. Какова вероятность того, что студент записал нужный номер, если он помнит, что номер выражается двузначным числом?
- **2.** В ящике 15 деталей, среди которых 10 окрашены. Сборщик наудачу выбрал 3 детали. Какова вероятность того, что выбранные детали оказались окрашенными?
- **3.** Имеется 8 карточек. Одна сторона каждой из них чистая, а на другой написаны буквы :К,И,Р,Д, А,Н,З,П. Карточки кладут на стол чистой стороной вверх, перемешивают, а затем последовательно одну за другой переворачивают. Какова вероятность того, при последовательном появлении букв будет составлен слово ПРАЗДНИК?
 - 4. Цепь состоит из независимых блоков, соединенных в систему с одним входом и одним выходом.

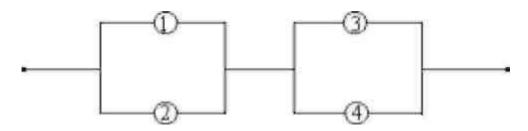


рис. 1

Выход из строя за время Т различных элементов цепи — независимые события, имеющие следующие вероятности: $q_1 = 0,1$; $q_2 = 0,2$; $q_3 = 0,3$; $q_4 = 0,4$. Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Найти надежность системы/

Краткие теоретические сведения:

Вероятностью события А называется отношение числа телучаев, благоприятствующих его появлению, к общему числу всех несовместных равновозможных и образующих полную группу событий.

Такое определение вероятности называют классическим. Вероятность события обозначается P(A) и вычисляется по формуле: $P(A) = \frac{m}{n}$.

Вероятность появления события заключена в пределах

от 0 до 1:
$$0 \le P(A) \le 1$$

При решении задач на вычисление вероятности применяются формулы для подсчета числа комбинаций из данных элементов:

- число перестановок вычисляется по формуле: $P_n = n!$

- число размещений из п элементов по т элементов в каждом вычисляется по формуле:

$$A_n^m = \frac{n!}{(n-m)!}$$

- число сочетаний из п элементов по т элементов в каждом вычисляется по формуле:

$$C_n^m = \frac{n!}{(n-m)! \cdot m!}$$

Надежность каждого элемента системы электроснабжения можно характеризовать вероятностью рабочего состояния p и вероятностью отказа q. Если не учитывать плановые простои (ремонты), то можно считать, что элементы в любой момент времени находятся в одном из этих состояний. Тогда сумма вероятностей этих состояний равна 1: p + q = 1.

Для группы из двух элементов возможны следующие сочетания:

- 1. оба элемента в рабочем состоянии;
- 2. первый элемент в вынужденном простое, второй в рабочем состоянии;
- 3. первый элемент в рабочем состоянии, второй в вынужденном простое;
- 4. оба элемента в вынужденном простое.

Вероятности этих состояний можно найти, воспользовавшись теоремой умножения вероятностей. Так при **последовательном соединении двух элементов** с надежностью каждого p_1 и p_2 надежность всей схемы определяется как $P = p_1 \cdot p_2$

Другими словами схема работает, если работают оба элемента. При отказе одного (любого) из них схема работать не будет (ток через цепь не пойдет).

Вероятность отказа для последовательного соединения

$$P = 1 - q_1 q_2$$
 (для двух элементов).

$$P = 1 - q_1 q_2 \cdot ... q_n$$
 (для n –элементов).

При параллельном соединении двух элементов с надежностью каждого p_1 и p_2 надежность всей схемы определяется как $P = p_1.p_2 + p_1 \cdot q_2 + p_2 q_1$

Пользуясь формулой для вероятности появления хотя бы одного события, надежность схемы параллельного соединения записывают в виде $P = 1 - q_1 q_2$.

Другими словами схема работает, если работают оба элемента, но также она работает, если выйдет из строя и какой либо один из элементов.

Порядок выполнения работы:

- 1. Определите событие А, вероятность которого нужно вычислить.
- 2. Просчитайте общее число (n) возможных исходов.
- 3. Просчитайте число исходов (m), благоприятствующих наступлению события А.
- 4. Используйте формулу для вычисления вероятности определённого события. $P(A) = \frac{m}{n}$.

Ход работы:

1. Набирая номер телефона, абонент забыл последние 3 цифры и набрал их наудачу, помня . что они различны. Найдите вероятность того, что набраны нужные цифры.

Решение:

Событие А- «номер набран верно».

Число п-общее число исходов испытания получим, воспользовавшись формулами комбинаторики. Всего имеется 10 цифр, т.е. число элементов равно 10; в каждое соединение входит по 3 цифры; порядок цифр (элементов) существенен при наборе номера, значит, нужно найти число размещений из 10 элементов по 3 по формуле:

$$A_{10}^3 = \frac{10!}{(10-3)!} = \frac{10!}{7!} = \frac{7! \cdot 8 \cdot 9 \cdot 10}{7!} = 720$$
. Итак, n=720

Число m=1, т.к. только один набор из трёх цифр является нужным. Значит,

$$P(A) = \frac{m}{n} = \frac{1}{720}$$

2.Из урны, в которой находятся 12 белых и 8 чёрных шаров, вынимают наудачу два шара. Какова вероятность того, что оба шара окажутся чёрными?

Решение:

Событие А- «оба шара окажутся чёрными».

Число п-общее число исходов испытания получим, воспользовавшись формулами комбинаторики. Общее число возможных случаев п равно числу сочетаний из 20 элементов (12+8) по два: $n = C_{20}^2 = \frac{20!}{2!(20-2)!} = \frac{20!}{2!(20-2)!} = \frac{20!}{1!2!18!} = 190$.

Число случаев m, благоприятствующих событию A, равно числу сочетаний из 8 элементов (8 черных шаров) по два: $n = C_8^2 = \frac{8!}{2!(8-2)!} = \frac{8!}{2!\cdot 6!} = \frac{8\cdot 7\cdot 6!}{1\cdot 2\cdot 16!} = 28$

$$P(A) = \frac{m}{n} = \frac{28}{190} \approx 0.147$$

3.На пяти карточках разрезной азбуки написаны буквы А,3,К,О,М. Карточки перемешиваются и наугад раскладываются в ряд. Какова вероятность того. Что получится слово ЗАМОК?

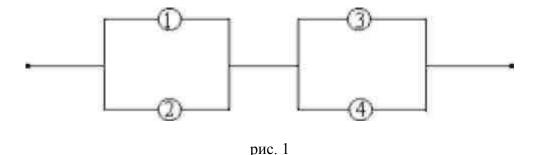
Решение: Событие А- «получится слово ЗАМОК».

Число n-общее число исходов испытания получим, воспользовавшись формулами комбинаторики. Общее число возможных случаев n равно числу перестановок из 5 элементов (букв): $n=P_5=5 + 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$.

Число случаев т, благоприятствующих событию A, равно 1, т.к. требуется составить слово с буквами, расставленными в определённом порядке. А эти буквы различны.

$$P(A) = \frac{m}{n} = \frac{1}{120}$$

4. Цепь состоит из независимых блоков, соединенных в систему с одним входом и одним выходом.



Выход из строя за время Т различных элементов цепи — независимые события, имеющие следующие вероятности: $q_1 = 0,1$; $q_2 = 0,2$; $q_3 = 0,3$; $q_4 = 0,4$. Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Найти надежность системы.

Решение:

Событие А – система надежна.

Событие А_і – і-й блок работает безотказно.

Элементы 1 и 2 соединены параллельно, и элементы 3 и 4 соединены параллельно, а между собой они соединены последовательно, тогда используя формулы, получим

$$P(A)=(1-q_1q_2)\cdot(1-q_3q_4)=(1-0,1\cdot0,2)\cdot(1-0,3\cdot0,4)=(1-0,02)\cdot(1-0,12)=0,98\cdot0,88=0,8624$$

Форма представления результата: выполненная работа.

Критерии оценки:

- «Отлично» умения сформированы, все задания выполнены правильно, без арифметических ошибок, решение оформлено аккуратно, с необходимыми обоснованиями.
- «Хорошо» некоторые умения сформированы недостаточно, все задания выполнены, некоторые виды заданий выполнены с ошибками. Безошибочно выполнено 80-89 % всех заданий.
- «Удовлетворительно» необходимые умения в основном сформированы, большинство заданий выполнено, некоторые из выполненных заданий содержат ошибки. Безошибочно выполнено 70-79 % всех заданий.
- «Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки. Безошибочно выполнено менее 70% всех заданий.

Тема 5 Элементы теории вероятностей Практическое занятие №16

Выборка. Числовые характеристики выборки. Генеральная совокупность и выборочная совокупность. Определение статистических распределений

Цель работы: Рассмотреть отдельные примеры, характерные для выборочного метода.

Выполнив работу, Вы будете:

уметь:

У5 решать задачи на вычисление вероятности с использованием элементов комбинаторики;

Уо 01.02 анализировать задачу и/или проблему и выделять её составные части;

Уо 01.03 определять этапы решения задачи;

Уо 02.01 определять задачи для поиска информации;

Уо 02.06 оформлять результаты поиска, применять средства информационных технологий для решения профессиональных задач.

Материальное обеспечение: Индивидуальные задания, конспекты лекций.

Задание:

1. Построить полигоны частот и относительных частот по распределению выборки:

x_i	2	4	7	8	9	12 .
n_i	p_1^2	$2p_{2}$	p_2	p_2^2	p_3	$3p_3$

2. Постройте гистограммы частот и относительных частот по распределению выборки:

№ Интервал,	Сумма частот вариант интервала,	
интервала	$x_i - x_{i+1}$	n_i

1	3 – 5	p_1
2	5 - 7	$2p_{2}$
3	7 – 9	$3p_3$
4	9 – 11	p_1^2
5	11 – 13	$2p_2^2$
6	13 – 15	$3p_3^2$
7	15 – 17	$p_1 + p_2$

3. Для генеральной совокупности, заданной распределением:

Найдите генеральную среднюю, генеральную дисперсию, генеральное стандартное отклонение, моду, медиану и размах.

4. Из генеральной совокупности сделана выборка, заданная распределением:

Найти выборочную среднюю выборочные дисперсию и стандартное отклонение. Обратите внимание: p_1 = числу букв в Вашем имени; p_2 = числу букв в Вашей фамилии; p_3 = числу букв в имени Вашего отца.

Порядок выполнения работы:

- 1 Прочитав условие предложенной задачи, по конспекту лекции найдите соответствующие формулы.
- 2. Примените лекционный теоретический материал для решения каждой задачи.
- 3 В случае необходимости представить геометрическую интерпретацию числовых характеристик. выборки.

Ход работы:

1. Задано распределение частот выборки:

Составить распределение относительных частот.

Определим сначала объем выборки:

$$n = 3 + 10 + 7 + 5 = 25$$
.

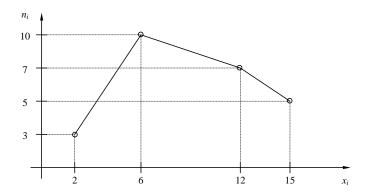
Найдем относительные частоты по формуле $w_i = \frac{n_i}{n}$:

$$w_1 = \frac{3}{25} = 0.12$$
; $w_2 = \frac{10}{25} = 0.40$; $w_3 = \frac{7}{25} = 0.28$; $w_4 = \frac{5}{25} = 0.20$.

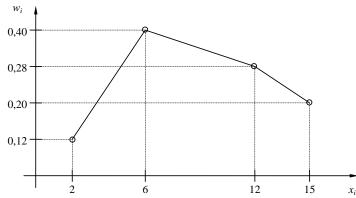
Следовательно,

Контроль: 0,12+0,40+0,28+0,20=1.

2. По результатам примера 1 построить полигоны частот и относительных частот. Решение. Отобразив на плоскости точки с координатами (x_i, n_i) и соединив их отрезками, получим полигон частот:



Аналогично построим полигон по точкам (x_i, w_i) :



3. Постройте гистограмму по следующему статистическому распределению:

№ интервала	Интервал длиной <i>h</i> =5	Сумма частот вариант n_i
1	5 – 10	4
2	10 - 15	6
3	15 - 20	16
4	20 - 25	36
5	25 - 30	24
6	30 - 35	10
7	35 - 40	4

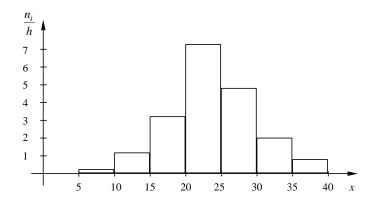
Решение. Прежде всего, определим объем выборки:

$$n = 4 + 6 + 16 + 36 + 24 + 10 + 4 = 100$$
.

По известным суммам частот вариант рассчитаем плотность частоты по интервалам:

№ интервала	Плотность частоты $\frac{n_i}{h}$	№ интервала	Плотность частоты $\frac{n_i}{h}$
1	0,2	5	4,8
2	1,2	6	2,0
3	3,2	7	0,8

Изобразим полученный результат:



4. Найдите статистические оценки генеральной совокупности, заданной следующим вариационным рядом:

варианта x_i	2	4	5	6
частота N_i	8	9	10	3

Решение. Определим объем совокупности:

$$N_{\Gamma} = 8 + 9 + 10 + 3 = 30.$$

Найдем генеральную среднюю:

$$\overline{X}_{\Gamma} = \frac{8 \cdot 2 + 9 \cdot 4 + 10 \cdot 5 + 3 \cdot 6}{30} = 4$$

Для вычисления генеральной дисперсии используем формулу $D_{\Gamma} = \overline{X_{\Gamma}^2} - (\overline{X}_{\Gamma})^2$. Определим среднюю квадратов:

$$\overline{X_{\Gamma}^{2}} = \frac{8 \cdot 2^{2} + 9 \cdot 4^{2} + 10 \cdot 5^{2} + 3 \cdot 6^{2}}{30} = 17.8 \cdot$$

Таким образом, $D_{\Gamma} = 17.8 - 4^2 = 1.8$.

Генеральное стандартное отклонение: $\sigma_{\Gamma} = \sqrt{D_{\Gamma}} = \sqrt{1.8} \cong 1.34$.

Обычно полученных результатов достаточно для практических задач. Однако можно получить дополнительные характеристики для более тонкой оценки генеральной совокупности. Приведем их:

Мода Мо: наибольшая частота

$$Mo = 10$$

Медиана Ме: вариационный ряд делится пополам в точке

$$Me = 4.5$$
.

Размах вариации R: в примере

$$x_{\text{max}} = 6; x_{\text{min}} = 2$$
,
$$\Pi O \Im T O M \mathbf{y}$$

$$R = 6 - 2 = 4$$
.

5. Из генеральной совокупности извлечена выборка

x_i	1	2	3	4	5	
n_i	92	94	103	105	106	-

Найдите статистические характеристики выборки.

Решение. Определим объем выборки:

$$n = 92 + 94 + 103 + 105 + 106 = 500$$
.

Выборочная средняя:

$$\overline{X}_B = \frac{92 \cdot 1 + 94 \cdot 2 + 103 \cdot 3 + 105 \cdot 4 + 106 \cdot 5}{500} = 1,82$$
.

Определим среднюю квадратов:

$$\overline{X_B^2} = \frac{92 \cdot 1^2 + 94 \cdot 2^2 + 103 \cdot 3^2 + 105 \cdot 4^2 + 106 \cdot 5^2}{500} = 11,45 \cdot$$

Выборочная дисперсия:

$$D_B = \overline{X_B^2} - (\overline{X}_B)^2 = 11,45 - 1,82^2 \cong 8,14.$$

Выборочное стандартное отклонение:

$$\sigma_B = \sqrt{8,14} \cong 2,85$$
.

Форма представления результата: выполненная работа.

Критерии оценки:

Оценка "отлично" ставится, если работа выполнена в полном объёме с соблюдением необходимой последовательности действий; в ответе правильно и аккуратно выполнены все записи и вычисления.

Оценка "хорошо" ставится, если выполнены требования к оценке "отлично", но допущены 2-3 недочета.

Оценка "удовлетворительно" ставится, если работа выполнена не полностью, но объём выполненной части таков, что позволяет получить правильные результаты и выводы; в ходе проведения работы были допущены ошибки.

Оценка "неудовлетворительно" ставится, если работа выполнена не полностью или объём выполненной части работы не позволяет сделать правильных выводов