ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Г.И. НОСОВА»

На правах рукописи

Fynt

Буланов Михаил Викторович

ОБЕСПЕЧЕНИЕ ЭЛЕКТРОМАГНИТНОЙ СОВМЕСТИМОСТИ МОЩНЫХ ЭЛЕКТРОПРИВОДОВ С АКТИВНЫМИ ВЫПРЯМИТЕЛЯМИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ ПРИ НАЛИЧИИ РЕЗОНАНСНЫХ ЯВЛЕНИЙ

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата технических наук

Специальность 05.09.03 – Электротехнические комплексы и системы

Научный руководитель: кандидат технических наук, доцент Николаев Александр Аркадьевич

Магнитогорск - 2022

оглавление

ВВЕДЕНИЕ	•••••			•••••	5
ГЛАВА	1.	АНАЛИЗ	СОСТОЯН	ИЯ	СОВРЕМЕННЫХ
АВТОМАТИЗ	ИРОВАН	ных элег	КТРОПРИВОД	OB I	ІРОМЫШЛЕННЫХ
МЕХАНИЗМО	ЭВ НА БА	ЗЕ ПЧ-АВ		•••••	
1.1. Анализ сул	ществуюц	цих силовых сх	ем мощных П	I-AB	
1.2. Описание	обобщённ	юй системы уп	равления АВ	•••••	
1.3. Анализ али	горитмов	ШИМ в систем	ах управления	AB	
1.4. Особеннос	ти постро	ения систем эл	ектроснабжени	я и распр	еделительных сетей
средних напря	жений кру	упных промыш	ленных заводо	в и мини	-заводов25
1.5. Анализ п	араметро	в кабельных	линий цеховы	х распре	еделительных сетей
металлургичес	ких предг	гриятий и их в л	ияние на резон	ансные я	ивления28
1.6. Анализ	сущест	вующих спо	особов обесп	іечения	электромагнитной
совместимости	а электроп	риводов с ПЧ-	АВ в сетях с ре	зонансні	ыми явлениями 31
1.7. Выводы по	о главе 1			•••••	
ГЛАВА 2.	РЕЗУЛЬ	ГАТЫ ЭКСГ	ІЕРИМЕНТАЛ	ЬНЫХ	ИССЛЕДОВАНИЙ
КАЧЕСТВА	ЭЛЕКТРО	ЭЭНЕРГИИ	в система	Х ВНУ	ТРИЗАВОДСКОГО
ЭЛЕКТРОСНА	ЪЖЕНИЯ	Я С МОЩНЫІ 	МИ ЭП НА БА	ЗЕ ПЧ-А	АВ ПРИ НАЛИЧИИ
РЕЗОНАНСНІ	ЫХ ЯВЛЕ	НИИ		•••••	
2.1. Результать	ы эксперия то	ментальных ис	следований кач	ества нап	пряжения сети 10 кВ
раиона 1111	1-2 при	различных	режимах актрогиобжани	работы и ЦорМИ	электроприводов
четырехклетье	вогостана	а и режимах эл	сктроснаожени		
2.2 Экспериме	- нтапьные	исспелования	UACTOTHEN XAD	актеристі	ик сети 10 кВ района
ГПП-2 ЧерМК	СПАО «Се	версталь» при	различных реж	кимах эле	ектроснабжения 57
2.3. Анализ вл	ияния ист	пользуемых ал	горитмов ШИ	м пч-аі	- В ASC6000 главных
электропривод	цов четыре	ехклетьевого ст	гана ЧерМК ПА	АО «Севе	рсталь» 60
2.4. Выводы по	о главе 2		-		

			3		
ГЛАВА	3.	РАЗРАБОТКА	ИМИТ	АЦИОННО	й модели
ЭЛЕКТРОТЕ	ХНИЧЕСЬ	КОГО	КОМПЛЕ	KCA	«СИСТЕМА
ВНУТРИЗАВ	зодского	ЭЛЕКТРО	СНАБЖЕНИЯ	∏ − В	ЕКТРОПРИВОДЫ
ΠΡΟΚΑΤΗΟΙ	TO CTAHA	АСПЧ-АВ»	•••••	••••••	
3.1. Разработи	ка имитаци	ионной модели	распределите	льной сети	10кВ района ГПП-
2 ЧерМК ПА	О «Северс	галь»		••••••	
3.2. Разработ	ка имитаци	ионной модели	ПЧ-АВ АСЅб	5000 главны	х электроприводов
четырехклеть	евого стан	а ППП ХП Чер	МК ПАО «Се	версталь»	
3.3. Проверка	а адекватн	ости комплекс	ной имитаци	онной моде	ли при различных
режимах рабо	эты электр	опривода и раз	ных режимов	электросна	5жения 89
3.4. Выводы і	по главе 3.		•••••	••••••••••••	
ГЛАВА 4.	РАЗРАБО	ТКА МЕТОД	ИКИ ОПРЕД	ІЕЛЕНИЯ	ОПТИМАЛЬНЫХ
ПАРАМЕТРО	ЭВ ШИМ	ПЧ-АВ С	для адапт	ГАЦИИ К	РЕЗОНАНСНЫМ
ЯВЛЕНИЯМ	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	
4.1. Разработ	ка способа	выявления рез	онансов во вн	нутризаводс	ких сетях среднего
напряжения з	за счет спе	циальных тесто	вых воздейст	вий со сторо	оны ПЧ-АВ 98
4.2. Разработ	ка методик	ки определения	параметров а	лгоритмов	ШИМ на базе SHE
PWM и SHM	PWM с ад	аптацией к резе	онансным явл	ениям	
4.3. Выводы і	по главе 4.				
ГЛАВА 5. ИС	ССЛЕДОВ.	АНИЕ ЭФФЕК	ТИВНОСТИ	методикі	И ОПРЕДЕЛЕНИЯ
ОПТИМАЛЬ	НЫХ ПА	APAMETPOB	ШИМ ПЧ-	AB HA ,	ДЕЙСТВУЮЩЕМ
ОБОРУДОВА	аниии Э	ЛЕКТРОПРИВ	ОДОВ СТАН	іа холод	НОЙ ПРОКАТКИ
ППП ХП Чер	МК ПАО «	«СЕВЕРСТАЛІ	o »	•••••••••••••••••	
5.1. Реализаг	ция новых	параметров	ШИМ ПЧ-АН	3 ACS6000	для адаптации к
резонансным	явлениям	в сети 10 кВ	•••••	•••••••••••••••••	
5.2. Экспера	иментальн	ый анализ і	показателей	качества	электроэнергии в
распределите	льной сети	и 10 кВ района I	ГПП 2 при исг	юльзовании	новых параметров
ШИМ ПЧ-АВ	3 ACS6000			••••••••••••••••	

5.3. Анализ технического эффекта от применения новых параме	тров ШИМ ПЧ-АВ
ACS6000	
5.4. Выводы по главе 5	
ЗАКЛЮЧЕНИЕ	
СПИСОК ЛИТЕРАТУРЫ	
ПРИЛОЖЕНИЕ 1	
ПРИЛОЖЕНИЕ 2	
ПРИЛОЖЕНИЕ 3	
ПРИЛОЖЕНИЕ 4	
ПРИЛОЖЕНИЕ 5	
ПРИЛОЖЕНИЕ 6	

введение

За последние десятилетие на крупных промышленных предприятиях образовался новый класс технических систем, включающих три главных компонента: питающую сеть, многоуровневый преобразователь частоты (ПЧ) с активным выпрямителем напряжения (AB) и регулируемый электропривод переменного тока большой мощности. Они являются примером использования области научно-технических достижений В последних электротехники И электроники, обладающих рядом существенных преимуществ, с точки зрения эффективности преобразования и потребления электрической энергии, а именно: 1) возможность рекуперации энергии в питающую сеть в тормозных режимах электропривода; 2) возможность поддержания единичного коэффициента мощности в точке подключения активного выпрямителя к питающей сети; 3) улучшение гармонического состава потребляемого тока в диапазоне низких и средних частот за счет применения модифицированных алгоритмов широтно-импульсной модуляции (ШИМ) с удалением или подавлением выделенных гармоник. Однако, опыт эксплуатации данных силовых преобразователей ПЧ-АВ выявил некоторые недостатки, из которых наиболее существенным является высокая вероятность сильного ухудшения качества напряжения во внутризаводской распределительной электрической сети 6-35 кВ из-за наложения высокочастотных гармоник входного напряжения и тока АВ на резонансные области частотной характеристики питающей сети.

Как показали проведенные исследования, на многих металлургических предприятиях России и зарубежья имеют место серьезные проблемы с надежностью функционирования систем автоматизированного электропривода на базе ПЧ-АВ, а также проблемы с обеспечением электромагнитной совместимости (ЭМС) ПЧ-АВ с внутризаводской сетью 6-35 кВ. Так, например, на ряде металлургических предприятиях России, например, на АО «Металлургический Завод Балаково» г. Балаково, Саратовская область, Череповецкий металлургический комбинат ПАО

«Северсталь», г. Череповец, Вологодская область и др., из-за сильных искажений напряжения в распределительной сети 10 кВ наблюдались проблемы с функционирование электрооборудования, а также выходы из строя преобразователей частоты, функционирующих параллельно мощным источникам гармоник высокого порядка – ПЧ-АВ в составе главных электроприводов прокатных станов.

Проблема ухудшения качества гармонического состава напряжения во внутризаводской сети 6-35 кВ при использовании мощных ПЧ-АВ заключается в том, что при определенной конфигурации распределительной сети, содержащей протяженные кабельные линии, эквивалентная емкость кабелей 6-35 кВ, взаимодействуя индуктивностями трансформаторов с сетевых главной понизительной подстанции (ГПП) 110-220 кВ / 6-35 кВ, создает в частотной характеристике сети резонансы токов, осуществляющие значительный подъем импеданса сети в определенном частотном диапазоне. В свою очередь, высшие гармоники тока среднего и высокого частотного диапазонов, потребляемые ПЧ-АВ, могут попадать в данные резонансные области, что приводит к усилению высших гармоник напряжения с аналогичными номерами на секциях 6-35 кВ ГПП, являющихся точкой общего присоединения внутризаводских электроприемников. Необходимо отметить, что создание «грязной» «чистой» секций И В распределительных устройствах (РУ) 6-35 кВ ГПП с выведением мощных нелинейных нагрузок на отдельное питание от «грязной» секции не всегда представляется возможным из-за ограничений в существующей конфигурации РУ среднего напряжения ГПП.

В настоящее время проблема электромагнитной совместимости мощных электроприводов на базе ПЧ-АВ с внутризаводскими сетями 6-35 кВ до конца не решена. Основные производители силовой преобразовательной техники для улучшения качества напряжения в системах внутризаводского электроснабжения с мощными ПЧ-АВ применяют следующие технические решения: 1) использование модифицированных алгоритмов ШИМ для активных выпрямителей с удалением или ослаблением выделенных гармоник (алгоритмы Selective Harmonic Elimination PWM

и Selective Harmonic Mitigation PWM); 2) использование встроенных в ПЧ-АВ L-C-L фильтров, устанавливаемых на входе активного выпрямителя; 3) использование классических узкополосных и широкополосных фильтров высших гармоник, настроенных на удаление гармоник определенного ряда; 4) использование специальных схем электроснабжения, предусматривающих выделение «грязной» секции в РУ-6-35 кВ ГПП предприятия для индивидуального питания электроприводов на базе ПЧ-АВ. Также могут использоваться организационные мероприятия по применению автономных источников питания, функционирующих в режиме раздельной работы с сетью.

Несмотря на большое количество научных трудов в области повышения эффективности современных ПЧ-АВ, проблема обеспечения электромагнитной совместимости силовых преобразователей данного типа раскрыта не полностью. Разрабатываемые модифицированные алгоритмы ШИМ в тандеме с применяемыми классическими фильтрокомпенсирующим устройствами часто не обеспечивают достижение необходимого технического эффекта по поддержанию заданного качества напряжения в системах внутризаводского электроснабжения из-за наличия сложных резонансных явлений частотных характеристиках сети 6-35 кВ. Результаты теоретических и экспериментальных исследований эффективности работы мощных электроприводов на базе ПЧ-АВ в условиях действующего производства, а не в идеальных лабораторных условиях, при наличии резонансных явлений в питающей сети в научной литературе отражены крайне слабо. На основании вышеизложенного можно сделать вывод, что в настоящее время существует комплексная проблема обеспечения электромагнитной совместимости мощных электроприводов промышленных механизмов на базе ПЧ-АВ с питающей сетью среднего напряжения 6-35 кВ, а также обеспечения надежности работы данных электроприводов при возмущениях со стороны внешней питающей сети, одним из решений которой может стать разработка новой методики определения параметров ШИМ АВ для адаптации к резонансным явлениям во внутризаводской сети.

<u>Степень разработанности.</u> Исследования применения алгоритмов ШИМ АВ, влияние работы АВ на питающую сеть, а также проблема возникновения резонансных

явлений в сетях промышленных предприятий отражены в трудах отечественных и зарубежных ученых: А.А. Николаев, Г.П. Корнилов, А.С. Маклаков, М.А. Дыбко, С.В. Брованов, Г.С. Зиновьев, Р.Т. Шрейнер, J. Rodriguez, H. Abu-Rub, I.L. Jose, B. W., D.G. Holmes, J. Holtz, B. Wu, Dehong Xu, Yangfan Zhang и других.

<u>Объектом исследования</u> является электротехнический комплекс «система электроснабжения промышленного предприятия – мощные электроприводы производственных механизмов на базе ПЧ АВ.

<u>Предметом исследования</u> является система управления активными выпрямителями в составе ПЧ-АВ мощных электроприводов производственных механизмов.

<u>Целью диссертационной работы</u> является улучшение электромагнитной совместимости промышленных электроприводов большой мощности на базе ПЧ-АВ с распределительной сетью среднего напряжения 6-35 кВ системы внутризаводского электроснабжения за счет применения усовершенствованной методики определения оптимальных параметров ШИМ АВ с учетом резонансных явлений в питающей сети.

<u>Для достижения данной цели были поставлены следующие задачи:</u>

1. Экспериментальные исследования режимов работы электроприводов большой мощности с ПЧ-АВ на действующих промышленных предприятиях. Экспериментальные и теоретические исследования существующих алгоритмов ШИМ, применяемых для активных выпрямителей ПЧ-АВ. Экспериментальные исследования качества электроэнергии во внутризаводских электрических сетях с мощными электроприводами на базе ПЧ-АВ.

2. Разработка имитационных моделей системы внутризаводского электроснабжения и электроприводов с ПЧ-АВ для исследования качества напряжения на общих секциях заводской подстанции 6-35 кВ при наличии резонансных явлений в частотной характеристике сети 6-35 кВ.

3. Разработка способа выявления резонансов во внутризаводской сети 6-35 кВ промышленного предприятия за счет сформирования специальных тестовых воздействий со стороны ПЧ-АВ, функционирующих в данной сети, обеспечивающего повышение точности определения резонансной области в частотной характеристике.

4. Разработка усовершенствованной методики определения оптимальных параметров алгоритма ШИМ АВ с учетом резонансных явлений в питающей сети среднего напряжения 6-35 кВ. Главным критерием разрабатываемой методики является минимизация высших гармоник тока АВ, попадающих на резонансную область в частотной характеристике питающей сети. Этим достигается улучшение гармонического состава напряжения на общих секциях главной понизительной подстанции предприятия, от которой получают питание различные группы электроприемников, в том числе, чувствительные к ухудшению качества электроэнергии.

5. Экспериментальное исследование эффективности предложенного способа обеспечения электромагнитной совместимости ПЧ-АВ с питающей сетью с использованием алгоритмов ШИМ с оптимальными параметрами на действующем оборудовании стана холодной прокатки ППП ХП ЧерМК ПАО «Северсталь».

Решение поставленных задач выполнялось на базе главных электроприводов четырехклетьевого стана холодной прокатки ППП ХП ЧерМК ПАО «Северсталь». Содержание диссертационной работы соответствует решению поставленных задач и изложено следующим образом:

<u>В первой главе</u> проведен анализ современных автоматизированных электроприводов промышленных механизмов на базе ПЧ-АВ. Рассмотрены существующие схемы силовой части мощных ПЧ-АВ. Проведен анализ алгоритмов ШИМ, применяемых в активных выпрямителях, дано описание системы управления ПЧ-АВ. Дана оценка эффективности существующих способов обеспечения электромагнитной совместимости ПЧ-АВ с питающей сетью.

<u>Во второй главе</u> приведены результаты экспериментальных исследований качества электроэнергии в системе внутризаводского электроснабжения 10 кВ района ГПП-2 ППП ХП ЧерМК ПАО «Северсталь» при различных режимах работы и электроснабжения электроприводов четырехклетьевого стана холодной прокатки. Проведен анализ резонансных явлений сети 10 кВ, а также исследовано влияние работы ПЧ-АВ ASC6000 главных приводов четырехклетьевого стана на качество электроэнергии в точке общего подключения электроприемников.

<u>В третьей главе</u> представлено описание разработанной имитационной модели электротехнического комплекса «Система внутризаводского электроснабжения электроприводы прокатного стана с ПЧ-АВ». В рамках комплексной имитационной модели разработаны модель распределительной сети 10 кВ района ГПП-2 ЧерМК ПАО «Северсталь» и модель ПЧ-АВ ASC6000 главных электроприводов четырехклетьевого стана ППП ХП. Проведена проверка адекватности комплексной имитационной модели при различных режимах работы и электроснабжения электроприводов. Определены алгоритмы широтно-импульсной модуляции, применяемые в ACS6000.

<u>В четвёртой главе</u> с помощью разработанной имитационной модели «Система внутризаводского электроснабжения – электроприводы прокатного стана с ПЧ-АВ» были определены оптимальные параметры ШИМ для адаптации к резонансным явлениям в питающей сети. Оптимальные параметры ШИМ определялись для известных алгоритмов SHE и SHM, благодаря которым из спектра гармоник потребляемого тока удаляются либо подавляются конкретные гармоники, перекликающиеся с экстремумами в частотной характеристике питающей сети. Для определения экстремумов в частотной характеристике разработан способ выявления резонансных явлений во внутризаводских сетях среднего напряжения за счёт специальных тестовых воздействий со стороны ПЧ-АВ.

<u>В пятой главе</u> приведена оценка эффективности разработанной методики определения параметров ШИМ АВ на действующем оборудовании электроприводов стана холодной прокатки ППП ХП ЧерМК ПАО «Северсталь». Описана реализация новых параметров ШИМ для адаптации к резонансным явлениям в виде новых таблиц углов переключения вентилей АВ. Проведен экспериментальный анализ показателей качества электроэнергии в распределительной сети 10 кВ района ГПП-2 при использовании новых параметров ШИМ. Проведен анализ технического эффекта от применения новых параметров ШИМ ПЧ-АВ АСЅ6000.

<u>В заключении</u> приводятся основные выводы по совокупности результатов, достигнутых в ходе выполнения диссертационной работы.

<u>Научная новизна.</u> В процессе решения поставленных задач получены следующие новые научные результаты:

1. Получены новые результаты экспериментальных исследований, доказывающие негативное влияние резонансных явлений на качество напряжения в системах внутризаводского электроснабжения с мощными электроприводами на базе ПЧ-АВ.

2. Разработана усовершенствованная методика определения оптимальных параметров алгоритма ШИМ АВ, отличающаяся от известных возможностью создания таблиц углов переключения вентилей АВ для адаптации к резонансам в частотной характеристике сети 35 кВ.

3. Разработан способ выявления резонансов во внутризаводской сети 6-35 кВ отличающийся от известных тем, что в основе его лежит использование специализированных тестовых воздействий со стороны мощных ПЧ-АВ на питающую сеть.

4. Разработана новая имитационная модель системы внутризаводского электроснабжения и электроприводов с ПЧ-АВ, отличающаяся от известных возможностью исследования резонансных явлений в сети и влияния работы ПЧ-АВ на качество напряжения на общих секциях 6-35 кВ ГПП предприятия.

Практическая ценность и реализация работы заключается в решении существующих производственных проблем по обеспечению за-данного качества электроэнергии BO внутризаводских электрических сетях с мощными электроприводами с ПЧ-АВ за счет использования новой методики определения оптимальных параметров ШИМ АВ для адаптации к резонансным явлениям в питающей сети 6-35 кВ, что подтверждается результатами внедрения на действующем четырехклетьевом стане холодной прокатки ППП ХП предприятия ЧерМК ПАО «Северсталь». Технический эффект достигается за счет снижения амплитуд гармоник, потребляемых ПЧ-АВ главных электроприводов стана, в резонансной области частотной характеристики питающей сети, что позволяет снизить суммарный коэффициент гармонических искажений напряжения К_U, % на секциях ГПП на 19,7-82,3%, в зависимости от режима работы стана и режима

электроснабжения ГПП, а также снизить значение коэффициентов $K_{U(i)}$ n-ых гармонических составляющих напряжения до приемлемого уровня в соответствии с ГОСТ 32141-2013.

Методика проведения исследований. В основу теоретических исследований легли базовые положения теории электропривода, силовой электроники, теории электроснабжения, автоматического управления И известные методы моделирования электроснабжения математического систем промышленных предприятий с распределительными сетями 6-35 кВ, а также трехуровневых преобразователей частоты с активными выпрямителями среднего напряжения. Для разработки математических моделей использовалась программная среда Simulink в составе пакета Matlab, в котором интегрированы основные численные методы дифференциальных уравнений. При решения проведении теоретических исследований использовались также экспериментальные осциллограммы мгновенных значений напряжений и токов, полученные на ГПП-2 ЧерМК ПАО «Северсталь» и распределительных устройств четырехклетьевого стана ППП ХП с использованием регистраторов электрических сигналов РЭС-3, NI USB-6251 и ELSPEC G4420, с частотой дискретизации до 100 кГц.

Основные положения и результаты, выносимые на защиту:

1. Результаты экспериментальных исследований качества напряжения во внутризаводских сетях промышленных предприятий, доказывающие негативное влияние резонансных явлений в сетях среднего напряжения при работе мощных электроприводов с ПЧ-АВ.

2. Усовершенствованная методика определения оптимальных параметров ШИМ АВ для адаптации таблиц углов переключения силовых ключей в зависимости от расположения резонансных областей в частотной характеристике сети 6-35 кВ.

3. Новый способ выявления резонансов во внутризаводской сети 6-35 кВ с использованием специализированных тестовых воздействий со стороны мощных ПЧ-АВ, позволяющие более точно определить резонансные области в частотной характеристике сети.

4. Комплексная имитационная модель системы внутризаводского электроснабжения и электроприводов на базе ПЧ-АВ с возможностью исследования резонансных явлений в сети и влияния режимов работы ПЧ-АВ на качество напряжения на общих секциях заводской подстанции 6-35 кВ.

5. Результаты экспериментальных исследований качества напряжения в электрической сети 10 кВ района ГПП-2 ЧерМК ПАО «Северсталь», доказывающие эффективность разработанной методики определения оптимальных параметров ШИМ.

Обоснованность и достоверность научных положений, выводов и рекомендаций подтверждается 1) правомерностью исходных положений и 2) предпосылок; корректным применением математических методов моделирования; 3) соответствием результатов исследования результатам, опубликованным в научной литературе по схожей тематике другими авторами; 4) экспериментальными данными И достигнутым техническим эффектом, полученным от внедрения результатов диссертационного исследования в производство действующее на базе ПЧ-АВ главных электроприводов четырехклетьевого стана ППП ХП ЧерМК ПАО «Северсталь».

Соответствие паспорту научной специальности. Проблематика, рассмотренная в диссертации, соответствует пунктам 1,3,4 паспорта научной специальности 05.09.03 – Электротехнические комплексы и системы (п.1. Развитие общей теории электротехнических комплексов и систем, изучение систем изучение системных свойств и связей, физическое, математическое, имитационное и компьютерное моделирование компонентов электротехнических комплексов и систем; п.3. Разработка, структурный и параметрический синтез электротехнических комплексов и систем, их оптимизация, а также разработка энергоэффективного п.4. алгоритмов управления; Исследование работоспособности И качества функционирования электротехнических комплексов и систем в различных режимах, при разнообразных внешних воздействиях).

<u>Апробация результатов диссертационной работы.</u> Основные положения диссертационной работы докладывались и обсуждались на 5 международных конференциях, в том числе: 2021 18th International Scientific Technical Conference Alternating Current Electric Drives (ACED) (г. Екатеринбург, 2021); 2020 Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI) (г. Магнитогорск, оз. Банное, 2020); 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) (г. Сочи, 2020); 2019 Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI) (г. Магнитогорск, оз. Банное, 2019); 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) (г. Сочи, 2020); Coчи, 2019).

В 2020-2021 годах исследования выполнялись в рамках государственного задания (научный проект №FZRU-2020-0011) по теме «Разработка и исследование алгоритмов энергоэффективного управления электротехническими и технологическими комплексами горно-металлургической отрасли».

В 2020-2021 гг. результаты диссертации использовались при выполнении научно-исследовательской работы «Исследование электрической сети 10 кВ внутризаводского электроснабжения ЧерМК ПАО «Северсталь». Разработка мероприятий, направленных на обеспечение электромагнитной совместимости преобразователей частоты четырехклетьевого стана с питающей сетью 10 кВ ГПП-2 ПАО «Северсталь» (договор №9000112665 от 19.10.2020 г.)

<u>Публикации.</u> По содержанию диссертации опубликовано <u>10</u> научных трудов, в том числе <u>2</u> статьи в изданиях, входящих в перечень рекомендованных ВАК РФ, <u>5</u> статей в изданиях, индексируемых Scopus, получено <u>2</u> свидетельства о регистрации программы для ЭВМ, опубликована <u>1</u> научная монография.

ГЛАВА 1. АНАЛИЗ СОСТОЯНИЯ СОВРЕМЕННЫХ АВТОМАТИЗИРОВАННЫХ ЭЛЕКТРОПРИВОДОВ ПРОМЫШЛЕННЫХ МЕХАНИЗМОВ НА БАЗЕ ПЧ-АВ

В настоящее время в главных приводах прокатных клетей широко применяются синхронные и асинхронные двигатели среднего напряжения. Так как работа таких приводов характеризуется частыми динамическими режимами, применяют ПЧ-АВ на полностью управляемых полупроводниковых элементах (IGCT-тиристоры, IEGT и IGBT-транзисторы). По своей структуре AB аналогичен автономному инвертору напряжения АИН. Применение AB обеспечивает работу с заданным коэффициентом мощности, осуществляет рекуперацию энергии в питающую сеть, что позволяет увеличить эффективность привода. Для улучшения гармонического состава токов и напряжений широкое распространение в мощных приводах получили трехуровневые AB, работа которых представляет собой синтез амплитудной и широтной модуляции [30, 35].

1.1. Анализ существующих силовых схем мощных ПЧ-АВ

На рис.1.1 приведена упрощенная силовая схема трехуровневого ПЧ-АВ. Трехуровневый активный выпрямитель состоит из двенадцати IGCT-тиристоров (Т1 ... T12) и восемнадцати диодов (D1 ... D18). В звене постоянного тока включены две сборки конденсаторов (С1 и С2). Сумма напряжений на конденсаторных сборках определяет уровень напряжения в звене постоянного тока. Точка между двумя эквивалентными емкостями образует нулевой (средний) потенциал преобразователя. Диоды в плечах преобразователя (D5, D6, D11, D12, D17, D18) необходимы для подключения силовых модулей к нулевой точке преобразователя, что позволяет получить три уровня напряжений (U_{dc+} - U_{dc0}; U_{dc0} - U_{dc-}; U_{dc+} - U_{dc-}). АИН имеет идентичную АВ структуру [38].

Увеличение числа уровней напряжения относительно традиционных двухуровневых схем дает улучшение в 2 раза гармонического состава тока, потребляемого из сети. Это актуально для мощных ПЧ-АВ, у которых очень низкая

частота переключения вентилей (150-750 Гц), поскольку при такой частоте ШИМ кривая тока сильно искажена по отношению к синусоиде [43].

Для питания ПЧ-АВ мощностью более 7 МВт как правило применяют многопульсные схемы выпрямления. Для создания таких схем выпрямления используют трансформаторы с различными группами соединения обмоток.

Примером использования таких схем может служить главный электропривод стана холодной прокатки 2000 ЛПЦ-11 ПАО «ММК», который выполнен по «двенадцатипульсной» схеме с последовательным соединением первичных обмоток. Применяемый в данном электроприводе ПЧ-АВ АС6000 выполнен с использованием полностью управляемых IGCT-тиристоров. Силовая схема главного привода клетей стана представлена на рисунке 1.2. ПЧ состоит из двух АВ и двух АИН, которые имеют общее звено постоянного тока. Для реализации «двенадцатипульсной» схемы используются два трансформатора с различными схемами соединения вторичных обмоток («звезда» и «треугольник»), что обеспечивает сдвиг между векторами вторичных линейных напряжений на 30° . Первичная обмотка одного из трансформатора. За счет такого включения трансформаторов в сетевом токе присутствуют гармоники, порядок которых определяется выражением $12n\pm1$, где n = 1, 2, 3, ... натуральные числа [54, 60].

Рисунок 1.1 – Силовая схема трехуровневого ПЧ-АВ

Встречаются варианты силовых схем с большим числом пульсаций за период питающего напряжения (18, 24 - пульсные схемы). В качестве примера реализации «восемнадцатипульсной» схемы можно привести главный привод клетей стана

холодной прокатки 1750 ЗАО «ММК Metalurji». Силовая схема данного привода приведена на рисунке 1.3. Привод включает в себя четыре синхронных двигателя, каждый из которых запитан от АИН. Особенностью данной схемы является включение трех трансформаторов, линейные напряжения вторичных обмоток которых имеют сдвиг на -20°, 0° и +20°, что обеспечивает реализацию «восемнадцатипульсной» схемы выпрямления. Первичные обмотки двух трансформаторов соединены последовательно с первичной обмоткой третьего трансформатора, соединенной в «звезду». Питание осуществляется от сети 34,5 кВ. В данном электроприводе также применяется преобразователь фирмы ABB ACS6000. Три AB подключены параллельно к звену постоянного тока, к которому также подключаются четыре АИН. За счет такого включения трансформаторов в токе присутствуют гармоники, порядок сетевом которых определяется выражением 18n±1, где n =1, 2, 3, 4 [97].

Рисунок 1.2 – Силовая схема главного привода клетей стана холодной прокатки 2000, ПЧ-АВ ACS6000

1.2. Описание обобщённой системы управления АВ

Реализация типичной системы управления трехуровневым активным выпрямителем осуществляется с учетом симметричной системы питающих

напряжений, идеальной синхронизации с сетью и балансе напряжений на каждом конденсаторе в звене постоянного тока относительно нейтральной точки преобразователя. Для синтеза системы управления с учетом выше изложенных допущений используется научно-теоретическая база двухуровневого AB как объекта управления, представленная в источниках. Система управления AB преобразователя реализуется на базе типовой системы векторного управления. На рисунке 1.4 представлена упрощенная структурная схема системы управления AB.

Для реализации системы управления во вращающейся системе координат dq0 используются блоки преобразования координат *abc/dq0* в соответствии с преобразованием Парка-Горева [100].

Рисунок 1.3 – Силовая схема главного привода клетей стана холодной прокатки 1750, ПЧ-АВ ACS6000

$$i_{d} = \frac{2}{3} \left(i_{a} \cos\theta + i_{b} \cos\left(\theta - \frac{2\pi}{3}\right) + i_{c} \cos\left(\theta - \frac{2\pi}{3}\right) \right),$$

$$i_{q} = \frac{2}{3} \left(i_{a} \sin\theta + i_{b} \sin\left(\theta - \frac{2\pi}{3}\right) + i_{c} \sin\left(\theta - \frac{2\pi}{3}\right) \right),$$

$$i_{q} = \frac{2}{3} \left(i_{a} \sin\theta + i_{b} \sin\left(\theta - \frac{2\pi}{3}\right) + i_{c} \sin\left(\theta - \frac{2\pi}{3}\right) \right),$$

(1.1)

Сетевые фазные токи измеряются с помощью датчика тока ДТ. Измеряются токи только двух фаз, так как ток третьей фазы можно вычислить по условию равенства нулю суммы трех фазных токов. Так как токи АВ сильно искажены по

отношению к синусоиде для корректной работы системы управления необходимо использовать фильтр низких частот ФНЧ, который позволяет исключить высшие гармонические составляющие в измеренном сигнале. Для приведения неподвижной системы координат к вращающейся необходим опорный вектор. Обычно система координат *dq0* ориентируется по вектору напряжения сети. Для этого используется блок фазовой автоподстройки частоты (ФАПЧ), формирующий сигнал синхронизации *wt*.

Система регулирования выполняется двухконтурной. Внешний контур – регулирование напряжения в звене постоянного тока. Внутренний контур – регулирование тока преобразователя по двум осям. Для компенсации перекрестных связей объекта регулирования используется блок БКПС. Для повышения быстродействия отработки возмущений, возникающих в питающей сети, измеренное значение напряжения вводится в канал регулятора тока *id* в виде корректирующего сигнала прямого действия. Полученный на выходе регуляторов вектор задания напряжения в осях *dq* преобразуется величину коэффициента модуляции m, соответствующей длине вектора, и угол θ, соответствующий углу вектора в неподвижной системе координат. Данные значения поступают в блок ШИМ, где формируются сигналы управления силовыми ключами [12].

Рассмотрим подробнее контуры регулирования напряжения и тока. Как уже было сказано, система регулирования выполняется двухконтурной с ориентацией по вектору напряжения питающей сети с помощью сигнала синхронизации *wt* с блока ФАПЧ. Внешний контур регулирования напряжения в звене постоянного тока с пропорционально-интегральным регулятором (ПИ-регулятором) обеспечивает задание необходимой величины активного тока преобразователя. Внутренний контур регулирования токов по осям dq с двумя ПИ-регуляторами формирует напряжения Ud и Uq, к которым суммируются напряжения компенсирующих связей. Ошибка регулирования, поступающая на регуляторы токов, формируется вычитанием значений токов по осям dq из величин заданных токов. Токи Id, Iq вычисляются в блоке преобразования неподвижной системы координат во вращающуюся со скоростью ωt . В блоке вычислений коэффициента модуляции

помимо коэффициента модуляции вычисляется и угол управления θ . Оба сигнала, как уже было отмечено, в блок ШИМ, который формирует импульсы управления вентилями AB. Блоки ограничения БО, приведённые на рисунке, служат для ограничения величин сигналов в регуляторе.

Рисунок 1.4 – Структурная схема контуров регулирования тока и напряжения системы управления и силовая схема трехуровневого AB

1.3. Анализ алгоритмов ШИМ в системах управления АВ

Для управления состоянием полупроводниковых силовых модулей применяется широтно-импульсная модуляция (ШИМ). Наибольшее распространение в ПЧ-АВ среднего напряжения получили следующие алгоритмы ШИМ:

- ШИМ с фиксированными значениями углов переключения (Fixed Pulse Pattern Control Pulse Width Modulation),

- ШИМ с удалением выделенных гармоник (Selective Harmonic Elimination Pulse Width Modulation) и его вариации, например ШИМ с подавлением выделенных гармоник (Selective Harmonic Mitigation Pulse Width Modulation).

Другие алгоритмы ШИМ (векторная, с синусоидальным опорным напряжением), как правило, в ПЧ-АВ большой мощности не применяются, поскольку при их работе не контролируется содержание высших гармоник тока, потребляемого АВ.

ШИМ с фиксированными углами переключения

Для снижения потерь В полупроводниковых ключах применяют модифицированные алгоритмы ШИМ с низкой частотой переключения. Метод ШИМ с фиксированными углами переключения Fixed Pulse Pattern Control (FPPC) является одним из таких алгоритмов. FPPC применяется в преобразователях TMEIC фирмы TOSHIBA MITSUBISHI. FPPC от традиционных алгоритмов тем, что углы переключения силовых модулей рассчитываются заранее, а не в режиме реального времени как в других алгоритмах. Углы переключения ключей рассчитываются на основании критерия минимальной величины потерь в полупроводниковых ключах и ограничения высших гармонических тока, генерируемых в сеть преобразователем – минимальное значение суммарного коэффициента искажения тока. Углы переключения состоят из двух комплектов для положительной и отрицательной полуволн, так как кривая фазного напряжения не обладает симметрией относительно середины положительного и отрицательного полупериода. Данные углы рассчитываются на основе средних значений длительностей между переключениями. Принцип действия данного алгоритма ШИМ основан на фиксации амплитуды напряжения и изменении фазы напряжения на входе АВ по отношению к фазе напряжения питающей сети. Иначе говоря, регулирование активной составляющей тока обеспечивается за счет изменения реактивной составляющей тока. На рисунке 1.5 изображена упрощенная структурная схема алгоритма ШИМ с фиксированными углами переключения [55].

Рисунок 1.5 – Упрощенная структурная схема алгоритма ШИМ с фиксированными углами переключения

Принцип работы алгоритма основан на следующих моментах, во внешнем контуре регулирования величины напряжения в звене постоянного тока системы управления AB формируется величина задания активной составляющей тока i_{d.зад}, путем сравнения заданной величины напряжения в звене постоянного тока и фактической. Затем из полученного значения активной составляющей тока *i*_{d.зад} фактическое вычитается значение тока поступает id.darm И на ВХОД пропорционально-интегрального регулятора, на выходе которого получается необходимый угол сдвига фазы напряжения на входе АВ θ_{cdeura} . Данный сигнал складывается с опорным сигналом θ , который вычисляется в блоке фазовой автоподстройки частоты (ФАПЧ). Полученный сигнал θ_{Σ} подается на вход блока формирования импульсов, где сравнивается с рассчитанными заранее углами

переключения. При равенстве данного сигнала и углов переключения формируются импульсы управления силовыми ключами АВ.

Данный алгоритм позволяет оптимизировать гармонический состав напряжения на входе ПЧ-АВ вплоть до 50-й гармоники, однако гармоники более высокого порядка могут иметь весьма высокую амплитуду.

ШИМ с удалением выделенных гармоник.

Широкое распространение в современных ПЧ-АВ получил алгоритм ШИМ с удалением выделенных гармоник, позволяющий добиться хорошего гармонического состава потребляемого тока при относительно низкой частоте коммутации силовых ключей. Данный алгоритм применяется в преобразователях фирмы ABB серии ACS 6000, фирмы Danieli Q-Drive, а также в мощных ПЧ Converteam [47, 51].

Рассмотрим принцип работы данного алгоритма ШИМ. На рисунке 1.6 представлена осциллограмма фазного напряжения на входе трехуровневого AB относительно нейтральной точки.

Рисунок 1.6 - Осциллограмма фазного напряжения на входе АВ

Так как напряжение, представленное на рис. 1.6 симметрично относительно начала координат, то оно содержит нечетный спектр гармоник, амплитуды которых зависят от углов переключения α и от количества импульсов за четверть периода. В алгоритме ШИМ с удалением выделенных гармоник углы переключения рассчитываются таким образом, чтобы в кривой напряжения не было гармоник, подлежащих исключению. Номера таких гармоник определяются силовой схемой электропривода. Количество гармоник, подлежащих исключению, ограничивается на уровне n-1, где n – число переключений силовых ключей за четверть периода.

Таблицы с углами переключения в зависимости от коэффициента модуляции, рассчитываются заранее и сохраняются в памяти контроллера ШИМ. Расчет углов переключения в общем случае производится согласно системе уравнений:

$$\begin{cases} \cos(\alpha_{1}) - \cos(\alpha_{2}) + \cos(\alpha_{3}) + \dots + \cos(\alpha_{n}) = m \\ \cos(k_{1}\alpha_{1}) - \cos(k_{1}\alpha_{2}) + \cos(k_{1}\alpha_{3}) + \dots + \cos(k_{1}\alpha_{n}) = 0 \\ \dots \\ \cos(k_{n-1}\alpha_{1}) - \cos(k_{n-1}\alpha_{2}) + \cos(k_{n-1}\alpha_{3}) \dots + \cos(k_{n-1}\alpha_{n}) = 0 \end{cases}$$
(1.2)

где *a_i* – величина угла переключения силового ключа,

k_j – номер гармоники, подлежащей исключению,

т – коэффициент модуляции,

n – число углов переключения за четверть периода.

Поиск решений система уравнений (1.2) производится методом итерации. Как правило, данная система уравнений имеет множество решений, зависящих от заданных условий. Среди множества решений отбираются практический реализуемые, соответствующие условию:

$$0 < \alpha_1 < \alpha_2 < \alpha_3 < \dots < \alpha_n < \frac{\pi}{2}. \tag{1.3}$$

Количество гармоник, подлежащих исключению, ограничивают на уровне *n*– *l* по причине невозможности отыскания математического решения уравнения (1.2) в широком диапазоне коэффициента модуляции *m*, что необходимо для отработки динамических режимов работы AB. Первая гармоника напряжения преобразователя задается в зависимости от величины коэффициента модуляции *m*. Номера гармоник, подлежащих устранению в гармоническом ряду, задаются в соответствии с силовой схемой электропривода. Для ПЧ-АВ с частотой коммутации 250 Гц такими гармониками являются: для 6-ти пульсной схемы (5, 7, 11, 13), 12-ти пульсной (11, 13, 23, 25), 18-ти пульсной (17, 19, 35, 37) [75].

На рисунке 1.7 изображена упрощенная структурная схема алгоритма ШИМ с удалением выделенных гармоник. Также, как и в векторной ШИМ, система управления формирует два сигнала: коэффициента модуляции и угол θ . Коэффициент модуляции поступает в блок с заранее рассчитанными значениями углов переключения, на выходе которого формируются значения углов

переключения, которые сравниваются с несущим пилообразным сигналом, после чего на силовые ключи подаются импульсы управления.

Данный алгоритм позволяет обеспечить удовлетворительный гармонический состав напряжения на входе ПЧ-АВ за счет удаления наиболее значимых гармоник, однако уровень гармоник более высокого порядка не контролируется. Дальнейшие исследования показывают низкую эффективность такого подхода в случае, когда ПЧ-АВ получает питание от сети с резонансами в частотной характеристике.

Рисунок 1.7 - Упрощенная структурная схема ШИМ с удалением, либо ослаблением выделенных гармоник.

1.4. Особенности построения систем электроснабжения и распределительных сетей средних напряжений крупных промышленных заводов и мини-заводов

Построение системы электроснабжения и распределительных сетей средних напряжений мини-заводов отличается от системы электроснабжения крупного металлургического предприятия. В системах электроснабжения крупных заводов, как правило, конфигурация распределительных сетей выполнена короткими воздушными и кабельными линиями, имеет множество подстанций, которые запитываются от более крупных узловых подстанций, в свою очередь от этих подстанций запитываются основные электроприемники 10 кВ. В системах внутризаводского электроснабжения металлургических мини-заводов, а также некоторых крупных металлургических предприятий олной главной с понизительной подстанцией ГПП используется протяженные распределительные сети среднего напряжения 6-35 кВ [27].

Типовая схема электроснабжения металлургического предприятия с несколькими ГПП приведена на рис. 1.8. В качестве примера приведена блок-схема

ПАО «ММК». На схеме можно выделить две крупные подстанции, запитанные от районных энергосистем, которые в свою очередь запитывают множество небольших подстанций.

Основными потребителями являются листопрокатные цеха (ЛПЦ), в которых осуществляется горячая прокатка стали; И холодная доменные цеха, электросталеплавильные цеха (ЭСПЦ), в которых осуществляется плавка лома; коксохимические сортопрокатные (СПЦ); цеха; цеха заводская теплоэлектроцентраль (ТЭЦ) и т.д. Основные электроприемники запитываются с множества небольших подстанций, за счет чего длина кабельных и воздушных трасс не велика, поскольку подстанции находятся рядом с основным потребителем.

Рисунок 1.8 - Классическая блок-схема СЭС металлургического предприятия с несколькими ГПП на примере ПАО «ММК»

Типовая схема электроснабжения металлургического предприятия с одной ГПП приведена на рис. 1.9. В качестве примера приведена блок-схема АО «Северсталь – сортовой завод Балаково». На схеме можно выделить главную понизительную подстанцию предприятия ГПП 220/35/10 кВ, от которой получают питание электросталеплавильный комплекс и остальные электроприемники электросталеплавильного и сортопрокатного цехов, а также других вспомогательных объектов, таких как: участки газоочистки и водоподготовки, скрапное отделение, блок разделения воздуха.

От секций №1 и №2 ЗРУ-10 кВ по кабельным линиям получают питание цеховые распределительные пункты (РУ): 1) РУ-1 «Скрапное отделение», 2) РУ-2 «Водоподготовка», 3) РУ-3 «ЭСПЦ», 4) РУ-4 «Главные электроприводы сортопрокатного цеха»; 5) РУ-4 «Вспомогательное электрооборудование сортопрокатного цеха»; 6) РУ-5 «Газоочистка»; 7) РУ-6 «блок разделения воздуха (БРВ)». Каждое РУ-10 кВ цеховых РУ имеет два ввода от секций ЗРУ-10 кВ – основой и резервный. Использование того или иного ввода определяется выбранной конфигурацией внутризаводского электроснабжения 10 кВ.

Рисунок 1.9 - Классическая блок-схема СЭС металлургического предприятия с одной ГПП на примере АО «Северсталь – сортовой завод Балаково»

Электрической нагрузкой являются комплектные трансформаторные подстанции и отдельные понизительные трансформаторы 10/0,4 кВ, от которых получают питание различные низковольтные электроприводы кранов, насосов и других многочисленных механизмов электросталеплавильного и сортопрокатного

цехов, отделений водоподготовки и газоочистки, скрапного участка и т.д. Также присутствует большое количество высоковольтных сетевых двигателей 10 кВ механизмов дымососов и компрессоров, функционирующих в различных цехах.

1.5. Анализ параметров кабельных линий цеховых распределительных сетей металлургических предприятий и их влияние на резонансные явления

Важной особенностью системы внутризаводского электроснабжения электроприемников 10 кВ предприятий с одной ГПП является большое количество кабельных линий, подключенных общему ЗРУ-10 кВ. Суммарная длина линий, подключенных к ЗРУ-10 кВ, с учетом КЛ, отходящих от цеховых РУ, превышает 40 км, таблица 1.1. Большая протяженность линий обуславливает наличие значительной распределенной емкости, которая вместе с индуктивностью сетевого трансформатора 110/10 кВ может создать неблагоприятный резонанс токов, частота которого может совпасть с частотной областью генерирования гармоник различными нелинейными электроприемниками (например ПЧ-АВ).

Для исследования резонансных явлений в распределительных сетях 6-36 кВ, необходим анализ частотной характеристики сети. Частотная характеристика (рис. 1.10) представляет собой зависимость полного комплексного сопротивления (импеданса) сети от частоты (номера гармоники). Указанную зависимость возможно получить двумя способами: расчетным путем, опираясь на параметры сетевого трансформатора, кабельных линий и т.д.; экспериментальным путем. В этом случае среди потребителей, подключенных к сети, должен присутствовать активный элемент, который генерирует в сеть высшие гармоники напряжения, под действием которых с учетом импеданса сети будут протекать токи высших гармоник, их соотношение позволит экспериментально определить частотную характеристику сети.

В большинстве исследований параметры в схемах замещения питающей сети представляются эквивалентным индуктивным сопротивлением, в основном обусловленным индуктивностью рассеивания понизительного трансформатора ГПП. Активное сопротивление трансформатора ввиду его высокой добротности (более 25) можно не учитывать. В этом случае частотная характеристика

представляет собой линейную зависимость импеданса от частоты (номера гармоники). Появление максимума и, как следствие, снижение импеданса с ростом частоты объясняется учетом дополнительных элементов в схеме замещения питающей сети, в частности, распределённой емкости кабельных линий, отходящих от ЗРУ 10 кВ к РУ. Ввиду их значительной протяженности эквивалентная емкость оказывается существенной и ее следует принимать во внимание [110].

Таблица 1.1 - Сравнительный анализ параметров распределительных сетей металлургических предприятия с

Особенности системы электроснабжения	Совокупная длина кабельных линий (кл) распределительных сетей среднего напряжения l, км	Суммарная емкость кл, скл∑ , мкф	Индуктивное сопротивление сетевого трансформатора понизительной подстанции хт,ом	Частота резонанса
Наличие индивидуальной подстанции для каждого крупного цеха	< 10	≈1,75	≈21,3	238
Наличие одной ГПП с ЗРУ 10 (6) кв. Протяженные кабельные и воздушные линии электропередач	> 40	≈14	≈37,51	58

Данная особенность характерна для систем внутризаводского электроснабжения металлургических предприятий, где имеет место одна ГПП с ЗРУ-10 кВ, от которой получают питание по кабельным линиям основная часть электроприемников цехов. В этом случае вся емкость разветвленной сети 10 кВ сосредоточена на секциях одной ЗРУ-10 кВ. Использование нескольких ГПП для отдельных цехов исключает резонансных токов в частотной характеристике сети среднего напряжения, расположенных в области частот> 5000 Гц, на которых отсутствуют значимые гармоники современных ПЧ-АВ. Однако данный вывод справедлив только для сетей, в которых отсутствуют дополнительные реактивные элементы, например, реакторы для ограничения токов короткого замыкания, которые могут размещаться в некоторых ячейках ГПП.

Рисунок 1.10 – Пример частотной характеристики сети 10 кВ, полученной экспериментальным путем на АО «Северсталь – сортовой завод Балаково»

Несложные расчеты позволяют ориентировочно оценить резонансную частоту v, зная параметры сетевого трансформатора, а также общую длину и емкость С_{кл} кабельных линий на стороне 10 кВ:

$$\nu \cdot X_T = \frac{X_{KJ}}{\nu}; \tag{1.4}$$

$$v = \sqrt{\frac{X_{KJ}}{X_T}}$$
(1.5)

$$X_T = u_\kappa \cdot \frac{U^2}{S_{HT}}; \qquad (1.6)$$

$$X_{K\Pi} = \frac{1}{\omega \cdot C_{K\Pi}}; \qquad (1.7)$$

где X_{T} , $X_{K\!N}$, – индуктивное сопротивление трансформатора и емкостное сопротивление кабельных линий; U, ω - напряжение и частота питающей сети; U_k, S_{нт} - напряжение короткого замыкания и мощность сетевого трансформатора 110/10 кВ,

$$\nu = \sqrt{\frac{S_{HT}}{u_{\kappa} \cdot U^2 \cdot \omega \cdot C_{K\Pi}}} = \sqrt{\frac{S_{HT}}{u_{\kappa} \cdot Q_{K\Pi}}}, \qquad (1.8)$$

где $Q_{K\Pi} = U^2 \cdot \omega \cdot C_{K\Pi}$ – реактивная мощность кабельных линий.

Метод частотных характеристик становится более универсальным и эффективным при использовании математических моделей систем электроснабжения. В этом случае он позволяет анализировать различные варианты схем и выявлять возможные резонансы, как на стадии проектирования, так и при эксплуатации действующего оборудования.

1.6. Анализ существующих способов обеспечения электромагнитной совместимости электроприводов с ПЧ-АВ в сетях с резонансными явлениями

При проектировании мощных электроприводов с ПЧ-АВ особое внимание уделяют их электромагнитной совместимости (ЭМС) с питающей сетью, выбирают различные фильтры в зависимости от конфигурации питающей сети.

В сетях с протяженными кабельными линиями (несколько километров) могут появиться условия для возникновения резонансных явлений в области гармоник, генерируемых AB, что приводит к сильным искажениям среднего напряжения в точке подключения ПЧ-AB.

Традиционными способами обеспечения ЭМС в сетях с резонансными явлениями являются применение организационных мероприятий таких, как выделение одной секции заводской подстанции для питания нелинейных потребителей электрической энергии (мощные электроприводы с ПЧ-АВ) рис. 1.11, отключение не используемых кабельных линий 6-35 кВ от шин распределительных устройств, грамотное проведение оперативных переключений на ГПП, исключающих одновременное включение нелинейных потребителей и протяженных кабельных линий. Так же для обеспечения ЭМС могут быть применены специальные фильтры (рис. 1.12), состоящие из емкостных элементов, которые обеспечивают смещение резонансной области в низкочастотную область и уменьшение экстремума частотной характеристики сети. Однако в процессе эксплуатации конфигурация распределительной сети может измениться, например, при проведении оперативных переключений на электрической подстанции завода, замене кабелей на новые, имеющие другую индуктивность и емкость. Применение же специальных фильтров коррекции частотной характеристики требует дополнительных капитальных затрат [117].

Альтернативным методом обеспечения ЭМС ПЧ-АВ с питающей сетью может являться использование альтернативных таблиц углов переключения вентилей (параметров) ШИМ АВ, исключающих из кривой тока, потребляемого ПЧ-АВ из сети, гармоники, расположенные в резонансной области частотной характеристики сети. Данный метод не требует дополнительных капитальных затрат и позволяет подстраиваться под изменяющуюся частотную характеристику питающей сети.

Для корректного определения параметров ШИМ с адаптацией к резонансным явлениям необходимо разработать способ выявления частотной характеристики внутризаводских сетей 6-35 кВ, позволяющий осуществлять точное определение расположения резонанса в сети за счет тестовых воздействий АВ.

Рисунок 1.11 - Упрощенная схема ГПП прокатного цеха металлургического предприятия с разделением на грязную и чистую секцию

Рисунок 1.12 - Силовая схема (а) и фотография (б) специализированного ФКУ для коррекции частотной характеристики

1.7. Выводы по главе 1

1. Выполнен анализ состояния современных электроприводов с ПЧ-АВ различных фирм производителей (ABB, Converteam, Danieli, Toshiba-Mitsubishi). Анализ показал, что основными алгоритмами ШИМ, применяемыми в ПЧ-АВ удалением выделенных гармоник И являются алгоритм с алгоритм с фиксированными углами переключения вентилей. Их применение обуславливается низкой частотой коммутации вентилей АВ среднего напряжения (150-750 Гц), поскольку они позволяют улучшить гармонический состав тока и напряжения на входе АВ. За счет снижения амплитуд отдельных значимых гармоник тока улучшается ЭМС ПЧ-АВ с питающей сетью. Как правило контролируется только гармоники вплоть до 40-й, уровень которых регламентирован нормативными 32144-2013. документами, такими как ΓΟCΤ Дальнейшие исследования показывают неэффективность такой методики определения параметров ШИМ в распределительных сетях с резонансами в области генерирования гармоник ПЧ-AB.

2. Проведен анализ конфигурации распределительных сетей среднего напряжения металлургических предприятий, показывающий влияние протяженных кабельных линий на частотную характеристику сети. Эквивалентная ёмкость кабельных линий, взаимодействуя с индуктивностью сетевого

трансформатора, смещает экстремум резонанса токов в область низких частот. Частотная область резонанса может совпасть с областью основных гармоник ПЧ-АВ, что приведет к искажению формы напряжения в точке подключения электроприемников.

3. Проведен анализ существующих способов обеспечения ЭМС ПЧ-АВ с питающей сетью, при наличии в ней резонансных явлений. Наиболее эффективным способом является создание "грязной" секции на ГПП, от которой будут запитаны нелинейные потребители электрической энергии большой мощности (ПЧ-АВ). Также для коррекции частотной характеристики можно применить специальный фильтр, смещающий резонанс в низкочастотную область с одновременным уменьшением его экстремума. Альтернативным способом обеспечения ЭМС ПЧ-АВ может стать усовершенствованная методика определения оптимальных параметров ШИМ, для адаптации к резонансным явлениям, предусматривающая ослабление либо исключение выбранных гармоник, попадающих в зону резонанса на частотной характеристике питающей сети, с целью минимизации суммарного коэффициента искажения напряжения на общих секциях ГГП.

ГЛАВА 2. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ В СИСТЕМАХ ВНУТРИЗАВОДСКОГО ЭЛЕКТРОСНАБЖЕНИЯ С МОЩНЫМИ ЭП НА БАЗЕ ПЧ-АВ ПРИ НАЛИЧИИ РЕЗОНАНСНЫХ ЯВЛЕНИЙ

В период с 09.11.2020 г. по 13.11.2020 г. была проведена оценка качества электроэнергии сети 10 кВ района ГПП-2 ЧерМК ПАО «Северсталь» с помощью записи и последующего анализа мгновенных значений напряжений и токов на общих секциях РУ-10 кВ ГПП-2, а также секциях РУ-10 кВ цеховой подстанции РП-19, от которой получают питание главные электроприводы четырехклетьевого стана ППП ХП (рис. 2.1). Для выполнения записи использовались два измерительных комплекса со схожими характеристиками. Первый измерительный комплекс построен на базе двух быстродействующих многоканальных регистраторов РЭС-3 фирмы «Прософт-Системы» и NI-USB-6251 фирмы National Instruments. Второй измерительный комплекс построен на базе анализатора показателей качества электроэнергии (ПКЭ) ELSPEC G4420 с возможностью длительной многоканальной мгновенных значений напряжений и токов с высокой записи частотой дискретизации. Указанные регистраторы были подключены к измерительным цепям трансформаторов напряжения и токов вводных фидеров 1 и 2 секций РП-19 (ф. 4, 7), и ГПП-2 (ф. 19 и 13). Параметры измерительных цепей приведены в табл. 2.1 и 2.2. Фотографии подключенных измерительных комплексов показаны на рис. 2.2 и 2.3. Частота дискретизации для записи осциллограмм линейных и фазных напряжений для обоих комплексов составила 100 кГц, для записи токов – 20 кГц. Измерение токов при использовании первого комплекса осуществлялась с помощью измерительных шунтов 5/75 мВ, включаемых в разрыв измерительных обмоток 0,5S трансформаторов тока. Выходы шунтов подключались к блокам гальванической развязки регистраторов. Подключение токовых цепей в анализаторе ELSPEC G4420 выполнялось с помощью дополнительных проводов, продеваемых через датчики тока регистратора, которые также включались в разрыв измерительной обмотки 0,5S

трансформаторов тока. Сигналы с измерительных обмоток трансформаторов напряжения подавались напрямую на клеммы блоков гальванической развязки регистраторов РЭС-3 и NI-USB-6251, а также на входные клеммы цепей измерения напряжения анализатора ПКЭ ELSPEC G4420.

Таблица 2.1 - Параметры измерительных трансформаторов напряжения и тока, использованных при записи мгновенных значений напряжений и токов на выбранных фидерах РУ-10 кВ РП-19 ППП ХП

Номер секции РП-19	Номер фидера РП-19	Наименование присоединения	Измерительные трансформаторы напряжения	Измерительные трансформаторы тока		
Основные измерения с использованием регистраторов РЭС-3 и NI-USB-6251 (ф.4), дополнительные – с помощью Flash Recorder-2-16 (ф.4,1,3)						
1	1	ЭП клети №1		1000/5 A		
	3	ЭП клети №3	ЭП клети №3 10000/100 B			
	4	Ввод 2. ГПП-2. ф1		2000/5 A		
Основные измерения с использованием анализатора ELSPEC G4420 (ф.7), лополнительные – с помощью Elash Recorder-2-16 (ф.7.8.10.11)						
2	7	Ввол 1. ГПП-2. ф21		2000/5 A		
	8	ЭП клети №2	10000/100 D	1000/5 A		
	10	ЭП клети №4	10000/100 B	1000/5 A		
	11	ЭП натяж. моталки		750/5 A		

Таблица 2.2 - Параметры измерительных трансформаторов напряжения и тока, использованных при записи мгновенных значений напряжений и токов на выбранных фидерах РУ-10 кВ ГПП-2 ППП ХП

Номер секции ГПП-2	Номер фидера ГПП-2	Наименование присоединения	Измерительные трансформаторы напряжения	Измерительные трансформаторы тока		
Основные измерения с использованием анализатора ELSPEC G4420 (ф.19), лополнительные – с помощью Flash Recorder-2-16 (ф.17.19.23)						
1	17	РП-220 3 сек. ф.126		400/5 A		
	19	Ввод 1 от 1Т	10000/100 B	5000/5 A		
	23	ПС-13 1 сек. ф.15		1000/5 A		
Основные измерения с использованием регистраторов РЭС-3 и NI-USB-6251 (ф.13), дополнительные – с помощью Flash Recorder-2-16 (ф.13.3.9)						
2	3	ПС-13 2 сек. ф.16		1000/5 A		
	9	РП-214 ф.15	10000/100 B	1000/5 A		
	13	Ввод 1 от 2Т		5000/5 A		

Рисунок 2.1 - Однолинейная схема РУ-10 кВ ГПП2 и РП-19 ЧерМК ПАО «Северсталь», с указанием точек подключения регистраторов электрических сигналов.

Рисунок 2.2 - Фотографии измерительных комплексов, установленных в РУ-10 кВ РП-19 ППП ХП для записи мгновенных значений напряжений и токов а – регистраторы РЭС-3 и National Instruments (секция 1, ф.4); б – анализатор ПКЭ ELSPEC G4420 (секция 2, ф.7)

a)

Рисунок 2.3 - Фотографии измерительных комплексов, установленных в РУ-10 кВ ГПП-2 для записи мгновенных значений напряжений и токов а – анализатор ПКЭ ELSPEC G4420 (секция 1, ф.19); б – регистраторы РЭС-3 и National Instruments (секция 2, ф.13)

2.1. Результаты экспериментальных исследований качества напряжения сети 10 кВ района ГПП-2 при различных режимах работы электроприводов четырехклетьевого стана и режимах электроснабжения ЧерМК ПАО «Северсталь»

При выполнении исследований в РУ-10 кВ РП-19 измеряемыми сигналами для регистраторов РЭС-3 и NI-USB-6251, подключаемым к измерительным цепям трансформаторов напряжения 10000/100 В и трансформаторов тока 2000/5 A (ф.4), являлись три линейных и фазных напряжения на секции 1 10 кВ, а также три суммарных линейных тока, потребляемых электроприводами прокатных клетей №№1,3. В свою очередь, измеряемыми сигналами для анализатора качества электроэнергии ELSPEC G4420, подключаемого к измерительным цепям трансформаторов 10000/100 В и трансформаторов тока 2000/5 A (ф.7), стали три линейных и три фазных напряжения 2 секции 10 кВ, а также три суммарных линейных напряжения 2 секции 10 кВ, а также три суммарных линейных тока клетей №№2,4 и натяжной моталки. Параметры электроприводов на базе ПЧ-АВ АСЅ6000 приведены в приложении 1 (табл. П1.1 и П1.2).

В соответствии с утвержденной программой проведения экспериментальных исследований запись мгновенных значений напряжений и токов в РУ-10 кВ РП-19 и ГПП-2 осуществлялась для трех основных режимов электроснабжения:

1) совместная работа секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 2Т;

2) совместная работа секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 1Т;

3) раздельная работа секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 1Т и 2Т.

Для каждого режима электроснабжения выполнялась запись при следующих режимах работы электроприводов:

1) при отключенных ПЧ-АВ;

2) при работе ПЧ-АВ ACS6000 в режиме холостого хода при отсутствии нагрузки приводных синхронных двигателей клетей и моталки;

3) при работе электроприводов клетей под нагрузкой.

На рис. 2.5 – 2.16 приведены мгновенные значения линейных, фазных напряжений и тока, а также их гармонический состав, измеренные на 1 и 2 секциях РУ-10 кВ РП-19 для вышеуказанных режимов электроснабжения и режимов работы

электроприводов четырехклетьевого стана. Аналогичные параметры для 1-2 секций РУ-10 кВ ГПП-2 приведены на рис. 2.17 – 2.24. Результаты анализа гармонического состава напряжений и токов с указанием значений суммарных коэффициентов гармонических составляющих напряжения и тока K_U и K_I , определенных для частотного диапазона от 0 до 10 000 Гц (до 200-ой гармоники), номеров гармоник высокого порядка с максимальной амплитудой $n_{KU(i)max}$, а также действующие значений первых гармоник напряжений и тока $U_{(1)}$ и $I_{(1)}$, приведены в таблице 2.3.

Результаты исследований показали, что при отключенных ПЧ-АВ ACS6000 линейные и фазные напряжения на секциях РУ-10 кВ РП-19, а также ГПП-2, не содержит значимых гармоник высокого порядка. Значение K_U составляет около 1%. В качестве примера на рис. 2.4 приведены осциллограммы и гармонический состав напряжений и токов при измерении на 1 секции РП-19 для режима параллельной работы секций на ГПП-2 с питанием от 2Т. При других режимах электроснабжения и точках измерения гармонический состав напряжения является аналогичным. Как будет показано далее, результаты данного первого опыта доказывают, что основным источником ухудшения качества напряжения являются мощные ПЧ-АВ в составе главных электроприводов четырехклетьевого стана, поскольку в остальных режимах, связанных с работой ПЧ-АВ на холостом ходу и под нагрузкой, качество напряжения сильно ухудшается. [25]

На рис. 2.5 – 2.8 приведены осциллограммы и гистограммы гармоник для напряжений и токов секции 1 РУ-10 кВ РП-19 при работе ПЧ-АВ АСЅб000 на холостом ходу, а также при работе клетей, при совместной работы секций 1 и 2 ГПП-2 с питанием от 2Т (рис. 2.5 и 2.6) и от 1Т (рис. 2.7 и 2.8).

Как видно из рисунков, при работе ПЧ-АВ на холостом ходу и под нагрузкой на секции 1 РУ-10 кВ РП-19 наблюдается сильное искажение линейных и фазных напряжений, *K*_U превышает 16%. Доминирующими гармониками с амплитудой выше 6% относительной первой гармоники являются: 23, 107, 109, 113-ая (рис.2.5 и 2.7). Причиной появления гармоник высокого порядка в напряжении, как будет показано далее в разделе 2.3, является наличие параллельного резонанса в частотной характеристике сети 10 кВ относительно секции 1 РП-19 в диапазоне 4550 - 6550 Гц

(91-я – 131-ая гармоники). При переходе работы с 2Т на 1Т с сохранением совместной работы секций 1 и 2 ГПП-2 гармонический состав напряжения на 1 секции РУ-10 кВ РП-19 остается схожим, что видно при сравнении рис. 2.5 и 2.7. При работе ПЧ-АВ под нагрузкой при том же режиме электроснабжения коэффициент K_U для напряжения 1 секции РП-19 несколько снижается, при этом наблюдается усиление гармоник напряжения с n = 89-97 с одновременным уменьшением амплитуд 107 и 109-ой гармоник, что обусловлено изменением коэффициента модуляции и углов управления ключами активных выпрямителей (рис. 2.6 и 2.8.). Таким образом, режим работы ПЧ на холостом ходу при анализе качества напряжения на 1 секции РП-19 при первом режиме электроснабжения (питание секций ГПП-2 от одного трансформатора 1Т или 2Т) является несколько более тяжелым с точки зрения уровня K_U (+4,5%).

Гармонический состав напряжения на 2 секции РП-19 при том же режиме электроснабжения (питание секций ГПП-2 от одного трансформатора 1Т или 2Т) отличатся в худшую сторону по сравнению с качеством напряжения на 1 секции. Как видно из рис. 2.11-2.14 значение K_U находится в диапазоне от 30% (работа ПЧ-АВ на холостом ходу) до 18% (клети в работе, ПЧ-АВ под нагрузкой). Помимо значимой 23-ей гармоники, гармонические составляющие напряжения высокого порядка, имеющие максимальную амплитуду, смещены вправо по шкале частот: n = 129, 131, 133, 135 и 157, что обусловлено смещением резонанса в частотной характеристике в точке подключения электроприводов к 2 секции РУ-10 кВ РП-19 4550-6550 Гц (91-я – 131-ая гармоники) на 5450-7150 (109-ая – 143-я гармоники). Режим работы ПЧ-АВ на холостом ходу, как и в предыдущем случае, имеет большее негативное влияние на гармонический состав напряжения на 2 секции РУ-10 кВ РП-19, однако в отличие от 1 секции разница в значениях K_U более существенная – до 60%.

При использовании второго режима электроснабжения с раздельной работой 1 и 2 секций ГПП-2 с питанием от 2Т и 1Т (графики для 1 секции РП-19 на рис. 2.9 и 2.10, для 2 секции – рис. 2.15 и 2.16) номера гармоник линейных и фазных напряжений в точках подключения электроприводов четырехклетьевого стана к сети 10 кВ являются схожими первому режиму электроснабжения, как при работе ПЧ-АВ на холостом ходу, так и при работе под нагрузкой. Частотные характеристики сети относительно 1 и 2 секций РП-19 при изменении режима электроснабжения изменяются незначительно, поскольку зависят главным образом от емкости кабельных линий от секций 10 кВ ГПП-2 до РП-19 и токоограничивающих ректоров, установленных в ячейках 1 и 21 ГПП-2. По этой причине эквивалентные емкости 10 κВ кабельных линий сети соответственно остальных И, режимы электроснабжения, оказывают небольшое влияние на форму частотных характеристик относительно секций РП-19. Небольшое отличие частотных характеристик состоит в том, что во втором случае появляется дополнительные пики в районе 113-ой (1 секция) и 133-ей (2 секция) гармоник. Гармоники с максимальными амплитудами в напряжении на 1 секции РУ-10 кВ РП-19, как для предыдущего режима электроснабжения, имеют схожие номера n = 23, 107, 109, 113(рис. 2.9 и 2.10), в напряжении на 2 секции дополнительно к гармоникам с n = 129, 131, 133, 135 и 157, добавились 121-я, 123-я и 127-я. В соответствии с табл. 1.3 K_U для второго режима электроснабжения при работе ПЧ-АВ на холостом ходу почти не изменились, при этом при работе клетей стана K_U вырос на 1 секции с 15,7% до 16,7%, а на 2 секции – с 20% до 25,5%. Таким образом, режим раздельной работы 1 и 2 секций ГПП-2 с питанием от 2Т и 1Т при существующей конфигурации сети 10 кВ района ГПП-2 и существующих настройках алгоритмов ШИМ ПЧ-АВ ACS6000 является более плохим с точки зрения качества напряжения на секциях РП-19. Однако, как будет сказано дальше, наиболее важным показателем является содержание высших гармоник в напряжении непосредственно на секциях 10 кВ ГПП-2, от которых получают питание подстанции РП-220, РП-101, РП-92, ПС-33, РП-214, РП-103, ПС-56, РП-155, ПС-54А, РП-91, ПС-13, имеющие в своем составе чувствительные электроприемники.

Результаты анализа гармонического состава напряжения на 1-2 секциях ГПП-2 для двух режимов электроснабжения и разных режимов работы ПЧ-АВ ACS6000 приведены на рис. 2.17 – 2.24, а также сведены в таблице 2.3.

Необходимо отметить, что из-за наличия токоограничивающих реакторов в ячейках ГПП-2 с высокой индуктивностью $X_{P,\Phi A3bI} = 0,29-0,35$ Ом формы частотных

характеристик сети 10 кВ относительно секций 1 и 2 ГПП-2 сильно отключаются от характеристик, полученных для секций РП-19. Вследствие этого, гармонический состав напряжения на 1-2 секциях ГПП-2 также имеет существенные отличия, что будет показано ниже.

Для первого режима электроснабжения (совместная работа секций 1 и 2 ГПП-2 с питанием от 2Т или 1Т) в гармоническом составе напряжения на 1 и 2 секциях РУ-10 кВ ГПП-2, от которых получают питание секции РУ-10 кВ РП-19, присутствует только одна гармоника с амплитудой более 5% - это 23-я гармоника. Другие смежные гармоники низкого и среднего частотного диапазона с n = 11, 13, 19, 25, 29, 37 имеют амплитуду менее 2% (рис. 2.17, 2.18, 2.21, 2.22). Гармоники высокочастотного диапазона с n = 107 - 157 имеют низкую амплитуду менее 0,4%. Режимы работы ЭП (ПЧ-АВ на холостом ходу и под нагрузкой) данном случае оказывают меньшее воздействие на значения K_U , значение которого находится в более низком по сравнению с РП-19 диапазоне: от 7,3% (ПЧ-АВ на холостом ходу) до 6,7% (ПЧ-АВ под нагрузкой). Однако амплитуды гармоник высокого порядка (n = 107 - 157) при работе ПЧ-АВ на холостом ходу несколько возрастают.

Второй режим электроснабжения (раздельная работа 1 и 2 секций ГПП-2 с питанием от 1Т и 2Т) характеризуется отличными друг от друга частотными характеристиками и, соответственно, отличающимися гармоническими составами напряжений. В частотных характеристиках для 1 и 2 второй секций из-за уменьшения эквивалентной емкости кабельных линий главные резонансы в среднечастотной области смещаются в область 35-37 гармоник, что приводит к усилению последних, но при этом амплитуда 23 гармоники существенно снижается с 5,5-6,2% (секции 1 и 2) до 2,8% (2 секция) и 4,0% (1 секция). Также из-за разделения секций суммарные токи нелинейных нагрузок ЭП клетей стана (2 секция ГПП-2 – 1 и 3 клети, 1 секция ГПП-2 – 2 и 4 клети, натяжная моталка) снижаются, что создает дополнительный эффект по снижению 23-ей гармоники в напряжении на секциях ГПП-2. В результате этого K_U на секциях 1 и 2 ГПП-2 снижаются с уровня 6,7-7,3% (объединенные 1 и 2 секции) до 5,0-5,7% (2 секция) и 5,6-4,9% (1 секция). Таким образом, при существующей конфигурации сети 10 кВ района ГПП-2 и текущих

настройках алгоритмов ШИМ активных выпрямителей ПЧ ЭП четырехклетьевого стана, второй режим электроснабжения с раздельной работой 1 и 2 секций РУ-10 кВ ГПП-2 с питанием от 2Т и 1Т обеспечивает улучшение качества напряжения с точки зрения суммарного коэффициента гармонических составляющих напряжения K_U. В напряжении сети 10 кВ по-прежнему содержатся высшие гармоники среднего частотного диапазона с n = 23-37 недопустимого уровня с коэффициентами составляющих (значениями амплитуд первой гармонических относительно гармоники) $K_{U(i)} > 1$, превышающих допустимые значения согласно ГОСТ 32144-2013. В соответствии с этим, необходима разработка технических мероприятий по исключению негативного влияния работы электроприводов четырехклетьевого стана на базе ПЧ-АВ на качество напряжения в распределительной сети 10 кВ района ГΠΠ-2.

Рисунок 2.4 - Мгновенные значения и гармонический состав напряжений и токов на секции 1 РУ-10 кВ ГПП2 при совместной работе секций 1 и 2 10 кВ ГПП-2 с питанием от 2Т при отключенных ЭП стана

Рисунок 2.5 - Мгновенные значения и гармонический состав напряжений и токов на секции 1 РУ-10 кВ РП-19 при совместной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 2Т при работающих на холостом ходу ЭП стана

Рисунок 2.6 - Мгновенные значения и гармонический состав напряжений и токов на секции 1 РУ-10 кВ РП-19 при совместной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 2Т при работе ЭП стана

Рисунок 2.7 - Мгновенные значения и гармонический состав напряжений и токов на секции 1 РУ-10 кВ РП-19 при совместной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 1Т при работающих на холостом ходу ЭП стана

Рисунок 2.8 - Мгновенные значения и гармонический состав напряжений и токов на секции 1 РУ-10 кВ РП-19 при совместной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 1Т при работе ЭП стана

Рисунок 2.9 - Мгновенные значения и гармонический состав напряжений и токов на секции 1 РУ-10 кВ РП-19 при раздельной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 1Т и 2Т при работающих на холостом ходу ЭП стана

Рисунок 2.10 - Мгновенные значения и гармонический состав напряжений и токов на секции 1 РУ-10 кВ РП-19 при раздельной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 1Т и 2Т при работе ЭП стана

Рисунок 2.11 - Мгновенные значения и гармонический состав напряжений и токов на секции 2 РУ-10 кВ РП-19 при совместной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 2Т при работающих на холостом ходу ЭП стана

Рисунок 2.12 - Мгновенные значения и гармонический состав напряжений и токов на секции 2 РУ-10 кВ РП-19 при совместной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 2Т при работе ЭП стана

Рисунок 2.13 - Мгновенные значения и гармонический состав напряжений и токов на секции 2 РУ-10 кВ РП-19 при совместной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 1Т при работающих на холостом ходу ЭП стана

Рисунок 2.14 - Мгновенные значения и гармонический состав напряжений и токов на секции 2 РУ-10 кВ РП-19 при совместной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 1Т при работе ЭП стана

Рисунок 2.15. Мгновенные значения и гармонический состав напряжений и токов на секции 2 РУ-10 кВ РП-19 при раздельной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 1Т и 2Т при работающих на холостом ходу ЭП стана

Рисунок 2.16. Мгновенные значения и гармонический состав напряжений и токов на секции 2 РУ-10 кВ РП-19 при раздельной работе секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от 1Т и 2Т при работе ЭП стана

Рисунок 2.17. Мгновенные значения и гармонический состав напряжений и токов на секции 1 РУ-10 кВ ГПП-2 при совместной работе секций 1 и 2 с питанием от

Рисунок 2.18. Мгновенные значения и гармонический состав напряжений и токов на секции 1 РУ-10 кВ ГПП-2 при совместной работе секций 1 и 2 с питанием от 1Т при работе ЭП стана

Рисунок 2.19. Мгновенные значения и гармонический состав напряжений и токов на секции 1 РУ-10 кВ ГПП-2 при раздельной работе секций 1 и 2 с питанием от 1Т

Рисунок 2.20. Мгновенные значения и гармонический состав напряжений и токов на секции 1 РУ-10 кВ ГПП-2 при раздельной работе секций 1 и 2 с питанием от 1Т и 2T при работе ЭП стана

Рисунок 2.21. Мгновенные значения и гармонический состав напряжений и токов на секции 2 РУ-10 кВ ГПП2 при совместной работе секций 1 и 2 с питанием от 2Т при работающих на холостом ходу ЭП стана

Рисунок 2.22. Мгновенные значения и гармонический состав напряжений и токов на секции 2 РУ-10 кВ ГПП2 при совместной работе секций 1 и 2 с питанием от 2Т при работе ЭП стана

Рисунок 2.23. Мгновенные значения и гармонический состав напряжений и токов на секции 2 РУ-10 кВ ГПП2 при раздельной работе секций 1 и 2 с питанием от 1Т и 2T при работающих на холостом ходу ЭП стана

Рисунок 2.24. Мгновенные значения и гармонический состав напряжений и токов на секции 2 РУ-10 кВ ГПП2 при раздельной работе секций 1 и 2 с питанием от 1Т и 2T при работе ЭП стана

Таблица 2.3-Результаты анализа гармонического состава напряжения и токов в сети 10 кВ района ГПП-2 ЧерМК ПАО «Северсталь» при различных режимах электроснабжения и рабочих режимов электроприводов четырехклетьевого стана

			Измере	ение в Р	V-10 kB	РП-19			M 3Mepe	PHILE B. P.	V-10 KB	ГПП2	
		Секция	я 1 (ф.4)	(реги-	Секция	2 (ф.7) (анали-	Секция	2 (ф.13)	(реги-	Секция	1 (ф.19) (анали-
f	Режим работы	стратој	DEL POC-	3 и NI)	3aTop E	LSPEC (<u> 3</u> 4420)	стратор	bi POC-C	3 n NI)	3aTop E	LSPEC C	(4420)
Режим электроснабжения	главных ЭП четырех-	$U_{\pi(l)}, \kappa B$	$U_{\phi(l),\kappa B}$	$I_{\phi(l)m,A}$	$U_{\pi(l)}, \kappa B$	$U_{\phi(l),\kappa B}$	$I_{\phi(1)m,A}$	$U_{n(l)}, \kappa B$	$U_{\phi(l),\kappa B}$	$I_{\phi(l)m,A}$	$U_{\pi(l)}, \kappa B$	$U_{\phi(l),\kappa B}$	$I_{\phi(1)m,A}$
	клетьевого стана	$K_{ m UII},\%$	$K_{\mathrm{U}\Phi},\%$	$K_{\mathrm{I}},\%$	$K_{ m UII},\%$	$K_{\mathrm{U}\Phi},\%$	$K_{\rm I}, \%$	$K_{\mathrm{UII}},\%$	$K_{\mathrm{U}\Phi},\%$	$K_{\rm I}, \%$	$K_{\mathrm{UII}},\%$	$K_{\mathrm{U}\Phi},\%$	$K_{\mathrm{I}}, \%$
		$n_{KU(i)\max}$	$\mathcal{H}KU(\mathbf{j})$ max	$\mathcal{H}KI(\underline{i})max$	$n_{K \cup (j) \max}$	$n_{K \cup (1) \max}$	<i>nK</i> I(j)max	$n_{KU(i)\max}$	$n_{KU(i)\max}$	$\mathcal{H}KI(\mathbf{j})max$	$n_{K\cup(1)\max}$	nkU(1)max	<i>∕</i> 1KI(į)max
1. Совместная ра-	II4 c AB ACS6000 HI	10.36	5.98	ı	10.36	5.98	ı	10.36	5.98	ı	10.36	5.98	
оота 1 и 2 секции ГПП-2 с питани-	клетей №№1-4 и моталки отключены	1.00	1.01	1	1.00	1.01	•	1.00	1.01	ı	1.00	1.01	
ем от 2Т	(рис. 1.4)	I	ı	ı	ı	ı	ı	ı	ı	ı	ı		ı
	II4 c AB ACS6000 HI	10.31	5.97	14.8	10.30	5.99	9.6	10.38	5.99	1537	-		
	клетей №№1-4 работают на холостом холу	16.32	16.43	379.04	22.07	25.54	985.1	6.62	6.68	8.28	-	•	1
	(рис. 1.5, 1.11, 1.21, 1.23)	23; 109	23; 109	11	23; 133	23; 133	23	23	23	23			
	IIV ¢ AB ACS6000 ∋II	9.86	5.72	1090	9.94	5.69	978.4	10.29	5.95	2529	I	1	ı
	клетей №№1-4 работают пол нагиузкой	15.83	15.69	6.20	18.25	19.95	7.98	6.74	69.9	4.73	•		•
	(рис. 1.6, 1.12, 1.22, 1.24)	23; 97	23; 97	11; 13	23; 131	23; 131	23	23	23	23	I		ı
	IIH c AB ACS6000 HI	9.98	5.77	9.1	10.15	5.81	9.8	-	-	-	10.01	5.78	1530
7 Совместная na-	клетей №№1-4 работают на холостом холу	14.52	14.74	676.02	26.46	30.06	976.5	-	-	-	7.37	7.27	7.94
 совисства ра- бота 1 и 2 секций 	(рис. 1.7, 1.13, 1.17)	23; 107	23; 107	11	23; 133	23; 133	23	-	-	-	23	23	23
ГШП-2 с питани-	II4 c AB ACS6000 HI	9.85	5.71	1090	9.93	5.68	978.4	-	•	ı	9.99	5.77	2800
em ot 11	клетей №№1-4 работают пол нагрузкой	15.82	15.68	6.20	18.24	19.94	7.99	-	-	-	7.13	7.14	3.98
	(рис. 1.8, 1.14, 1.18)	23; 97	23; 97	11; 13	23; 131	23; 131	23	-		·	23	23	23
	IIH c AB ACS6000 HII	10.48	6.07	12.1	9.92	5.76	9.7	10.54	6.10	533	10.10	5.84	1100
3 Разпедьная ра-	клетей №№1-4 работают на холостом холу	15.75	16.00	520.13	27.77	23.50	981.0	5.00	4.95	13.39	5.64	5.44	5.97
бота 1 и 2 секций	(рис. 1.9, 1.11, 1.15, 1.19)	23;107	23; 107	11	23; 131	23; 131	23	23; 37	23; 37	11; 23	23; 133	23; 133	23
ГШТ-2 с питани-	II4 c AB ACS6000 HI	10.42	6.05	1095	9.83	5.69	978.4	10.50	6.08	1037	10.06	5.81	1572
em ot 11 H 21	клетеи леле1-4 раоотают пол нагрузкой	17.55	17.57	7.54	25.34	25.48	7.78	5.71	5.64	8.98	4.90	4.89	4.15
	(рис.1.10, 1.12, 1.16,1.20)	23; 107	23; 107	11	23; 131	23; 131	23	23; 37	23; 37	11; 23	23; 37	23; 37	23

2.2. Экспериментальные исследования частотных характеристик сети 10 кВ района ГПП-2 ЧерМК ПАО «Северсталь» при различных режимах электроснабжения

Для определения частотных характеристик сети района ГПП-2 и РП-19 был проведен спектральный анализ снятых ранее осциллограмм тока и напряжения при работе ПЧ-АВ стана. Для построения зависимости $Z_{\text{СЕТИ}}(f)$ необходимо поделить амплитудные значения высших гармоник напряжения на соответствующие значения гармоник тока. Анализ частотных характеристик позволил выявить наличие параллельных резонансов в определенных частотных диапазонах $Z_{\text{СЕТИ}}(f)$ и сделать выводы об их влиянии на форму напряжения на секциях РУ-10 кВ РП-19 и ГПП-2.

Расчеты показали, что суммарное значение емкости всех кабельных линий распределительной сети 10 кВ района ГПП-2 относительно секций 1 и 2 ГПП-2 в первом режиме электроснабжения (совместная работа секций ГПП-2 с питанием от 1Т или 2Т) составляет $C_{\Sigma_{1,2сек.}} = 21,71$ мкФ (приложение 4, табл. П.4.2). Для второго режима электроснабжения (раздельная работа секций 1 и 2 ГПП-2 с питанием от 1Т и 2Т) суммарная емкость относительно первой секции составляет $C_{\Sigma 1 \text{сек.}} = 11,63 \text{ мк} \Phi$, для второй секции – $C_{\Sigma 2 \text{сек.}} = 10,08$ мкФ. Полученные значения емкостей являются очень что с учетом индуктивного сопротивления высокими, сетевых трансформаторов 1Т и 2Т $X_{TP} = 0,177$ Ом обуславливает расположение основных резонансов относительно секций 1-2 ГПП-2 в области частот: 1) $f_{\text{PE3.cek1.2}} \approx 1450$ Гц (*n* = 29) – для первого режима электроснабжения; 2) $f_{\text{PE3.cek1}} \approx 1950$ Гц (n = 39) и $f_{\text{PE3.cek1}}$ $\approx 2100 \ \Gamma$ ц (*n* = 42) – для второго режима электроснабжения. Расчетные частотные характеристики $Z_{CETU}(f)$ для секций 1 и 2 и двух вариантов режимов электроснабжения приведены на рис. 2.25, в-е. На характеристики наложены столбчатые диаграммы гармоник напряжения, полученные на основании записанных экспериментальных данных.

Необходимо отметить, что в отличие от других случаев возникновения резонансных явлений в распределительных сетях среднего напряжения, которые имели место на предприятиях АО «Сортовой завод Балаково», ООО «Абинский электрометаллургический завод» и др., характер резонансных явлений в сетях 10 кВ района ГПП-2 ЧерМК ПАО «Северсталь» значительно более сложный. Из-за использования токоограничивающих реакторов в ячейках ГПП-2 с индуктивными сопротивлениями $X_{P,\Phi A3} = 0,29-0,35$ Ом в частотных характеристиках относительно секций 1 и 2 ГПП-2 помимо основных резонансов в районе $f_{PE3} = 1450-2100$ Гц присутствуют множественные резонансы, образованные взаимным влиянием токоограничивающих реакторов и суммарными емкостями кабелей отдельных фидеров ГПП-2. Так для первого режима электроснабжения (совместная работа 1-2 секций ГПП-2 с питанием от 1Т или 2Т) присутствуют дополнительные резонансы с частотами в районе: 2650 Гц, 3150 Гц, 3650 Гц, 4050 Гц, 5150 Гц, 5750 Гц, 6350 Гц (рис. 2.6, в и г). Для второго режима электроснабжения ситуация следующая (рис. 2.6, д и е): 1) 1 секция – 3150 Гц, 4100 Гц, 5400 Гц, 6200 Гц, 2) 2 секция – 3150 Гц, 3850 Гц, 5050 Гц, 5750 Гц. Необходимо отметить, что амплитуды дополнительных резонансов в 2-10 раз ниже, чем у основных резонансных пиков, расположенных в диапазоне $f_{PE3} = 1450-2100$ Гц, что обуславливает незначительное усиление гармоник высокого порядка, генерируемых ПЧ-АВ АСЅ6000 в составе главных электроприводов четырехклетьевого стана ППП ХП, в отличие от ситуации на секция РУ-10 кВ РП-19, описанной ниже.

Следует отметить, что в отличие от частотных характеристик, полученных для секций РУ-10 кВ ГПП-2, характеристики Z_{СЕТИ}(*f*) для 1 и 2 секций РУ-10 кВ РП-19 значительно разнятся. Причиной этому является взаимное влияние емкостей КЛ, отходящих от ф.1 и 21 ГПП-2 и индуктивностей токоограничивающих ректоров, расположенных в тех же ячейках. Характеристики $Z_{CETU}(f)$ для секций 1 и 2 РП-19 для первого режима электроснабжения (совместная работа секций 1 и 2 ГПП-2 с питанием от 1T или 2T) приведены на рис. 2.6, а и б. Как видно из рисунков в характеристиках Z_{CETU}(f) присутствует одна сконцентрированная область подъема импеданса сети, расположенная в широком диапазоне частот: 1) для секции 1 - от 4550 Гц (n = 91) до 6550 Гц (n = 131), с максимумом около 5400 Гц (n = 108); 2) для секции 2 – от 5450 Гц (n = 109) до 7150 Гц (n = 143), с двумя максимумами 6100 Гц (*n* = 122) и 6600 Гц (*n* = 132). При раздельной работе секций (рис. 2.7 и 2.8) характер резонансов в частотных характеристиках изменяется незначительно. Амплитуды резонансных пиков в обоих режимах высокие – от 800 до 2000 Ом, что является причиной усиления незначительных по амплитуде гармоник высокого порядка, генерируемых ПЧ-АВ ACS6000, и сильного ухудшения качества напряжения на секциях РП-19.

Рисунок 2.25 - Сравнительный анализ расчетных частотных характеристик сети и гармонического состава напряжения на секциях РУ-10 ГПП-2 и РП-19

ППП ХП для различных режимов электроснабжения

2.3. Анализ влияния используемых алгоритмов ШИМ ПЧ-АВ ASC6000 главных электроприводов четырехклетьевого стана ЧерМК ПАО «Северсталь»

На третьем этапе исследований с помощью портативного регистратора Flash Recorder и токовых клещей Fluke 43B были получены мгновенные значения фазного тока трансформаторов тока в ячейках 1, 3, 8, 10, 11 РП-19 РУ-10 кВ рис. 2.26. Данные ячейки непосредственно питают согласующие трансформаторы 10/3,165 кВ преобразователей частоты ПЧ-АВ клетей № 1, 3, 2, 4 и натяжной моталки. Запись трансформаторов значений согласующих мгновенных токов на входе осуществлялась с частотой дискретизации 30 кГц, которая является достаточной для выполнения анализа используемых алгоритмов ШИМ ПЧ-АВ ACS6000 в составе главных электроприводов четырехклетьевого стана. Мгновенные значения и соответствующий им гармонический состав токов для режимов работы ПЧ-АВ на холостом ходу и под нагрузкой приведены на рис. 2.27 и 2.28.

Анализ силовых схем и параметров силового оборудования ПЧ-АВ ACS6000 показал, что ПЧ-АВ клети №1 и натяжной моталки имеют шестипульсную схему питания и выпрямления, а ПЧ-АВ клетей № 2,3,4 выполнены по двенадцатипульсной схеме. В случае шестипульсной схемы выпрямления гармонический ряд должен включать в себя гармоники, удовлетворяющие уравнению $6k \pm 1$, а в случае с двенадцатипульсной схемой – гармоники, удовлетворяющие уравнению $12k \pm 1$, где k – натуральное число.

В активном выпрямителе ПЧ электропривода клети №1 (ячейка 1 РУ-10 кВ РП-19) используется алгоритм широтно-импульсной модуляции ШИМ с числом переключений за четверть периода, равным трем, что соответствует частоте коммутации вентилей АВ, равным 150 Гц. Спектральный анализ фазного тока ячейки 1 (рис. 2.25 и 2.26, а и е) показывает наличие в гармоническом составе значимых гармоник с номерами $n = 5, 11, 13, 19, 23, 25, 29, 31, 37, 43, а также небольшие пики высокочастотных гармоник, с номерами 107-133 находящиеся в окрестностях резонанса токов 1 секции (<math>n_{pe3} = 91-131$). Наиболее значимыми гармониками из указанных являются: 11-я (56,8 A), 13-я (36,3 A), 19-я (24,3 A), 23-

я (23,2 А). Низкое значение гармоник с номерами 7 и 17 указывает на применение алгоритма ШИМ, направленного не на удаление выделенных гармоник, а на снижение суммарного коэффициента гармонических составляющих K_U (THD) напряжения на входе активного выпрямителя при низкой частоте переключения силовых вентилей.

В активном выпрямителе ПЧ клети №2 (ячейка 8 РП-19) используется алгоритм ШИМ с числом переключений за четверть периода, равным семи, что соответствует частоте коммутации вентилей АВ, равным 350 Гц. Спектральный анализ фазного тока ячейки 8 (рис. 2.27 и 2.28, б и ж) показывает наличие в гармоническом составе значимых гармоник, с номерами n = 23, 25, 35, 37, 47, 49,59, 61, 133, а также небольшие пики высокочастотных гармоник, с номерами n =121-157, находящиеся в окрестностях токового резонанса 2 секции РУ-10 кВ РП-19 ($n_{pes} = 109-143$). Наиболее значимыми из них являются 23-я (32,4 A), 25-я (5,8 A), 35-я (6,4 A), 37-я (13,7 A), 49-я (7,8 A) а также высокочастотная 133-я (6,8A). Низкое значение гармоник с номерами 11 и 13 указывает на применение алгоритма ШИМ с удалением (уменьшением) выделенных гармоник, при этом, как правило, усиливается соседняя с удаленной гармоника. Поскольку схема ПЧ-АВ клети №2 двенадцатипульсная, то этой гармоникой является n = 23.

В активном выпрямителе ПЧ клети №3 (ячейка 3 РП-19), как и в предыдущем случае, используется алгоритм ШИМ с числом переключений за четверть периода, равным семи, что соответствует частоте коммутации вентилей АВ, равным 350 Гц. Наиболее значимыми из них являются 11-я (16,2 А), 13-я (11,7 А), 23-я (43,4 А), 25я (9,8 A), 35-я (8,9 A), 37-я (17,7 A), 49-я (8,2 A), присутствуют высокочастотные гармоники, с номерами 121 (2,5 А), 133 (2,2 А) и другие, с менее значимой величиной тока. Высокое значение всех значимых для 12-ти пульсной схемы неоптимальной гармоник указывает на использование таблицы углов переключений, требующей оптимизации для улучшения суммарного коэффициента гармонических составляющих напряжения и токов на входе активного выпрямителя.

В активном выпрямителе ПЧ клети №4 (ячейка 10 РП-19) также используется алгоритм ШИМ с числом переключений за четверть периода, равным семи, что соответствует частоте коммутации вентилей АВ, равным 350 Гц. Спектральный анализ фазного тока ячейки 10 (рис. 2.26 и 2.27, *г* и *и*) показывает наличие в гармоническом составе значимых гармоник, с номерами n = 23, 25, 35, 37, 133, а также небольшие пики других высокочастотных гармоник, с номерами 121-171 находящимися в окрестностях токового резонанса 2 секции РУ-10 кВ РП-19 (n_{pe3} =109-143). Наиболее значимыми из них являются 23-я (32,9 A), 25-я (6,8 A), 35-я (7,0 A), 37-я (13,5 A), 49-я (7,9 A) а также высокочастотная 133-я (6,08A). Низкое значение гармоник с номерами 11 и 13 указывает на применение алгоритма ШИМ с удалением выделенных гармоник, при этом, как было отмечено ранее, наблюдается усиление соседней с удаленной гармоники с n = 23. Исходя из анализа гармонического состава токов клетей №2, 4 можно предположить, что ШИМ АВ данных приводов используют одни и те же углы переключения.

В активном выпрямителе ПЧ электропривода моталки (ячейка 11 РП-19) используется алгоритм ШИМ с числом переключений за четверть периода, равным девяти, что соответствует частоте коммутации вентилей АВ, равным 450 Гц. С точки зрения эксплуатации высокая частота переключений IGCT модулей приводит к росту потерь на коммутацию. Как правило, в ПЧ-АВ среднего напряжения частота коммутации не превышает 250-350 Гц, однако существуют примеры успешной эксплуатации (без учета экономической составляющей) ПЧ-АВ, с частотой коммутации до 550 Гц. Спектральный анализ фазного тока ячейки 11 (рис. 2.26 и 2.27, д и к) показывает наличие в гармоническом составе значимых гармоник, с номерами n = 23, 29, 37, 47, 49, 133, а также небольшие пики других высокочастотных гармоник, с номерами 131-139, находящимися в окрестностях токового резонанса 2 секции РУ-10 кВ РП-19 (n_{pes} =109-143). Наиболее значимыми из них являются 23-я (20,0 A), 29-я (30,1 A), 37-я (4,4 A), 47-я (4,9 A), 49-я (7,8 A) а также высокочастотная 133-я (2,7A). Низкое значение гармоник с номерами 5, 7, 11, 13, 17, 19 указывает на применение алгоритма ШИМ с удалением (смягчением)

выделенных гармоник, при этом, так же, как и в предыдущих случаях, усиливается гармоника *n* = 23.

На основании выполненного анализа можно сделать заключение, что напряжения в РП-19 вызывают низкоамплитудные основные искажения высокочастотные гармоники тока, генерируемые активными выпрямителями, которые накладываются на резонанс токов, вызванный взаимодействием ёмкости кабельных линий от ГПП-2 до РП-19 и индуктивностями токоограничивающих реакторов в яч. 1, 21 ГПП-2. Поскольку данный резонанс имеет высокий пик с Z_{PE3} со значением 800-2000 Ом (в зависимости от секции и режима электроснабжения), то даже при минимальном значении высокочастотных гармоник напряжения и тока на входе АВ на резонансных частотах на секции 1 и 2 РП-19 будут возникать существенные гармоники напряжения. Поскольку при любой настройке алгоритма ШИМ активного выпрямителя присутствует практически полный спектр гармоник (6k±1 или 12k±1) изменение алгоритмов ШИМ не сможет улучшить гармонический состав напряжения на секциях РП-19 без дополнительных мер по коррекции параметров участка электрической сети от ГПП-2 до РП-19, образованного токоограничивающими реакторами и кабельными линиями.

Основные искажения напряжения на ГПП-2 вызывают гармоники тока, вплоть до 50, попадающие на резонанс токов в среднечастотной области (пик резонанса, в зависимости от секции и режима, находится в диапазоне от 29-ой до 23-я 42-ой гармоники. При ЭТОМ доминирующей является гармоника, присутствующая в токах всех приводов стана. ШИМ с семью переключениями за четверть периода позволяет, в случае с двенадцатипульсной схемой, исключить до 3-х пар гармоник, либо смягчить их примерно в том же диапазоне. При изменении алгоритмов ШИМ активных выпрямителей для уменьшения амплитуд гармоник 23, 25, усилятся ближайшие к ней 13 и 35, которая находится ближе всего к экстремуму резонанса.

Рисунок 2.26 - Силовые схемы исследуемых ПЧ-АВ ACS6000 ЭП четырехклетьевого стана с указанием точек подключения мобильного регистратора электрических сигналов Flash Recorder

Рисунок 2.27. Анализ токов электроприводов клетей №№1-4 и моталки четырехклетьевого стана ППП ХП при работе ПЧ-АВ на холостом ходу

Рисунок 2.28 - Анализ токов электроприводов клетей №№1-4 и моталки четырехклетьевого стана ППП ХП при работе клетей

2.4. Выводы по главе 2

1. Экспериментальные исследования качества напряжения на секциях 10 кВ ГПП-2 при И РП-19 ЧерМК ПАО «Северсталь» различных режимах электроснабжения показали, что основные искажения вызываются работой электроприводов с ПЧ-АВ четырехклетьевого стана холодной прокатки. При отключенных ПЧ-АВ стана K_U не превышает 1,01%. При включенных ПЧ-АВ, в зависимости от режима электроснабжения ГПП-2 и режима работы стана, K_U на секциях ГПП-2 достигает 5,71-7,37% на секциях РП-19 15,75-30,06%, при допустимом по ГОСТ 5%. Из-за сильных искажений напряжения 10 кВ были зафиксированы случаи выхода из строя чувствительных электроприемников, например устройств бесперебойного питания, что приводило, помимо прочего, к длительному простою оборудования.

2. Высокое значение коэффициента искажения синусоидальности кривой напряжения объясняется наличием в сети 10 кВ сложных резонансных явлений, вызванных взаимодействием индуктивности сетевого трансформатора 110/10 кВ и токоограничивающих реакторов в ячейках ГПП-2 с емкостью протяженных кабельных линий, обеспечивающих питание электроприемников. Область основного резонанса сети 10 кВ совпадает с областью генерирования высших гармоник тока ПЧ-АВ четырехклетьевого прокатного стана. Протекание высших гармоник тока через высокоомное сопротивление отдельных участков частотной характеристики вызывает падение напряжения на соответствующих частотах, что приводит к сильным искажениям напряжения в точке общего подключения электроприемников.

3. Анализ алгоритмов ШИМ, применяемых в мощных ПЧ-АВ четырехклетьевого стана, показал, что текущие параметры ШИМ АВ не являются оптимальными, с точки зрения влияния ПЧ-АВ на качество напряжения в питающей сети. Изменение параметров ШИМ данных электроприемников может существенно снизить токи высших гармоник, попадающих на резонансную область питающей сети, что позволит улучшить форму кривой напряжения на секциях ГПП-2. Данная задача может быть решена за счет разработки методики определения параметров ШИМ АВ для адаптации к резонансным явлениям.

ГЛАВА 3. РАЗРАБОТКА ИМИТАЦИОННОЙ МОДЕЛИ ЭЛЕКТРОТЕХНИЧЕСКОГО КОМПЛЕКСА «СИСТЕМА ВНУТРИЗАВОДСКОГО ЭЛЕКТРОСНАБЖЕНИЯ – ЭЛЕКТРОПРИВОДЫ ПРОКАТНОГО СТАНА С ПЧ-АВ»

Для более детального исследования влияния работы главных электроприводов прокатного стана ППП ХП ЧерМК с ПЧ-АВ на питающую сеть и для последующего определения наиболее эффективных способов улучшения качества напряжения на общих секциях шин 10 кВ ГПП-2 необходима разработка комплексной имитационной модели. Данная модель должна адекватно учитывать частотные характеристики сети 10 кВ при различных режимах электроснабжения, а также наиболее точно воспроизводить работу ПЧ-АВ прокатного стана во всем диапазоне нагрузок.

Для решения этой задачи на основе известных положений разработаны имитационная модель сети 10 кВ и модели ПЧ-АВ четырех клетей и моталок с последующим синтезом в комплексную модель «Система внутризаводского электроснабжения – электроприводы прокатного стана с ПЧ-АВ».

3.1. Разработка имитационной модели распределительной сети 10кВ района ГПП-2 ЧерМК ПАО «Северсталь»

В математическом пакете Matlab с приложением Simulink разработана имитационная модель распределительной сети 10 кВ района ГПП-2 (рис. 3.1 - 3.2). В модели учтены: 1) параметры питающей сети 110 кВ (на основании предоставленных значений токов ($I_{K3.3\Phi} = 12,7 - 23,6$ кА) и мощностей ($S_{K3.3\Phi} = 2527 - 4695$ МВА) трехфазного короткого замыкания в минимальном и максимальном режимах); 2) параметры сетевых трансформаторов 110/10 кВ 1Т МВА и реакторов в ячейках 1-27 (приложение 2, табл. П.2.1, П.2.2); 3) параметры всех кабельных линий 10 кВ от ГПП-2 до РП-220, РП-101, РП-92, ПС-33, РП-214, РП-103, ПС-56, РП-155, ПС-54А, РП-91, ПС-13, а также всех КЛ, отходящих от указанных подстанций к трансформаторам КТП и другой высоковольтным электроприемникам; 4) параметры электроприводов клетей №№1-4 и моталки четырехклетьевого стана в виде управляемых источников напряжения и токов, адекватно воспроизводящих гармонический состав напряжения и токов на входе преобразователей; 5) параметры электроприемников других цеховых РП и подстанций с упрощенным представлением в виде пассивных активноиндуктивных нагрузок с фиксированными параметрами, определенными на основании предоставленных суточных графиков изменения активной и реактивной мощностей, а также действующего значения тока.

Для адекватного анализа частотных характеристик при моделировании кабельных линий были использованы П-образные схемы замещения (одинарные П-секции) с учетом фактических значений активных сопротивлений, индуктивностей и емкостей кабелей, определенных на основании марки, сечения и длины кабеля, а также числа параллельных кабелей в одной фазе, указанными в кабельных журналах, предоставленных специалистами ЧерМК ПАО «Северсталь».

Удельные и эквивалентные параметры кабельных линий, а также результаты расчета суммарных емкостей кабелей относительно 1 и 2 секций ГПП-2 для двух режимов электроснабжения (1 режим – совместная работа 1 и 2 секций ГПП-2 с питанием от 1Т или 2Т, второй режим – раздельная работа секций с питанием от 1Т и 2Т) приведены в приложениях 3 и 4 (табл. П.3.1 – П.3.13, табл. П.4.1 – П.4.2). При моделировании сети 10 кВ, а также при расчете суммарных емкостей КЛ, из рассмотрения исключались отключенные кабели, они отмечены в табл. П.3.1 – П.3.13 серым цветом. Также при моделировании и расчетах эквивалентных емкостей учтены случаи параллельного и последовательно включения кабелей разных марок и сечения, например, КЛ от ф.1,21 ГПП-2 до ввода РП-19 (параллельное включение) и КЛ от ф.7А, Б, ф.15А, Б, ф.17, ф.21, ф.25Б ГПП-2 и РП-19 ф.24 (последовательное включение). Указанные кабельные линии обозначены в табл. П.3.1 – П.3.13 синим цветом.

Рисунок 3.1 - Имитационная модель электрической сети 10 кВ района ГПП-2 ЧерМК ПАО «Северсталь», реализованная в математическом пакете Matlab с приложением Simulink

Рисунок 3.2 - Имитационные модели КЛ и электрических нагрузок

3.2. Разработка имитационной модели ПЧ-АВ АСS6000 главных электроприводов четырехклетьевого стана ППП ХП ЧерМК ПАО «Северсталь»

Для разработки имитационной модели ПЧ-АВ ACS6000 необходимо определить углы переключения вентилей AB. Экспериментальное определение углов переключения IGCT-тиристоров подробно рассмотрим на примере электропривода клети №1 четырехклетьевого стана ППП XП ЧерМК ПАО «Северсталь». Определение углов коммутации IGCT-тиристоров активного выпрямителя производилось следующим образом:

1) в математическом пакете Matlab с приложением Simulink осуществлялся импорт исходного массива мгновенных значений тока, записанного на первичной стороне согласующего трансформатора 10/3,165 кВ с помощью быстродействующего регистратора электрических сигналов ; 2) из тока фазы А i_A (рис. 3.3, *a*) путём смещения на 120° был получен ток фазы В i_{B^*} , затем определена разность данных токов i^*_{AB} ; 3) далее сигнал i^*_{AB} был продифференцирован (рис. 3.3, б); 4) к производной сигнала разности токов был суммирован синусоидальный сигнал (рис. 3.3, в), таким образом, чтобы получить линейное напряжение на входе активного выпрямителя (рис. 3.3, г); 5) на основании анализа прямоугольных участков в восстановленном линейном напряжении U_{J} , образованных коммутацией силовых ключей, определялись моменты и углы коммутации силовых ключей (рис. 3.4); поскольку линейное напряжение представляет собой сумму двух фазных напряжений, определение моментов переключения силовых ключей было удобно производить при изменении напряжения с $U_{DC}/2$ до U_{DC} .

При помощи восстановленной осциллограммы линейного напряжения были получены следующие углы коммутации силовых ключей: $a_1 = 25,2^\circ$; $a_2 = 37,8^\circ$; $a_3 = 48,6^\circ$. Аналогичным образом по фазному току (рис. 3.5, а), было сформировано напряжения для режима работы на холостом ходу (рис. 3.5, б).

Для данного режима работы были определены следующие углы коммутации силовых ключей: $a_1 = 23, 2^\circ; a_2 = 37, 3^\circ; a_3 = 48, 1^\circ.$

Учитывая то, что ЭП клети №1 реализован по 6-пульсной схеме, а в гармоническом спектре потребляемого тока отсутствует 5 и 7 гармоники было
сделано заключение об использовании алгоритма ШИМ с удалением 5 и 7 гармоники. По данному условию с помощью специализированного алгоритма были рассчитаны возможные начальные значения углов переключения силовых ключей (табл. 3.1).

Расчёт значений начальных углов переключения силовых ключей AB производился в программном пакете Matlab с применением встроенной функции *fsolve*, позволяющей отыскать возможные решения нелинейной системы уравнений. В случае ЭП клети №1 система уравнений имела следующий вид:

$$\begin{cases} \cos(\alpha_1) - \cos(\alpha_2) + \cos(\alpha_3) = \mu; \\ \cos(5\alpha_1) - \cos(5\alpha_2) + \cos(5\alpha_3) = 0; \\ \cos(7\alpha_1) - \cos(7\alpha_2) + \cos(7\alpha_3) = 0. \end{cases}$$
(3.1)

где α₁...α₃ – углы переключения силовых ключей; μ - коэффициент модуляции.

Первое уравнение системы уравнений (3.1) определяет уровень первой гармоники тока, потребляемого AB. Начальный коэффициент модуляции в уравнении принимался равным $\mu_{\text{нач}} = 0,83$. Второе и третье уравнения данной системы определяют уровень 5 и 7 гармоник потребляемого тока, т.е. в рассматриваемом случае они должны быть полностью исключены из гармонического спектра. Углы $\alpha_1 \dots \alpha_3$ являются переменными и их начальные значения должны быть заданы при вызове функции. При наличии решения данной системы уравнений с углами близкими к начальным функция выдаёт конечный результат и соответствующий код завершения операции.

Для автоматизации расчётов в математическом пакете Matlab была разработана программа, позволяющая осуществлять перебор всего возможного диапазона начальных значений углов переключения. Опытным путём было установлено, что шаг в 5° является достаточным для отыскания большинства возможных решений. Расчёты с использованием более малых шагов значительно увеличивают необходимое на поиск решений время, что особенно критично при большом количестве переключений за четверть периода. Для фильтрации выводимых результатов программа анализировала код завершения функции, физическую реализуемость работы при отысканных углах ($0 < \alpha_1 < \alpha_2 < \alpha_3 < 90^\circ$), а

также проверяла равенство первого выражения коэффициенту модуляции. В случае выполнения всех условий решение записывалось в итоговую таблицу. Далее полученные данные обрабатывались на предмет повторения результатов, т.е. идентичные варианты решения системы уравнений сводятся к списку уникальных.

Рисунок 3.3 - Экспериментальное определение углов переключения силовых ключей активного выпрямителя преобразователя частоты электропривода клети

№1 прокатного стана ППП ХП ЧерМК ПАО «Северсталь»

Таблица 3.1 - Начальные значения углов переключения силовых ключей для SHE PWM с 3-мя переключениями за четверть периода с удалением 5 и 7 гармоник

$\mathcal{N}_{\mathcal{O}}$	<i>a</i> ₁ , °	<i>a</i> ₂ , °	<i>a</i> ₃ , °	μ, ο.e.
1	13,79	73,97	82,25	0,83
2	22,04	37,63	45,97	0,83

Рисунок 3.4 - Восстановленное линейное напряжение на входе активного выпрямителя ПЧ-АВ ACS6000 ЭП клети №1 при работе прокатного стана с

Рисунок 3.5 - Определение углов переключения силовых ключей активного выпрямителя преобразователя частоты при работе электропривода **клети №1** на холостом ходу по линейному напряжению (б), полученному из фазного тока (а)

Наиболее подходящим вариантом значений начальных **УГЛОВ** ИЗ представленных в табл. 3.1 является второй. Для данного варианта была рассчитана таблица углов переключения во всем возможном диапазоне (табл. 3.2). Расчёт углов переключения в зависимости от коэффициента модуляции производился также с помощью функции *fsolve*. Однако, в данном случае начальные значения углов переключения не изменялись, а были заданы в программе в виде констант. Поиск решений системы уравнений (1.1) осуществлялся при изменении коэффициента модуляции в диапазоне от 0,3 до 1,0. Аналогично этапу отыскания начальных значений углов переключения после программной проверки на адекватность данных результаты вычислений сохранялись в таблицу. Как будет показано далее, данная таблица используется в математической модели ПЧ-АВ ACS6000 для адекватного воспроизведения гармонического состава потребляемого тока при различных режимах работы электропривода. В дальнейшем расчет таблиц углов переключений силовых ключей АВ для других ЭП клетей и моталки четырехклетьевого стана проводился таким же образом. При этом учитывались используемое количество переключений силовых ключей за четверть период и номера гармоник подлежащих исключению.

Таблица 3.2 - Восстановленная таблица углов переключения IGCTтиристоров АВ ЭП клети №1 для алгоритма удаления выделенных гармоник (SHE PWM) с 3 переключениями за четверть периода с удалением 5 и 7 гармоник

a_{l}, \circ	<i>a</i> ₂ , °	<i>a</i> ₃ , °	μ, ο.e.
54,63378	64,06719	80,87921	0,30
54,44019	64,14347	80,52794	0,31
54,24517	64,21209	80,17014	0,32
54,04858	64,27230	79,80518	0,33
53,85029	64,32325	79,43235	0,34
53,65012	64,36398	79,05083	0,35
53,44785	64,39339	78,65971	0,36
53,24324	64,41021	78,25796	0,37
53,03599	64,41300	77,84437	0,38
52,82574	64,40006	77,41760	0,39
52,61207	64,36943	76,97605	0,40
52,39445	64,31879	76,51790	0,41
52,17223	64,24542	76,04102	0,42
51,9446	64,14610	75,54291	0,43
51,71057	64,01694	75,02064	0,44
51,46884	63,85329	74,47071	0,45

Продолжение таблицы 3.2

a_{l} , °	<i>a</i> ₂ , °	<i>a</i> 3, °	μ, ο.e.
51,21778	63,64950	73,88898	0,46
50,95526	63,39862	73,27050	0,47
50,67843	63,09210	72,60932	0,48
50,38351	62,71930	71,89831	0,49
50,06528	62,26686	71,12892	0,50
49,71652	61,71797	70,29105	0.51
49,32697	61.05143	69.37300	0.52
48,88184	60.24076	68,36191	0.53
48,35974	59.25366	67.24530	0.54
47,72982	58.05329	66.01467	0.55
46,94967	56.60399	64.67311	0.56
45,96786	54.88648	63.24756	0.57
44,74043	52,92601	61,80051	0.58
43.26725	50.82108	60.42388	0.59
41 62329	48 73399	59 20101	0.60
39 93567	46 82422	58 16511	0.61
38 31799	45 18294	57 29841	0.62
36 83172	43 82620	56 56134	0.63
35.49250	42 72638	55 91579	0,63
34 29129	42,72050	55 33278	0,65
33 20997	41,04150	54 79207	0,05
32 22929	40 55806	54 27985	0,00
31,33186	40,00615	53 78657	0,07
30,50303	30 72230	53 30547	0,08
20 73074	39,72230	52 83161	0,09
29,75074	20 17161	52,85101	0,70
29,00322	28 06022	51 80106	0,71
20,51051	28 90260	51,41966	0,72
27,00412	28,60200	50.04158	0,73
27,03009	28,54522	50,45748	0,74
20,45160	28 44190	40.06402	0,75
25,84308	28 24726	49,90402	0,70
23,27314	38,25612	49,45005	0,77
24,71738	38,25012	48,0014	0,78
23,63032	38,06067	47 83966	0,79
23,03052	37 94324	47,05500	0,80
22,56606	37,80206	46 63093	0.82
22,03661	37.62689	45.96809	0.83
21,50527	37.40445	45.25251	0.84
20,96841	37,11683	44,46906	0,85
20,42110	36,73887	43,59630	0,86
19,85588	36,23345	42,60268	0,87
19,26050	35,54287	41,43974	0,88
18,61229	34,57123	40,02879	0,89
17,86297	33,14463	38,23303	0,90
16,88617	30,90546	35,79330	0,91
15,21512	26,95156	32,17316	0,92
9,140648	17,69684	26,44312	0.93

В дальнейшем расчет таблиц углов переключений силовых ключей AB для других ЭП клетей и моталки четырехклетьевого стана проводился таким же образом. При этом учитывались используемое количество переключений силовых ключей за четверть период и номера гармоник подлежащих исключению.

Определение углов переключения АВ преобразователя частоты электропривода клети №2 при работе стана производилось по аналогичной методике (рис. 3.6).

Рисунок 3.6 - Определение углов переключения силовых ключей AB по линейному напряжению (б), полученному из фазного тока (а) при работе электропривода клети №2 под нагрузкой

Значения углов для режима работы электропривода клети №2 под нагрузкой: $a_1 = 10,1^\circ$; $a_2 = 14,8^\circ$; $a_3 = 26,3^\circ$; $a_4 = 36,1^\circ$; $a_5 = 39,7^\circ$; $a_6 = 52^\circ$; $a_7 = 56,3^\circ$.

Аналогичным образом были определены углы для режима работы электропривода клети №2 на холостом ходу (рис. 3.7).

В результате обработки были получены следующие углы: $a_1 = 13,4^\circ$; $a_2 = 18^\circ$; $a_3 = 30,7^\circ$; $a_4 = 40^\circ$; $a_5 = 43,7^\circ$; $a_6 = 54^\circ$; $a_7 = 59,5^\circ$.

Рисунок 3.7 - Определение углов переключения силовых ключей AB по линейному напряжению (б), полученному из фазного тока (а) при работе электропривода клети №2 на холостом ходу

Необходимо отметить, что, несмотря на то, что электропривод клети №2 имеет 12-пульсную схему питания, а АВ работает по алгоритму ШИМ с 7 переключениями за четверть периода, в гармоническом спектре потребляемого тока присутствует 23 гармоника. Исходя из этого, было сделано заключение, что алгоритм ШИМ настроен на удаление гармоник, присутствующих в 6-пульсных решениях, а именно 5, 7, 11, 13, 17, 19. По данному условию были рассчитаны углы переключения силовых ключей, показанные в табл. 3.3. Наиболее подходящим вариантом для приведенных наборов начальных углов является последний. Для данного варианта была рассчитана таблица углов переключения во всем возможном диапазоне изменения коэффициента модуляции (табл. 3.4).

Таблица 3.3 - Начальные значения углов переключения для SHE PWM с 7 переключениями за четверть периода с удалением 5, 7, 11, 13, 17, 19 гармоник

N₀	<i>a</i> ₁ , °	<i>a</i> ₂ , °	<i>a</i> 3, °	<i>a</i> 4, °	<i>a</i> 5, °	<i>a</i> ₆ , °	<i>a</i> ₇ , °	μ, ο.е.
1	9,24	15,61	24,62	32,91	38,003	66,93	70,1	0,83
2	13,96	17,93	20,92	50,27	53,31	81,29	85,98	0,83
3	14,04	18,23	25,8	33,93	38,67	50,25	53,29	0,83

79

Таблица 3.4 - Восстановленная таблица углов переключения АВ ЭП клетей №2 и №4 для алгоритма удаления выделенных гармоник (SHE PWM) с 7 переключениями за четверть периода с удалением 5, 7, 11, 13, 17, 19 гармоник

<i>a</i> ₁ , °	<i>a</i> ₂ , °	<i>a</i> 3, °	<i>a</i> 4, °	<i>a5</i> , °	<i>a</i> ₆ , °	<i>a</i> 7, °	μ, o.e.
53,14	56,48	64,07	71,90	78,18	86,02	89,98	0,31
52,93	56,25	63,64	71,48	77,23	84,55	88,84	0,32
52,48	55,62	62,80	70,26	75,39	82,67	87,61	0,33
51,47	54,13	61,25	68,04	72,97	81,07	86,67	0,34
50,03	52,24	59,71	66,22	71,40	80,35	86,13	0,35
48,69	50,68	58,71	65,20	70,58	80,06	85,77	0,36
47,62	49,56	58,06	64,59	70,09	79,92	85,46	0,37
46,77	48,74	57,59	64,18	69,73	79,85	85,18	0,38
46,08	48,13	57,22	63,87	69,45	79,80	84,91	0,39
45,51	47,67	56,91	63,62	69,20	79,76	84,63	0,4
45,02	47,30	56,63	63,40	68,97	79,72	84,34	0,41
44,60	47,01	56,37	63,21	68,76	79,67	84,04	0,42
44,23	46,78	56,13	63,03	68,56	79,60	83,72	0,43
43,90	46,58	55,89	62,86	68,35	79,51	83,38	0,44
43,59	46,42	55,66	62,69	68,15	79,38	83,01	0,45
43,30	46,28	55,43	62,52	67,93	79,21	82,59	0,46
43,03	46,15	55,20	62,33	67,70	78,99	82,12	0,47
42,77	46,03	54,95	62,13	67,45	78,68	81,58	0,48
42,51	45,90	54,69	61,89	67,16	78,25	80,93	0,49
42,25	45,76	54,39	61,58	66,81	77,64	80,13	0,5
41,96	45,57	54,01	61,14	66,32	76,75	79,09	0,51
41,60	45,24	53,46	60,40	65,54	75,38	77,69	0,52
40,99	44,48	52,39	58,91	64,10	73,27	75,77	0,53
39,52	42,41	50,12	56,15	61,81	70,76	73,74	0,54
37,16	39,49	47,98	54,03	60,22	69,19	72,47	0,55
35,21	37,49	46,90	53,05	59,37	68,27	71,63	0,56
33,83	36,27	46,25	52,45	58,75	67,53	70,92	0,57
32,79	35,48	45,75	51,95	58,16	66,84	70,24	0,58
31,96	34,94	45,28	51,44	57,55	66,12	69,56	0,59
31,25	34,53	44,79	50,87	56,87	65,37	68,86	0,6
30,61	34,17	44,23	50,18	56,10	64,58	68,15	0,61
29,99	33,82	43,56	49,33	55,25	63,76	67,43	0,62
29,37	33,42	42,74	48,34	54,33	62,96	66,73	0,63
28,73	32,93	41,77	47,25	53,42	62,22	66,07	0,64
28,05	32,34	40,69	46,18	52,60	61,57	65,47	0,65
27,35	31,67	39,60	45,25	51,91	61,02	64,91	0,66
26,65	30,98	38,59	44,51	51,35	60,55	64,39	0,67
25,96	30,31	37,70	43,96	50,89	60,13	63,89	0,68
25,30	29,67	36,91	43,57	50,49	59,72	63,39	0,69
24,68	29,09	36,22	43,28	50,12	59,31	62,88	0,7
24,08	28,56	35,61	43,06	49,77	58,87	62,35	0,71
23,51	28,07	35,04	42,88	49,41	58,39	61,78	0,72
22,96	27,61	34,50	42,72	49,01	57,83	61,16	0,73
22,42	27,16	33,98	42,54	48,55	57,19	60,48	0,74
21,89	26,70	33,45	42,31	48,00	56,44	59,72	0,75

a_1, \circ	a_2, \circ	a_3, \circ	a_4, \circ	a_5, \circ	a_6, \circ	a_7, \circ	μ, o.e.
21,34	26,21	32,87	41,96	47,28	55,55	58,89	0,76
20,74	25,63	32,21	41,42	46,31	54,52	58,00	0,77
20,08	24,91	31,41	40,55	45,03	53,42	57,09	0,78
19,29	23,96	30,40	39,33	43,50	52,41	56,25	0,79
18,36	22,80	29,25	37,95	41,98	51,67	55,55	0,8
17,37	21,60	28,13	36,74	40,74	51,23	55,01	0,81
16,41	20,51	27,19	35,81	39,81	50,99	54,55	0,82
15,52	19,60	26,41	35,12	39,08	50,85	54,13	0,83
14,71	18,85	25,77	34,57	38,48	50,75	53,71	0,84
13,99	18,24	25,21	34,11	37,94	50,65	53,27	0,85
13,34	17,72	24,71	33,69	37,43	50,51	52,78	0,86
12,73	17,28	24,23	33,29	36,93	50,27	52,18	0,87
12,16	16,87	23,75	32,85	36,39	49,83	51,37	0,88
11,58	16,44	23,23	32,30	35,74	48,87	50,07	0,89
10,88	15,76	22,40	31,13	34,51	46,08	47,05	0,9

Продолжение таблицы 3.4

Как было отмечено ранее, гармонический состав тока, потребляемого ПЧ-АВ ACS6000 в составе электропривода клети №4, является схожим гармоническому составу тока электропривода клети №2. В настройках ШИМ активных выпрямителях данных преобразователей используется одинаковая частота коммутации силовых ключей и номера удаляемых гармоник. Тем не менее, с целью получения максимальной адекватности математической модели ПЧ-АВ электропривода клети №4, также был проведено определение углов коммутации IGCT-тиристоров с использованием экспериментальной осциллограмм токов на первичной стороне согласующего трансформатора 10/3,157/3,153 кВ. Результаты анализа углов коммутации приведены на рис. 1.6 и 1.7.

Значения углов для режима работы ПЧ-АВ ЭП клети №4 под нагрузкой следующие: $a_1 = 10,5^\circ$; $a_2 = 18^\circ$; $a_3 = 23,5^\circ$; $a_4 = 33,8^\circ$; $a_5 = 38,1^\circ$; $a_6 = 47,5^\circ$; $a_7 = 53,7^\circ$. Для режима холостого хода углы коммутации равны: $a_1 = 10,8^\circ$; $a_2 = 14,7^\circ$; $a_3 = 26,7^\circ$; $a_4 = 34,1^\circ$; $a_5 = 40,3^\circ$; $a_6 = 52,6^\circ$; $a_7 = 57,1^\circ$. Значения углов являются схожими с результатами, полученными для ЭП клети №2.

Рисунок 3.8 - Определение углов переключения силовых ключей AB при работе электропривода клети №4 по линейному напряжению (б), полученному из

Рисунок 3.9 - Определение углов переключения силовых ключей АВ при работе электропривода клети №4 на холостом ходу по линейному напряжению (б), полученному из фазного тока (а)

82

Отдельное внимание при исследовании углов коммутации IGCT-тиристоров было уделено электроприводу клети №3, поскольку, гармонический состав тока на первичной стороне согласующего трансформатора 10/3,157/3,153 кВ, в отличие от электроприводов клетей №2 и №4, содержит все значимые гармоники для 12-ти пульсной схемы питания (n = 11, 13, 23, 25, 35, 37 и т.д.), что не является правильным решением с точки зрения значения суммарного коэффициента гармонических составляющих тока K_I . Определение углов для АВ электропривода клети №3 при работе стана производилось по аналогичной методике, как и для вышеупомянутых электроприводов клетей №№1,2 и 4. Результаты анализа приведены на рис. 3.10 и 3.11.

Рисунок 3.10 - Определение углов переключения силовых ключей AB при работе электропривода клети №3 по линейному напряжению (б), полученному из фазного тока (а)

Для режима работы ПЧ с АВ ЭП клети №3 под нагрузкой были получены следующие углы: $a_1 = 0,72^\circ$; $a_2 = 5,27^\circ$; $a_3 = 17,98^\circ$; $a_4 = 25,2^\circ$; $a_5 = 30,94^\circ$; $a_6 = 41,04^\circ$; $a_7 = 45,34^\circ$. Для режима холостого хода значения углов равны: $a_1 = 0,67^\circ$; $a_2 = 5,02^\circ$; $a_3 = 17,2^\circ$; $a_4 = 24,5^\circ$; $a_5 = 30,2^\circ$; $a_6 = 41,02^\circ$; $a_7 = 47,5^\circ$. Как видно из результатов расчета, значения углов коммутации IGCT-тиристоров значительно отличаются от значений $a_{1.7}$, определенных для ЭП клетей №2 и №4, имеющих аналогичную мощность и параметры схемы питания.

Рисунок 3.11 - Определение углов переключения силовых ключей АВ при работе электропривода клети №3 на холостом ходу по линейному напряжению (б), полученному из фазного тока (а)

На завершающем этапе был выполнен анализ углов коммутации IGCTтиристоров для ПЧ-АВ в составе электропривода моталки. Данный электропривод имеет 6-ти пульсную схему питания. Для уменьшения суммарного коэффициента гармонических составляющих потребляемого тока в данном случае используется 9 переключений за четверть периода. Результаты анализа углов переключения AB при работе стана и на холостом ходу приведены на рис. 3.12 и 3.13.

Для режима работы ПЧ с AB ACS6000 ЭП моталки под нагрузкой были получены следующие углы: $a_1 = 1,43^\circ$, $a_2 = 4,31^\circ$, $a_3 = 14,4^\circ$, $a_4 = 18,7^\circ$, $a_5 = 25,2^\circ$, a_6

= 32,4°, $a_7 = 36,7°$, $a_8 = 45,3°$, $a_9 = 47,7°$. Для режима холостого хода углы следующие: $a_1 = 0,47°$; $a_2 = 4,09°$; $a_3 = 14,2°$; $a_4 = 18,5°$; $a_5 = 24,9°$; $a_6 = 32,2°$; $a_7 = 35,7°$; $a_8 = 45,1°$; $a_9 = 48,7°$.

Как будет показано далее все восстановленные значения углов для различных режимов работы ЭП клетей №№1-4 и моталки, а также рассчитанные таблицы углов переключения, обеспечивают хорошую адекватность комплексной математической модели сети 10 кВ района ГПП-2 и главных электроприводов четырехклетьевого стана с точки зрения соответствия гармонического состава напряжений на секциях РУ-10 кВ ГПП-2 и РП-19 в различных режимах работы электропривода и режимах электроснабжения.

С использованием экспериментально определенных углов переключения IGCT-тиристоров AB преобразователей частоты ACS6000 в математическом пакете Matlab с приложением Simulink были реализованы имитационные модели активных выпрямителей, состоящие из управляемых источников ЭДС, включенных последовательно с моделями понизительных трансформаторов Т1-Т5 10/3,165 кВ, учитывающих количество вторичных обмоток и их группу соединения, а также кабельных линий от РУ-10 кВ РП-19 ДО данных трансформаторов. Данные комплексы из вышеперечисленных элементов, полученные для каждого ЭП клети №№1-4 и моталки (рис. 3.14-3.16), были интегрированы в разработанную ранее модель распределительной сети 10 кВ района ГПП-2.

Сигналы для управляемых источников ЭДС, моделирующих напряжение на входе активных выпрямителей, формируются в упрощенной модели системы управления AB, включающей в себя пропорционально-интегральные регуляторы ортогональных составляющих (РТ I_d и РТ I_q) входного тока AB, датчики напряжения питающей сети (ДН), блок фазовой автоподстройки частоты (ФАПЧ или PLL), фильтр нижних частот (ФНЧ) для фильтрации сигналов обратных связей по ортогональным составляющим тока, блок преобразования координат abc/dq0, блок dq0/ $\mu\theta$ для расчета коэффициента модуляции μ и угла θ .

Рисунок 3.12 - Определение углов переключения силовых ключей AB при работе электропривода **моталки** под нагрузкой по линейному напряжению (б), полученному из фазного тока (а)

Рисунок 3.13 - Определение углов переключения силовых ключей AB при работе электропривода **моталки** на холостом ходу по линейному напряжению (б),

полученному из фазного тока (a)

электропривода клети №1, интегрированная с моделью сети 10 кВ района ГПП-2

Рисунок 3.15 -Функциональная схема имитационной модели ПЧ-АВ ACS6000 электропривода клетей №№2-4, интегрированная с моделью сети 10 кВ

района ГПП-2

Рисунок 3.16 - Функциональная схема имитационной модели ПЧ-АВ ACS6000 электропривода моталки, интегрированная с моделью сети 10 кВ района ГПП-2

Для компенсации перекрестных связей в системе управления AB реализован блок БКПС. Для формирования импульсов переключения вентилей реализована таблица углов переключения, а также блок логики с реализацией логических выражений, указанных на рис. 3.14-3.16.

При имитационном моделировании режимы работы активных выпрямителей (работа на холостом ходу и под нагрузкой) реализовывались за счет задания соответствующих амплитудных значений активной составляющей тока $I_{d,3}$, определенных на основании анализа экспериментальных осциллограмм токов ЭП клетей №№1-4 и моталки с учетом коэффициентов трансформации силовых трансформаторов 10/3,165 кВ (табл. 3.5). Другими словами, величины задания $I_{d,3}$ для каждого АВ ЭП клетей №№1-4 и моталки принимались равными амплитудным значениям первых гармоник тока, вычисленных ранее при разложении в ряд Фурье экспериментальных осциллограмм токов на входе АВ. Задание на реактивную

составляющую тока для всех моделируемых AB принималось равным нулю ($I_{q.3} = 0$).

Таблица 3.5 - Уставки ортогональных составляющих тока AB, использованные при моделировании режимов работы ПЧ-АВ ACS6000 в составе ЭП клетей №№1-4 и натяжной моталки ППП ХП ЧерМК ПАО «Северсталь»

		Режим работы главных ЭП						
	Veco	четырехклетьевого стана						
	уровень	ПЧ-АВ АСЅ60	00 работают	ПЧ-АВ ACS6000 работают				
Паименование ЭП	напряжен	на холост	ом ходу	под наг	рузкой			
	ия, кр	Succession Las A	Значение <i>I</i> _{q.3} ,	Значение <i>I</i> _{d.3} ,	Значение <i>I</i> _{q.3} ,			
		Значение $I_{d.3}$, А	А	А	А			
	10,0	4,36	0,00	499,40	0,00			
1. ЭП КЛЕГИ №1	3,165	13,78	0,00	1577,88	0,00			
	10,0	6,38	0,00	378,90	0,00			
2. 911 KJIETU J\≌2	3,165	20,16	0,00	1197,16	0,00			
	10,0	6,48	0,00	592,50	0,00			
5. ЭП КЛЕГИ №5	3,165	20,47	0,00	1872,04	0,00			
	10,0	11,48	0,00	644,60	0,00			
4. ЭП КЛЕГИ №4	3,165	36,27	0,00	2036,65	0,00			
	10,0	9,73	0,00	152,90	0,00			
5. ЭП МОГАЛКИ	3,165	30,74	0,00	483,10	0,00			

Необходимо отметить, что упрощенная реализация модели системы управления AB без использования внешнего контура регулирования напряжения в звене постоянного тока AB является допустимой при условии незначительного изменения напряжения в сети 10 кВ (не более ±5%), а также известных экспериментальных значениях токов на входе AB для режимов холостого хода и работы под нагрузкой. В этом случае имитационная модель может быть реализована на базе управляемых источников ЭДС без реализации детальной модели трехуровневого AB с тиристорными ключами. Благодаря этому стало возможным реализация комплексной модели сети 10 кВ района ГПП-2 и ЭП четырехклетьевого стана с приемлемой скоростью расчета и адекватностью, что будет показано далее.

3.3. Проверка адекватности комплексной имитационной модели при различных режимах работы электропривода и разных режимов электроснабжения

Для подтверждения адекватности результатов имитационного моделирования было проведено сопоставление расчетных и экспериментальных характеристик

 $Z_{CETU}(f)$. Результаты сравнения приведены на рис 3.17 и 3.18. Экспериментальные частотные характеристики были получены путем деления значений амплитуд значимых гармоник напряжения на значимые гармоники тока с одинаковыми Амплитуды гармоник получены проведенного номерами. ИЗ анализа гармонического состава напряжений и токов, представленным в главе 2. Как видно из рис. 3.17 и 3.18, имеет место приемлемое соответствие расчетных и экспериментальных частотных характеристик, что дает возможность использовать полученную имитационную модель для разработки мероприятий по исключению негативного влияния ПЧ-АВ ACS6000 в составе мощных электроприводов четырехклетьевого стана на качество напряжения сети 10 кВ района ГПП-2.

Для разработанной комплексной имитационной модели сети 10 кВ района ГПП-2 и главных электроприводов четырехклетьевого стана ППП ХП ЧерМК ПАО «Северсталь» была проведена проверка адекватности. Проверка выполнялась с помощью сравнительного анализа осциллограмм мгновенных значений фазных напряжений и их гармонического состава на секциях РУ-10 кВ ГПП-2 (РП-19), полученных в ходе проведения экспериментальных исследований в рамках 1 этапа НИОКР и при имитационном моделировании. Сопоставление результатов экспериментальных исследований с результатами моделирования проводилось для двух основных режимов электроснабжения ЭП четырехклетьевого стана (раздельная работа секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от трансформаторов 1Т и 2Т, совместная работа секций 1 и 2 РУ-10 кВ ГПП-2 с питанием от трансформаторов 1Т или 2Т) и двух режимов работы ПЧ-АВ в составе главных ЭП прокатного стана (работа под нагрузкой и холостой ход).

Основными критериями адекватности модели при сравнении экспериментальных данных и результатов расчета являлись: 1) расброс значений суммарных коэффициентов гармонических составляющих напряжений K_U для секций 1 и 2 РУ-10 кВ ГПП-2 и РП-19, определенных до 200-ой гармоники; 2) схожесть номеров значимых гармоник и значений коэффициентов *n*-ых гармонических составляющих $K_{U(n)}$ для секций 1 и 2 РУ-10 кВ ГПП-2 и РП-19; 3) близкие значения амплитуд первых гармоник фазных напряжений $U_{\Phi m(1)}$ на секциях 1 и 2 РУ-10 кВ ГПП-2 и РП-19.

90

Хорошая сходимость результатов моделирования с экспериментальными данными одновременно по трем вышеуказанным критериям являлась общим показателем адекватности модели. По первым двум критериям (K_U и K_{U(n)}) максимально допустимая величина отклонения результатов моделирования и экспериментальных данных была принята на уровне 10%. Величина отклонения для $U_{\Phi m(1)}$ не должна была превышать 2%, т.к. уровень напряжения сети 10 кВ при текущем исполнении имитационных моделей активных выпрямителей без регулятора звене постоянного тока должен быть напряжения В максимально близко напряжения, определенному соответствовать фактическому уровню ИЗ экспериментальных данных.

Рисунок 3.17 - Сравнение экспериментальной и расчетной частотных

характеристик относительно 1 секции РП-19

Рисунок 3.18 - Сравнение экспериментальной и расчетной частотных

характеристик относительно 2 секции РП-19

Результаты сравнительного анализа результатов моделирования с экспериментальными данными для режима работы электроприводов клетей №№1-4 и натяжной моталки под нагрузкой приведены на рис. 3.19 – 3.25.

Рисунок 3.19 - Сравнительный анализ мгновенных значений и гармонического состава фазных напряжений на 1 секции РУ-10 кВ ГПП-2 при раздельной работе секций 1 и 2 ГПП-2 при работающих главных ЭП стана, полученных экспериментально (а и в) и на имитационной модели (б и г)

Рисунок 3.20 - Сравнительный анализ мгновенных значений и гармонического состава фазных напряжений на 2 секции РУ-10 кВ ГПП-2 при раздельной работе секций 1 и 2 ГПП-2 при работающих главных ЭП стана, полученных экспериментально (а и в) и на имитационной модели (б и г)

Рисунок 3.21 - Сравнительный анализ мгновенных значений и гармонического состава фазных напряжений на 1 секции РУ-10 кВ РП-19 при раздельной работе секций 1 и 2 ГПП-2 при работающих ЭП клетей стана, полученных экспериментально (а и в) и на имитационной модели (б и г)

Рисунок 3.22 - Сравнительный анализ мгновенных значений и гармонического состава фазных напряжений на 2 секции РУ-10 кВ РП-19 при раздельной работе секций 1 и 2 ГПП-2 при работающих ЭП клетей стана, полученных экспериментально (а и в) и на имитационной модели (б и г)

Рисунок 3.23 - Сравнительный анализ мгновенных значений гармонического состава фазных напряжений на секциях 1 и 2 РУ-10 кВ ГПП-2 при их совместной работе для работающих ЭП клетей стана, полученных экспериментально (а и в) и на имитационной модели (б и г)

Рисунок 3.24 - Сравнительный анализ мгновенных значений гармонического состава фазных напряжений на 1 секции РУ-10 кВ РП-19 при совместной работе секций 1 и 2 ГПП-2 для работающих ЭП клетей стана, полученных экспериментально (а и в) и на имитационной модели (б и г)

94

Рисунок 3.25 - Сравнительный анализ мгновенных значений гармонического состава фазных напряжений на 2 секции РУ-10 кВ РП-19 при совместной работе секций 1 и 2 ГПП-2 для работающих ЭП клетей стана, полученных

экспериментально (а и в) и на имитационной модели (б и г)

Как видно из рисунков, разработанная имитационная модель обеспечивает приемлемую точность воспроизведения искажений гармонического состава на секциях РУ-10 кВ ГПП-2 и РП-19. Относительные отклонения значений ΔK_U находятся в диапазоне от 0 до 9,97%, при этом отклонения амплитуд первых гармоник напряжения $U_{\Phi m(1)}$ не превышают 1,1%. Для удобства значения K_U полученные экспериментально $K_{U_{3KCH}}$ и на имитационной модели $K_{U_{MOD}}$, а также относительная разность между ними ΔK_U сведены в таблицу 3.6. Для режима работы главных ЭП четырехклетьевого стана на холостом ходу относительные отклонения параметров K_U и $U_{\Phi m(1)}$ также не превышают установленные значения.

Таблица 3.6 – Результаты сравнения коэффициента искажения кривой напряжения, рассчитанного до 200-й гармоники, полученного экспериментальным путем и на имитационной модели

Режим	РУ-10 кВ РП-19						
электроснабжения	C	Секция	1	C	скция	2	
	Ки эксп,	К _{и мод,}	$\Delta K_{u,} \%$	Ки эксп,	К _{и мод,}	$\Delta K_{u,} \%$	
1. Совместная работа 1 и 2 секций ГПП-2	15,62	16,49	5,57	19,94	21,72	8,93	
2. Раздельная работа 1 и 2 секций ГПП-2	17,57	18,29	4,10	25,48	27,97	9,77	
Режим	РУ-10 кВ ГПП2						
электроснабжения	Секция 1 Секш					ая 2	
	Ки эксп,	К _{и мод,}	$\Delta K_{u,}$	Ки эксп,	К _{и мод,}	$\Delta K_{u,} \%$	
1. Совместная работа 1 и 2 секций ГПП-2	6,69	7,27	8,67	6,69	7,27	8,67	
2. Раздельная работа 1 и 2 секций ГПП-2		5 00	0.20	5 (1	5 (1	0	

3.4. Выводы по главе 3

1. Разработана комплексная имитационная модель «Система внутризаводского электроснабжения – электроприводы прокатного стана с ПЧ-AB», отличающаяся от известных возможностью исследования влияния резонансных явлений и работы ПЧ-АВ на качество напряжения в общей точке подключения электроприемников, а также отдельных точках сети при различных режимах электроснабжения и при различных режимах работы ПЧ-АВ.

2. Разработанная комплексная модель включает в себя имитационную модель сети 10 кВ района ГПП-2 ЧерМК ПАО «Северсталь», учитывающую параметры сетевого трансформатора 110/10 кВ, параметры кабельных линий и параметры электрических нагрузок. Параметры кабельных линий определены по кабельным журналам, для адекватного моделирования используется П-образная схема замещения. Параметры электрических нагрузок определены по графикам потребления электроэнергии. Модель позволяет задавать различную форму частотной характеристики сети, подключая или отключая отдельные элементы. Кроме того комплексная модель включает в себя имитационные модели главных электроприводов с ПЧ-АВ четырехклетьевого прокатного стана. Для ее реализации

из осциллограмм тока, потребляемого ПЧ-АВ, были получены реальные углы коммутации вентилей. Данная модель позволяет задавать различные режимы работы ПЧ-АВ меняя коэффициент модуляции.

3. Проведена проверка адекватности разработанной имитационной модели с помощью сравнения ранее полученных экспериментальных осциллограмм напряжения на секциях ГПП-2 и РП-19 с осциллограммами напряжения, полученных на комплексной модели. Относительные отклонения значений *K*^U при этом не превышают 10% что позволяет сделать вывод об адекватности модели «Система внутризаводского электроснабжения – электроприводы прокатного стана с ПЧ-АВ».

4. Поскольку данная модели имеет возможность работы с различными таблицами углов переключения вентилей AB на ней, в дальнейшем, будет проведена проверка эффективности методики определения оптимальных параметров ШИМ AB с целью улучшения качества напряжения в сети 10 кB в точке общего подключения электроприемников.

ГЛАВА 4. РАЗРАБОТКА МЕТОДИКИ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ ШИМ ПЧ-АВ С ДЛЯ АДАПТАЦИИ К РЕЗОНАНСНЫМ ЯВЛЕНИЯМ

способа обеспечения электромагнитной В качестве альтернативного ПЧ-АВ с питающей совместимости мощных сетью может стать усовершенствованная методика определения параметров ШИМ АВ. Данная методика, опираясь на информацию о частотной характеристике питающей сети 6-35 кВ, определяет основным критерием ориентацию на оптимизацию качества напряжения в сети 6-35 кВ в точке общего подключения электроприемников, а не оптимизацию формы кривой напряжения на входе ПЧ-АВ, как это обычно принято. На основе известных алгоритмов ШИМ АВ определяются новые таблицы углов коммутации вентилей, которые позволяют «обойти» резонансный диапазон в частотной характеристике сети, исключая, либо ослабляя гармоники тока АВ в заданном диапазоне. Этим достигается адаптация параметров ШИМ к резонансным явлениям.

4.1. Разработка способа выявления резонансов во внутризаводских сетях среднего напряжения за счет специальных тестовых воздействий со стороны ПЧ-АВ

Для определения наличия резонансных явлений в распределительных сетях 6-36 кВ, необходим частотной характеристики сети. анализ Частотная собой характеристика представляет зависимость полного комплексного сопротивления (импеданса) сети от частоты (номера гармоники). Указанную зависимость возможно получить двумя способами: расчетным путем, опираясь на параметры сетевого трансформатора, кабельных линий и т.д., а также экспериментальным путем. Во втором случае среди потребителей, подключенных к исследуемой сети, должен присутствовать активный элемент, генерирующий в сеть высшие гармоники тока, под действием которых с учетом нелинейного импеданса возникают высшие гармоники напряжения. Их соотношение позволяет экспериментально определить частотную характеристику сети Z(f).

В нашем случае в качестве такого активного элемента выступает преобразователь частоты с AB. С помощью AB можно сделать тестовое воздействие на питающую сеть при отсутствии нагрузки на преобразователь (в режиме холостого хода). В результате воздействия несинусоидального тока AB в напряжении сети должен появиться отклик соответствующего гармонического состава, благодаря чему возможно экспериментально восстановить частотную характеристику питающей сети. Путем нахождения отношений:

$$z_{(i)} = \frac{U_{m(i)}}{I_{m(i)}}$$
(4.1)

где $Z_{(i)}$ – значение импеданса питающей сети на частоте *i*-ой гармоники, $U_{m(i)}$, $I_{m(i)}$ – амплитуды напряжения и тока на частоте *i*-ой гармоники.

Для повышения точности анализа частотной характеристики необходимо уменьшение безтоковых интервалов в ряде Фурье, что можно достичь за счет использования только одного 6-пульсного выпрямительного модуля. Однако такой источник высших гармоник содержит не полный спектр нечетных гармоник напряжения, описываемый по формуле $6 \cdot n(\pm 1)$, т.е. в нем отсутствуют гармоники кратные трем. Кроме того, некоторые гармоники либо отсутствуют (например, при Selective Harmonic Elimination), либо их амплитуда очень мала (некоторые гармоники при Fixed Pulse Pattern Control), что затрудняет нахождение значений импеданса сети Z_(i) на данных частотах, рис. 4.1, 4.2. По этой причине точность экспериментального определения частотной характеристики сети будет невысокой.

Для более точного определения Z(f) необходимо, чтобы гармонический состав напряжения AB был более широким. Этого можно добиться изменением алгоритма коммутации вентилей. Если обеспечить перекос (несимметрию) фазных токов, например не подавая на вентили одной из фаз импульсы управления, либо коммутируя вентили двух или одной фазы только на нулевую точку звена постоянного тока, можно получить в фазном токе высшие гармоники, кратные трем. Одновременно оптимальным решением будет уменьшить частоту

коммутации AB до 50 Гц (одно переключение за четверть периода), для обеспечения наибольшего THD_v, рис. 4.3.

Рисунок 4.1 - Гармонический состав напряжения на входе AB при использовании Selective Harmonic Elimination

Рисунок. 4.2 - Гармонический состав напряжения на входе AB при использовании Fixed Pulse Pattern Control

50 Гц и перекосе фаз

В программном продукте MATLAB с приложение Simulink создана имитационная модель системы «Сеть с резонансом – AB». Проведено моделирование тестового воздействия AB на сеть с использованием стандартных алгоритмов ШИМ и модифицированного тестового алгоритма коммутации AB для трех различных резонансов, с экстремумом на частотах гармоник с номерами n = 20, 50 и 80 (низкочастотная, среднечастотная и высокочастотная области) рис. 4.4 (a, б, в).

При использовании стандартных алгоритмов ШИМ получен практически идентичный результат за исключением участков, где не наблюдается отклик в напряжении сети, усреднение которого представлено на рис. 4.6. При применении тестового алгоритма удалось снизить суммарное значение среднеквадратичной ошибки $\Delta z_{(f)}$ примерно в 1.5 раза, рис. 4.7.

$$\Delta z_{(f)} = \sqrt{\frac{1}{N} \cdot \sum_{i=0}^{N} (z_{Act(i)} - z_{Mod(i)})^2}$$
(4.2)

где: N – общее число сравниваемых значений фактического $z_{Act(i)}$ и моделируемого $z_{Mod(i)}$ импедансов сети на различных участках, соответствующих *i*-му опыту.

Как видно из таблицы 4.1, использование тестового воздействия AB со специальным алгоритмом ШИМ позволяет обеспечить приемлемую точность определения расположения резонанса в частотной характеристике питающей сети, что делает возможным корректное функционирование адаптивных алгоритмов

102

ШИМ в условиях изменяющихся режимов внутризаводского электроснабжения [74,75].

Рисунок 4.5 - Результат тестового воздействия стандартных алгоритмов ШИМ

Рисунок 4.6 - Результат тестового воздействия при применении тестового

алгоритма коммутации АВ

Таблица 4.1. Сравнение ошибки при экспериментальном определении частотной характеристики

	Область резонанса							
Алгоритм	1000 Гц 2500 Гц		4000 Гц	Среднее значение				
Fixed Pulse	17.41%	17.59%	18.79%	17.93%				
Selective	17.41%	17.59%	18.79%	17.93%				
Тестовый алгоритм	11.68%	11.06%	12.51%	11,75%				

4.2. Разработка методики определения параметров алгоритмов ШИМ на базе SHE PWM и SHM PWM с адаптацией к резонансным явлениям

Альтернативным способом обеспечения ЭМС ПЧ-АВ с питающей сетью могут стать адаптивные алгоритмы ШИМ AB, смягчающие гармоники тока, потребляемого ПЧ-АВ, расположенные в резонансной области частотной характеристики сети. В настоящее время фирмы-производители электроприводов с активными выпрямителями наиболее часто используют следующие алгоритмы ШИМ: Fixed Pulse Pattern Control (FPPC) – TOSHIBA-MITSUBISHI, Space Vector Pulse Width Modulation – SIEMENS, Selective Harmonic Elimination – ABB, CONVERTEAM, DANIELI Q-DRIVE.

Классическим алгоритмом ШИМ для электроприводов среднего напряжения с АВ является алгоритм SHE PWM. Данный алгоритм позволяет обнулить некоторое количество гармоник в напряжении AB. Чаще всего удалению подлежат гармоники низкого порядка, например, при 6-пульсной схеме выпрямления и частоте коммутации 250 Гц (рис. 4.7) (пять переключений за четверть периода питающего напряжения) можно удалить 5, 7 и 11, 13 гармоники. Уравнения, позволяющие определить углы для удаления перечисленных гармоник, представлены в (4.3). Минусом данного алгоритма является то, что нескомпенсированные гармоники не учитываются при расчете углов переключения и могут достигать очень высоких амплитуд.

Более эффективным алгоритмом PWM является Selective Harmonic Mitigation (SHMPWM), который ослабляет условие обнуления гармоник до заданного значения. Цель алгоритма не устранять некоторые гармоники, как в SHEPWM, а сохранить желаемые гармоники ниже максимально установленного значения.

Аналогично SHEPWM, алгоритм SHMPWM основывается на анализе уравнений зависимости гармонического состава кривой напряжения AB (4.4), где Ну – амплитуда гармоники j-го порядка, k–число переключений. Однако в SHMPWM задачей является не поиск нулей функции (4.3, 4.4), а поиск оптимального решения уравнений (4.5).

$$M_{a} = \frac{4}{\pi} [\sin\alpha_{0} - \sin\alpha_{1} + \sin\alpha_{2} - \sin\alpha_{3} + \sin\alpha_{4}],$$

$$0 = \frac{4}{5\pi} [\sin(5\alpha_{0}) - \sin(5\alpha_{1}) + \sin(5\alpha_{2}) - \sin(5\alpha_{3}) + \sin(5\alpha_{4})],$$

$$0 = \frac{4}{7\pi} [\sin(7\alpha_{0}) - \sin(7\alpha_{1}) + \sin(7\alpha_{2}) - \sin(7\alpha_{3}) + \sin(7\alpha_{4})],$$

$$0 = \frac{4}{11\pi} [\sin(11\alpha_{0}) - \sin(11\alpha_{1}) + \sin(11\alpha_{2}) - \sin(11\alpha_{3}) + \sin(11\alpha_{4})],$$

$$0 = \frac{4}{13\pi} [\sin(13\alpha_{0}) - \sin(13\alpha_{1}) + \sin(13\alpha_{2}) - \sin(13\alpha_{3}) + \sin(13\alpha_{4})],$$
(4.3)

где M_a коэффициент модуляции.

Рисунок 4.7 - РWM с пятью углами переключения.

Уравнения (4.5) получены из того же исходного уравнения (4.3), связующего амплитуду j-ой гармонической составляющей с углами переключения вентилей преобразователя частоты, при условии $a0 \le a1 \le ... \le ai \le \pi/2$.

. .

$$H_{j} = \frac{4}{j\pi} \sum_{i=0}^{k-1} [(-1)^{i} \sin(j\alpha_{i})], \qquad (4.4)$$

где j = 1, 2, ..., n.

Для решения задачи по созданию PWM, адаптивного к резонансам в питающей сети, уравнения для определения углов переключения были определены до 97-ой гармоники:

$$H_1 = \frac{4}{\pi} [\sin \alpha_0 - \sin \alpha_1 + \sin \alpha_2 - \dots + (-1)^n \sin \alpha_n],$$

$$E_{1} = M_{a} - |H_{1}| \le L_{1}$$

$$E_{5} = \frac{1}{|H_{1}|} \frac{4}{5\pi} [\sin(5\alpha_{0}) - \sin(5\alpha_{1}) + ... + (-1)^{n} \sin(5\alpha_{n})] \le L_{5}, \quad (4.5)$$

$$E_{7} = \frac{1}{|H_{1}|} \frac{4}{7\pi} [\sin(7\alpha_{0}) - \sin(7\alpha_{1}) + ... + (-1)^{n} \sin(7\alpha_{n})] \le L_{7},$$

$$\vdots$$

$$E_{97} = \frac{1}{|H_{1}|} \frac{4}{97\pi} [\sin(97\alpha_{0}) - \sin(97\alpha_{1}) + ... + (-1)^{n} \sin(97\alpha_{n})] \le L_{97}.$$

где *L*₁-*L*₉₉ – максимально допустимый уровень *i*-ой гармонической составляющей.

Цель состоит в поиске решения, близкого к аналитическому, которое получается с минимальной ошибкой или минимумом OF, т. е.

$$OF(\alpha_0, ..., \alpha_n) = \sum_{(i=1,5,7,...,97)} |E_i|$$
(4.6)

Чтобы обеспечить большую гибкость подхода, OF, представленное в (4.6), можно переписать следующим образом:

$$OF(\alpha_0, ..., \alpha_n) = \sum_{(i=1, 5, 7, ..., 97)} c_i(E_i) \cdot |E_i|$$
(4.7)

Коэффициенты *c_i* являются весовыми и определяют приоритет в смягчении той или иной *i*-ой гармонической составляющей. Они определяются нелинейной функцией:

$$if(E_i < L_i) c_i = 1$$

else $c_i = \lambda_p$ (4.8)

Если уровень искажений меньше максимально заданного - то весовой коэффициент $c_i = 1$. Если больше – то накладывается штрафной коэффициент λ_p , значение которого определяется в зависимости от необходимости смягчения каждой гармонической составляющей.

Для оптимизации OF могут быть применены различные алгоритмы оптимизации, такие, как рой частиц, муравьиный алгоритм, генетические алгоритмы. В данной статье для решения поставленной задачи был применен оптимизационный алгоритм имитации отжига.

Алгоритм SHMPWM с адаптацией к резонансным явлениям в сети был реализован для классической 6-пульсной схемы выпрямления. Суть реализованного алгоритма заключается в выборе набора заранее рассчитанных углов переключения, в зависимости от расположения экстремума частотной характеристики питающей сети среднего напряжения.

Для гармоник, расположенных в непосредственной близости от резонанса ($f_r \pm (0 - 250 \text{ Hz})$), максимально допустимый уровень L_i был установлен равным 1% от амплитуды E_l , а весовой коэффициент $c_i = 100$. Для гармоник, находящихся в диапазоне ($f_r \pm (250 - 500 \text{ Hz})$) - $L_i = 3\%$, $c_i = 50$. Для остальных гармоник L_i определен эмпирически и убывает, с возрастанием номера гармонической составляющей, $c_i = 10$

Для оценки эффективности предложенного алгоритма PWM в программном продукте MATLAB Simulink с библиотекой Sim Power Systems была собрана имитационная модель преобразователя частоты среднего напряжения 3,15 кВ и упрощенная модель сети среднего напряжения 10 кВ с резонансом токов, рис. 4.15. Упрощенная модель позволяет за приемлемое время расчета оценить влияние того или иного алгоритма ШИМ на питающую сеть. С помощью упрощенной модели возможно имитировать резонансы с различным расположением экстремумов. В блоке **Mains supply** реализована питающая сеть с параллельными резонансами для двух частот: 1000 Hz, 2860 Hz, рис. 4.8.

Блок Δ/Δ Transform peanusyer параметры схемы замещения согласующего трансформатора 10/3,15 кВ. Блок Measurement производит измерение электрических параметров, необходимых для работы Active Rectifier. В блоках Pulse system и Modified Pulse system реализованы алгоритмы переключения вентилей трехуровневого Active Rectifier.

Резонанс 1000 Hz расположен в области генерирования гармоник активными выпрямителями, использующими алгоритм SHEPWM с удалением гармоник 5, 7, 11, 13 (рис. 4.9 а). Подобный резонанс является основным в сложной резонансной картине, наблюдаемой на ГПП-2 ЧерМК.

Для адаптации ПЧ-АВ к такому резонансу возможны два варианта: а) - рассмотренный в ранних работах вариант с применением SHEPWM с удалением 17, 19, 23, 25 гармоник (рис. 4.10, b) и б) с применением SHMPWM, настроенным на смягчение гармоник в диапазоне 13 – 29 (рис. 4.10, c). Углы переключения определены для $M_a = 0.9$.

Рисунок 4.8 – Исследуемая упрощённая имитационная модель сеть – ПЧ-АВ

Из полученных результатов видно, что применение адаптивного алгоритма на основе SHMPWM снижает THD_{U10kV} , в сравнении с SHEPWM (5, 7, 11, 13) в 18,9 раз, а в сравнении с SHEPWM (17, 19, 23, 25) в 1,86 раз.

Резонанс 2860 Hz расположен в области генерирования гармоник активными выпрямителями, использующими алгоритм FPPC, имеющий лучший THD_{UAR} по сравнению с другими рассматриваемыми алгоритмами PWM (рис. 4.11 а). Однако при этом алгоритме коэффициент модуляции M_a остается постоянным во всех режимах работы, т.е. напряжение промежуточного звена постоянного тока не регулируется. Значимые гармоники смещены в область 50 – 75. Подобный резонанс в распределительной сети среднего напряжения наблюдался на металлургическом предприятии АО «Северсталь – сортовой завод Балаково».

Для адаптации ПЧ-АВ к резонансу на частоте 2860 Hz были рассмотрены два варианта: вариант с применением SHEPWM с удалением 53, 55, 59, 61 гармоник (рис. 4.11 b) и с применением SHMPWM, настроенным на смягчение гармоник в диапазоне 47 – 61 (рис. 4.11 с). Углы переключения определены для $M_a = 0.9$.
Из полученных результатов видно, что применение адаптивного алгоритма на основе SHMPWM снижает THD_{U10kV} , в сравнении с FPPC в 2,23 раз, а в сравнении с SHEPWM (53, 55, 59, 61) в 1,44 раз.

Рисунок 4.9 - Моделируемые резонансы в *а)* низкочастотной 1000 Гц и *b)* среднечастотной 2860 Гц областях

Рисунок 4.10 - Результат использования *a*) SHEPWM (5, 7, 11, 13), *b*) SHEPWM (17, 19, 23, 25), *c*) SHMPWM смягчение (13 -29).

Рисунок 4.11 - Результат использования a) Fixed Pulse Pattern Control, b) SHEPWM (53, 55, 59, 61) c) SHMPWM при наличии резонанса в среднечастотной области.

4.3. Выводы по главе 4

Разработан 1. новый способ выявления резонансных явлений BO внутризаводской сети 6-35 κВ использованием С специализированных воздействий со стороны мощных ПЧ-АВ. Данные воздействия создаются с помощью тестового алгоритма ШИМ с минимальной частотой коммутации вентилей и перекосом фаз. Тестовый алгоритм создает больший отклик в питающей сети, по сравнению со стандартными алгоритмами ШИМ, что более определить резонансные области позволяет точно В частотной характеристике сети 6-35 кВ на основании спектрального анализа осциллограмм тока и напряжения.

2. Разработана усовершенствованная методика определения оптимальных параметров ШИМ АВ на основании информации о частотной характеристике питающей сети. Применение параметров ШИМ АВ, определенных по разработанной методике, позволяет существенно улучшить гармонический состав напряжения питающей сети в точке общего подключения электроприемников и

снизить суммарный коэффициент гармонических составляющих напряжения до приемлемого уровня, за счет исключения либо минимизации гармоник напряжения на входе ПЧ-АВ, попадающих в резонансную область частотной характеристики сети.

3. Усовершенствованная методика определения оптимальных параметров ШИМ АВ для адаптации к резонансным явлениям включает в себя следующие этапы: 1) определение текущих параметров ШИМ АВ; 2) экспериментальное определение частотной характеристики питающей сети среднего напряжения $Z_{(f)}$ вплоть до 100-й или 200-й гармоники; 3) определение наиболее значимого экстремума в частотной характеристике, расположенного в окрестностях гармоник напряжения, генерируемых ПЧ-АВ; 4) расчет новых таблиц углов переключения вентилей АВ, исключающих либо ослабляющих гармоники напряжения ПЧ-АВ, попадающих в резонансную область.

4. Наибольший эффект адаптации к резонансным явлениям в низкочастотной области (до 2000 Гц) достигается за счет использования алгоритма ШИМ с удалением выделенных гармоник SHEPWM. В области более высоких частот желательно применение вариаций SHEPWM, например алгоритма ШИМ с ослаблением выделенных гармоник SHMPWM, который позволяет подобрать углы коммутации вентилей для ограничения большего количества гармоник напряжения AB.

ГЛАВА 5. ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ МЕТОДИКИ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ ШИМ ПЧ-АВ НА ДЕЙСТВУЮЩЕМ ОБОРУДОВАНИИИ ЭЛЕКТРОПРИВОДОВ СТАНА ХОЛОДНОЙ ПРОКАТКИ ППП ХП ЧерМК ПАО «СЕВЕРСТАЛЬ»

На завершающем этапе были проведено исследование способа улучшения гармонического состава напряжений на секциях РУ-10 кВ ГПП-2 за счет применения модифицированных алгоритмов ШИМ активных выпрямителей преобразователей частоты ACS6000 в составе главных электроприводов четырехклетьевого стана ППП ХП. Как было указано ранее, существующие алгоритмы ШИМ, используемые в АВ ЭП клетей №№1-4 и натяжной моталки, не являются оптимальными с точки зрения влияния на питающую сеть 10 кВ. В частности, было установлено, что:

1. В контроллере ШИМ АВ ЭП клети №1 реализован алгоритм ШИМ с удалением выделенных гармоник с номерами 5 и 7 с 3 переключениями за четверть периода; в результате в гармоническом спектре потребляемого тока присутствуют гармоники значимой амплитуды с n = 11, 13, 19, 23, 29, которые попадают в основную резонансную область в частотной характеристике сети 10 кВ относительно секций РУ-10 кВ ГПП-2 и усиливаются в фазных и линейных напряжениях сети.

2. Для АВ ПЧ ЭП клетей №2 и №4 применен алгоритм ШИМ с удалением выделенных гармоник с n = 5, 7, 11, 13, 17, 19 с 7 переключениями за четверть периода. Принимая во внимание, что данный ПЧ-АВ имеет 12-ти пульсную схему питания, использование алгоритма ШИМ с удаляемыми гармониками с n = 5, 7, 17, 19 в токе на входе преобразователя не является рациональным, поскольку в данном случае не используется эффект автоматического удаления указанных гармоник за счет 12-ти пульсной схемы питания. Также в токах, потребляемых из сети 10 кВ, присутствуют значимые гармоники с n = 23, 25, 35, 37 и другие, которые попадают в основную резонансную область в частотных характеристиках сети 10 кВ

относительно секций РУ-10 кВ ГПП-2, с последующим усилением в напряжении сети.

3. В потребляемом токе ЭП клети №3 присутствуют гармоники с *n* = 11, 13, 23, 25, 35, 37 и т.д., не характерные для 12-ти пульсной схемы выпрямления. С учетом того, что для данного АВ применяется ШИМ с 7 переключениями за четверть периода, используемые настройки ШИМ не являются оптимальными.

4. Для АВ ЭП натяжной моталки применяется ШИМ с удалением выделенных гармоник с 9 переключениями. В потребляемом токе присутствуют гармоники с n = 23, 29 и др., попадающие в основную резонансную область в частотных характеристиках сети 10 кВ относительно секций РУ-10 кВ ГПП-2. Учитывая, что при 9 переключениях существует возможность полного удаления 8-ми значимых гармоник с номерами n = 5, 7, 11, 13, 17, 19, 23, 25, текущие настройки ШИМ не являются оптимальными.

С учетом выявленных резонансных явлений в частотной характеристике сети 10 кВ относительно секций РУ-10 кВ ГПП-2, являющихся точками общего присоединения мощных ЭП четырехклетьевого стана, a также других чувствительных электроприемников, было предложено использование измененных настроек ШИМ активных выпрямителей преобразователей частоты ACS6000. Основным критерием оптимизации алгоритмов ШИМ в данном случае являлось отсутствие значимых гармоник низкого и среднего частотного диапазона в потребляемых токах ПЧ-АВ с целью исключения попадания в основную резонансную область частотной характеристики сети 10 кВ. Теоретические исследования показали, что возможно при использовании следующих настроек ШИМ АВ:

1) для АВ ЭП клети №1 и моталки, имеющих 6-ти пульсную схему питания, используется ШИМ с удалением выделенных гармоник с 9-ю переключениями за четверть периода, при этом в токах должны быть удалены первые 8 значимых гармоник с номерами n = 5, 7, 11, 13, 17, 19, 23, 25;

2) для АВ ЭП клетей №№ 2, 3, 4, имеющих 12-ти пульсную схему питания, используется ШИМ с 7-ю переключениями за четверть периода, при этом

в токах, потребляемых из сети 10 кВ, должны быть полностью удалены гармоники с *n* = 11, 13, 23, 25, 35, 37.

5.1. Реализация новых параметров ШИМ ПЧ-АВ ACS6000 для адаптации к резонансным явлениям в сети 10 кВ

Поскольку доступ к контроллеру ШИМ ПЧ-АВ АСЅб000 является закрытым, изменения в настройках ШИМ могут быть выполнены только специалистами компании АВВ. Для реализации предложенных изменений АВВ необходимо выполнить следующие мероприятия: 1) изменить число переключений IGCT-тиристоров для АВ ЭП клети №1 с 3-х до 9-ти за четверть периода (изменение частоты коммутации IGCT-тиристоров со 150 Гц до 450 Гц); 2) сохранить число переключений для IGCT-тиристоров АВ ЭП клетей №№2,3,4 на уровне 7-ми за четверть периода (350 Гц); 3) изменить в котроллерах ШИМ всех активных выпрямителей таблицы углов переключения тиристорных ключей на новые, обеспечивающие удаление гармоник с номерами n = 5, 7, 11, 13, 17, 19, 23, 25 для АВ ЭП клетей №№2,3,4.

Специалистами компании ABB при настройке ШИМ были использованы модифицированные таблицы улов переключения, описание которых приведено ниже.

Углы переключения силовых ключей для алгоритма ШИМ с удалением гармоник с n = 11, 13, 23, 25, 35, 37 в зависимости от коэффициента модуляции для алгоритма ШИМ с 7-ю переключениями за четверть периода представлены в табл. 5.1. Необходимо отметить, что в ходе исследований было проанализировано большое количество вариантов начальных значений углов на предмет присутствия решений В широких пределах изменения коэффициента модуляции μ. Представленное в табл. 5.1 решение описывает углы переключения в пределах изменения коэффициента модуляции от $\mu = 0,3$ до 0,97. Область изменения коэффициента модуляции от $\mu = 0$ до 0,3 не анализировалась, так как такой режим работы активного выпрямителя маловероятен. Как показали результаты имитационного моделирования, коэффициент модуляции *µ* в статических режимах

работы AB изменяется в небольших пределах и в зависимости от нагрузки автономного инвертора напряжения (АИН) составляет $\mu = 0.82-0.85$.

Углы переключения силовых ключей для алгоритма ШИМ с удалением гармоник с n = 5, 7, 11, 13, 17, 19, 23, 25 при использовании 9-ти переключений за четверть периода в табл. 5.2. Данное решение описывает углы переключения в пределах изменения коэффициента модуляции $\mu = 0,3-0,91$.

Реализация данных изменений, как будет показано далее, позволила существенно уменьшить величину суммарного коэффициента гармонических составляющих напряжения на секциях РУ-10 кВ ГПП-2 за счет исключения попадания значимых гармоник тока ПЧ-АВ АСЅ 6000 в основную резонансную область в частотной характеристике сети 10 кВ. Результаты анализа приведены на рис. 5.1-5.10. Из рисунков видно, что применение новых настроек ШИМ позволило исключить значимые гармоники тока с n = 5, 7, 11, 13, 17, 19, 23, 25 (для АВ ЭП клети №1 и моталки) и с n = 11, 13, 23, 25, 35, 37 для АВ ЭП клетей №№2,3,4. В этом случае значения суммарных коэффициентов гармонических составляющих тока АВ, рассчитанных до 200-ой гармоники, снизилось на 47,5 - 83,4% в зависимости от режима работы электроприводов.

Таблица 5.1 – Новые параметры ШИМ с удалением выделенных гармоник с 7 переключениями за четверть периода с удалением 11, 13, 23, 25, 35, 37 гармоник для ЭП клети 1 и моталки

<i>a</i> ₁ , °	<i>a</i> ₂ , °	<i>a</i> 3, °	<i>a</i> 4, °	<i>a5,</i> °	<i>a</i> ₆ , °	<i>a</i> 7, °	μ, ο.е.
62,096	62,992	68,377	70,911	74,201	78,404	80,014	0,30
61,276	62,252	67,83	70,201	73,474	77,521	79,164	0,31
60,52	61,564	67,06	69,194	72,578	76,525	78,280	0,32
59,692	60,752	66,02	67,991	71,701	75,624	77,492	0,33
58,844	59,901	65,04	67,038	71,062	74,939	76,848	0,34
58,089	59,17	64,296	66,416	70,581	74,364	76,273	0,35
57,444	58,576	63,713	65,974	70,136	73,788	75,704	0,36
56,878	58,071	63,196	65,583	69,646	73,155	75,117	0,37
56,347	57,598	62,674	65,148	69,054	72,449	74,515	0,38
55,812	57,103	62,091	64,604	68,346	71,716	73,934	0,39
55,251	56,558	61,439	63,963	67,592	71,065	73,425	0,40
54,678	55,988	60,783	63,334	66,913	70,578	73,005	0,41
54,132	55,451	60,196	62,812	66,362	70,242	72,653	0,42
53,638	54,980	59,698	62,406	65,913	70,005	72,336	0,43
53,198	54,580	59,276	62,089	65,530	69,817	72,031	0,44

Продолжение таблицы 5.1

<i>a</i> ₁ , °	<i>a</i> ₂ , °	<i>a</i> 3, °	<i>a</i> 4, °	<i>a5,</i> °	<i>a</i> ₆ , °	<i>a</i> 7, °	μ, o.e.
52,806	54,238	58,905	61,828	65,184	69,647	71,721	0,45
52,451	53,940	58,567	61,596	64,852	69,470	71,390	0,46
52,122	53,669	58,245	61,372	64,517	69,261	71,023	0,47
51,808	53,410	57,922	61,131	64,161	68,990	70,597	0,48
51,492	53,139	57,577	60,842	63,755	68,612	70,075	0,49
51,149	52,815	57,166	60,439	63,243	68,048	69,399	0,50
50,710	52,337	56,585	59,775	62,507	67,176	68,485	0,51
49,985	51,436	55,614	58,612	61,404	65,960	67,343	0,52
48,809	50,015	54,415	57,299	60,286	64,829	66,297	0,53
47,622	48,754	53,558	56,407	59,478	63,969	65,446	0,54
46,669	47,852	52,910	55,687	58,759	63,148	64,625	0,55
45,858	47,122	52,231	54,870	57,957	62,243	63,760	0,56
45,057	46,374	51,366	53,843	57,054	61,292	62,890	0,57
44,203	45,528	50,363	52,781	56,216	60,444	62,106	0,58
43,358	44,689	49,455	51,953	55,552	59,740	61,420	0,59
42,594	43,960	48,718	51,356	54,989	59,092	60,771	0,60
41,912	43,336	48,084	50,859	54,423	58,415	60,111	0,61
41,277	42,762	47,469	50,344	53,776	57,672	59,426	0,62
40,645	42,174	46,804	49,723	53,008	56,892	58,743	0,63
39,986	41,528	46,065	48,992	52,176	56,179	58,122	0,64
39,311	40,853	45,317	48,272	51,410	55,628	57,595	0,65
38,667	40,220	44,644	47,674	50,776	55,229	57,139	0,66
38,082	39,668	44,069	47,204	50,247	54,913	56,711	0,67
37,557	39,195	43,567	46,815	49,772	54,615	56,270	0,68
37,077	38,775	43,103	46,455	49,307	54,279	55,777	0,69
36,617	38,373	42,639	46,069	48,805	53,832	55,178	0,70
36,138	37,925	42,110	45,560	48,185	53,161	54,384	0,71
35,533	37,268	41,355	44,701	47,260	52,070	53,258	0,72
34,483	35,968	40,056	43,178	45,861	50,568	51,857	0,73
32,974	34,250	38,741	41,787	44,655	49,339	50,687	0,74
31,703	33,018	37,862	40,844	43,741	48,320	49,669	0,75
30,672	32,105	37,007	39,834	42,750	47,205	48,597	0,76
29,652	31,154	35,878	38,530	41,616	46,030	47,514	0,77
28,563	30,070	34,629	37,311	40,638	45,038	46,573	0,78
27,547	29,093	33,613	36,488	39,884	44,198	45,735	0,79
26,659	28,288	32,784	35,860	39,152	43,330	44,883	0,80
25,834	27,549	31,969	35,170	38,264	42,351	43,984	0,81
24,983	26,736	31,032	34,257	37,175	41,373	43,121	0,82
24,085	25,833	30,022	33,280	36,120	40,639	42,410	0,83
23,231	24,997	29,137	32,515	35,293	40,162	41,823	0,84
22,482	24,312	28,413	31,954	34,622	39,781	41,252	0,85
21,818	23,737	27,773	31,466	33,985	39,332	40,582	0,86
21,174	23,166	27,104	30,878	33,233	38,580	39,624	0,87
20,325	22,230	26,038	29,630	31,891	36,914	37,894	0,88
18,095	19,469	23,708	26,965	29,582	34,497	35,662	0,89
16,004	17,536	22,364	25,478	28,156	32,858	34,044	0,90
14.396	16.168	20.679	23.451	26.371	30.946	32.286	0.91

Продолжение таблицы 5.1

<i>a</i> ₁ , °	<i>a</i> ₂ , °	<i>a</i> 3, °	<i>a</i> 4, °	<i>a5,</i> °	<i>a</i> 6, °	<i>a</i> 7, °	μ, o.e.
12,637	14,451	18,646	21,708	24,982	29,499	30,898	0,92
11,204	13,221	17,320	20,903	23,933	28,191	29,607	0,93
9,916	12,114	15,968	19,773	22,303	26,578	28,185	0,94
8,459	10,627	14,231	18,112	20,406	25,554	27,152	0,95
7,165	9,421	12,914	17,169	19,222	25,252	26,459	0,96
6,136	8,595	11,905	16,504	18,196	24,866	25,563	0,97

Таблица 5.2 - Новые параметры ШИМ с удалением выделенных гармоник с 9 переключениями за четверть периода с удалением 5, 7, 11, 13, 17, 19, 23, 25 гармоник для ЭП клетей 2-4.

<i>a</i> ₁ , °	<i>a</i> ₂ , °	<i>a</i> ₃ , °	<i>a</i> 4, °	<i>a</i> 5, °	<i>a</i> ₆ , °	<i>a</i> ₇ , °	<i>a</i> ₈ , °	<i>a</i> 9, °	μ, o.e.
41,01	42,61	52,09	55,23	63,28	67,88	74,68	80,62	86,39	0,30
40,97	42,62	52,01	55,25	63,18	67,92	74,55	80,68	86,25	0,31
40,93	42,63	51,93	55,27	63,07	67,96	74,42	80,75	86,11	0,32
40,89	42,63	51,86	55,29	62,96	67,99	74,28	80,81	85,97	0,33
40,85	42,64	51,78	55,30	62,84	68,03	74,14	80,87	85,82	0,34
40,81	42,65	51,70	55,32	62,73	68,05	74,00	80,93	85,67	0,35
40,77	42,65	51,62	55,33	62,61	68,08	73,85	80,98	85,52	0,36
40,73	42,65	51,53	55,34	62,49	68,10	73,71	81,03	85,36	0,37
40,69	42,66	51,45	55,35	62,37	68,11	73,55	81,07	85,20	0,38
40,65	42,66	51,37	55,35	62,25	68,12	73,40	81,11	85,03	0,39
40,60	42,66	51,28	55,35	62,12	68,13	73,23	81,13	84,85	0,40
40,56	42,65	51,19	55,34	61,99	68,13	73,07	81,15	84,66	0,41
40,51	42,65	51,10	55,33	61,85	68,12	72,89	81,16	84,46	0,42
40,46	42,64	51,00	55,32	61,71	68,10	72,71	81,15	84,25	0,43
40,41	42,63	50,91	55,30	61,57	68,07	72,52	81,13	84,03	0,44
40,36	42,62	50,81	55,27	61,41	68,03	72,31	81,09	83,78	0,45
40,31	42,60	50,70	55,24	61,25	67,97	72,09	81,01	83,50	0,46
40,26	42,58	50,59	55,19	61,08	67,90	71,86	80,90	83,19	0,47
40,20	42,55	50,47	55,13	60,89	67,79	71,60	80,74	82,83	0,48
40,13	42,51	50,34	55,05	60,69	67,65	71,30	80,50	82,40	0,49
40,06	42,46	50,18	54,93	60,45	67,45	70,94	80,14	81,87	0,50
39,97	42,38	49,99	54,76	60,15	67,15	70,50	79,60	81,16	0,51
39,84	42,23	49,73	54,45	59,71	66,63	69,85	78,74	80,17	0,52
39,58	41,90	49,20	53,76	58,90	65,56	68,72	77,25	78,67	0,53
38,69	40,63	47,64	51,68	56,94	63,19	66,59	75,02	76,63	0,54
36,36	37,72	45,34	49,14	54,99	61,19	64,91	73,36	75,08	0,55
34,30	35,57	44,31	48,04	54,09	60,19	63,94	72,22	73,93	0,56
32,90	34,28	43,68	47,30	53,33	59,26	62,99	71,04	72,76	0,57
31,81	33,34	42,96	46,34	52,33	57,98	61,78	69,65	71,45	0,58
36,36	37,72	45,34	49,14	54,99	61,19	64,91	73,36	75,08	0,55
34,30	35,57	44,31	48,04	54,09	60,19	63,94	72,22	73,93	0,56
32,90	34,28	43,68	47,30	53,33	59,26	62,99	71,04	72,76	0,57

Продолжение таблицы 5.2

			r						
a_l, \circ	a_2, \circ	a_3, \circ	a_4, \circ	a_5, \circ	a_6, \circ	a_7, \circ	a_8, \circ	a_9, \circ	μ,
21.01		10.04	16.04	50.00	<i></i>	<u>(1</u> 7 0	<i></i>	71.45	0.e.
31,81	33,34	42,96	46,34	52,33	57,98	61,78	69,65	71,45	0,58
30,72	32,36	41,72	44,70	50,85	56,26	60,32	68,16	70,11	0,59
29,43	31,09	39,91	42,62	49,40	54,75	59,10	66,94	68,98	0,60
28,12	29,77	38,33	41,11	48,50	53,80	58,26	66,01	68,07	0,61
26,98	28,68	37,21	40,21	47,89	53,09	57,56	65,15	67,22	0,62
26,02	27,81	36,38	39,61	47,34	52,37	56,83	64,25	66,34	0,63
25,17	27,07	35,65	39,09	46,70	51,50	55,98	63,26	65,41	0,64
24,37	26,37	34,89	38,49	45,80	50,34	54,98	62,18	64,45	0,65
23,54	25,61	33,98	37,65	44,57	48,96	53,93	61,14	63,54	0,66
22,64	24,74	32,89	36,57	43,20	47,67	53,04	60,27	62,75	0,67
21,72	23,82	31,80	35,52	42,04	46,79	52,40	59,57	62,09	0,68
20,85	22,97	30,86	34,69	41,18	46,24	51,92	58,98	61,49	0,69
20,06	22,24	30,08	34,08	40,52	45,89	51,50	58,41	60,91	0,70
19,36	21,61	29,42	33,60	39,97	45,63	51,07	57,82	60,31	0,71
18,73	21,07	28,85	33,21	39,46	45,38	50,60	57,17	59,69	0,72
17,58	20,11	27,76	32,46	38,40	44,67	49,33	55,64	58,34	0,74
17,02	19,62	27,18	31,99	37,73	44,09	48,45	54,79	57,66	0,75
16,43	19,08	26,51	31,38	36,92	43,29	47,40	53,98	57,03	0,76
15,79	18,46	25,74	30,61	35,96	42,36	46,31	53,33	56,49	0,77
15,11	17,77	24,90	29,76	34,98	41,50	45,37	52,90	56,07	0,78
14,43	17,07	24,09	28,98	34,11	40,84	44,63	52,65	55,74	0,79
13,79	16,42	23,37	28,34	33,41	40,37	44,06	52,53	55,46	0,80
13,20	15,84	22,75	27,84	32,83	40,04	43,59	52,47	55,21	0,81
12,66	15,35	22,22	27,44	32,33	39,80	43,17	52,44	54,97	0,82
12,17	14,92	21,75	27,12	31,89	39,60	42,79	52,43	54,73	0,83
11,73	14,55	21,32	26,84	31,49	39,43	42,43	52,42	54,49	0,84
11,32	14,22	20,93	26,60	31,10	39,26	42,06	52,41	54,23	0,85
10,93	13,92	20,56	26,37	30,72	39,08	41,67	52,37	53,94	0,86
10,57	13,64	20,20	26,14	30,34	38,87	41,26	52,29	53,60	0,87
10,22	13,38	19,84	25,90	29,94	38,62	40,79	52,12	53,17	0,88
9,88	13,11	19,46	25,62	29,50	38,27	40,24	51,74	52,54	0,89
9,51	12,79	19.03	25,23	28,96	37,70	39,47	50,77	51,32	0,90
8,69	11,67	17,69	23,28	26,92	34,56	36,34	45,28	45,84	0,91

Рисунок 5.1 - Сравнительный анализ гармонического состава тока АВ ЭП клети №1 при работе стана, полученного экспериментально с использованием исходных параметров ШИМ (а и б) и при имитационном моделировании с использованием

Рисунок 5.2 - Сравнительный анализ гармонического состава тока АВ ЭП клети №1 на холостом ходу, полученного экспериментально с использованием исходных параметров ШИМ (а и б) и при имитационном моделировании с использованием оптимальных параметров ШИМ (в и г)

Рисунок 5.3 - Сравнительный анализ гармонического состава тока AB ЭП клети №2 при работе стана, полученного экспериментально с использованием исходных параметров ШИМ (а и б) и при имитационном моделировании с использованием

Рисунок 5.4 - Сравнительный анализ гармонического состава тока АВ ЭП клети №2 на холостом ходу, полученного экспериментально с использованием исходных параметров ШИМ (а и б) и при имитационном моделировании с использованием оптимальных параметров ШИМ (в и г)

Рисунок 5.5 - Сравнительный анализ гармонического состава тока AB ЭП клети №3 при работе стана, полученного экспериментально с использованием исходных параметров ШИМ (а и б) и при математическом имитационном с использованием оптимальных параметров ШИМ (в и г)

Рисунок 5.6 - Сравнительный анализ гармонического состава тока АВ ЭП клети №3 на холостом ходу, полученного экспериментально с использованием исходных параметров ШИМ (а и б) и при имитационном моделировании с использованием оптимальных параметров ШИМ (в и г)

Рисунок 5.7 - Сравнительный анализ гармонического состава тока АВ ЭП клети №4 при работе стана, полученного экспериментально с использованием исходных параметров ШИМ (а и б) и при имитационном моделировании с использованием оптимальных параметров ШИМ (в и г)

Рисунок 5.8 - Сравнительный анализ гармонического состава тока AB ЭП клети №4 на холостом ходу, полученного экспериментально с использованием исходных параметров ШИМ (а и б) и при имитационном моделировании с использованием оптимальных параметров ШИМ (в и г)

Рисунок 5.9 - Сравнительный анализ гармонического состава тока AB ЭП моталки при работе стана, полученного экспериментально с использованием исходных параметров ШИМ (а и б) и при имитационном моделировании с использованием оптимальных параметров ШИМ (в и г)

Рисунок 5.10 - Сравнительный анализ гармонического состава тока AB ЭП моталки на холостом ходу, полученного экспериментально с использованием исходных параметров ШИМ (а и б) и при имитационном моделировании с использованием оптимальных параметров ШИМ (в и г)

5.2. Экспериментальный анализ показателей качества электроэнергии в распределительной сети 10 кВ района ГПП 2 при использовании новых параметров ШИМ ПЧ-АВ АСЅ6000

Для оценки эффективности использования усовершенствованных алгоритмов ШИМ был выполнен сравнительный анализ гармонического состава напряжения на секциях РУ-10 кВ ГПП-2 и на секциях РП-19 при различных режимах электроснабжения и режимах работы электроприводов (работа на холостом ходу и под нагрузкой) до и после изменения параметров ШИМ. Результаты анализа приведены на рис. 5.11-5.24, а также в табл. 5.3. Как видно из результатов имитационного моделирования, применение усовершенствованных алгоритмов ШИМ обеспечивает снижение коэффициента K_U на 47,8 – 82,3% при раздельной работе секций РУ-10 кВ ГПП-2, а также на 19,7-59,8% при совместной работе секций с питанием от одного сетевого трансформатора 1Т (2Т). Качество напряжения на секциях РУ-10 кВ РП-19 при использовании новых таблиц переключения ШИМ также улучшается: значение K_U напряжения на этих секциях снижается на 26-51%, что также является положительным результатом.

Таблица 5.3 – Результаты экспериментального исследования *K*^U при использовании измененных таблиц углов переключения вентилей ПЧ-АВ в сравнении с исходными.

	Режим работи ЭП	Значение суммарного коэффициента гармонических					
Режим		составляющих напряжения <i>K</i> _U ,%					
электроснабжения	четырехклетьевого	РУ-10 к	В РП-19	РУ-10 кВ ГПП-2			
_	стана	1 секция	2 секция	1 секция	2 секция		
Совместная работа 1 и 2 секций ГПП-2 с	ПЧ-АВ АСЅ6000 ЭП клетей №№1-4 и моталка работают на холостом ходу	11,11 (-26,0%)	16,57 (- 51,4%)	3,06 (- 47,8%)	3,06 (- 47,8%)		
питанием от 1Т (2T)	ПЧ-АВ АСЅ6000 ЭП клетей №№1-4 и моталка работают под нагрузкой	9,82 (-40,4%)	15,62 (- 35 , 5%)	1,30 (-82,3%)	1,30 (-82,3%)		
Раздельная работа 1 и 2 секций ГПП- 2 с питанием от 1Т и 2Т	ПЧ-АВ АСЅ6000 ЭП клетей №№1-4 и моталка работают на холостом ходу	11,69 (-23,9%)	19,33 (-36,6%)	3,30 (-30,8%)	4,49 (-38,8%)		
	ПЧ-АВ АСЅ6000 ЭП клетей №№1-4 и моталка работают под нагрузкой	12,38 (- 32,3%)	18,78 (- 32,8%)	2,32 (- 59,8%)	4,53 (-19,7%)		

Рисунок 5.11 - Сравнительный анализ гармонического состава фазного напряжения на **1 секции РУ-10 кВ ГПП-2 при раздельной работе секций РУ-10 кВ ГПП-2** при работе ЭП клетей стана **на х.х.**, при исходных углах переключения силовых ключей AB (a, б) и измененных (в, г)

Рисунок 5.12 - Сравнительный анализ гармонического состава фазного напряжения на **1 секции РУ-10 кВ ГПП-2 при раздельной работе секций РУ-10 кВ ГПП-2** при работе ЭП клетей **под нагрузкой**, при исходных углах переключения силовых ключей АВ (а, б) и измененных (в, г)

Рисунок 5.13 - Сравнительный анализ гармонического состава фазного напряжения на **2 секции РУ-10 кВ ГПП-2 при раздельной работе секций РУ-10 кВ ГПП-2** при работе ЭП клетей стана **на х.х.**, при исходных углах переключения силовых ключей AB (a, б) и измененных (в, г)

Рисунок 5.14 - Сравнительный анализ гармонического состава фазного напряжения на **2 секции РУ-10 кВ ГПП-2 при раздельной работе секций РУ-10 кВ ГПП-2** при работе ЭП клетей под нагрузкой, при исходных углах переключения силовых ключей АВ (а, б) и измененных (в, г)

Рисунок 5.15 - Сравнительный анализ гармонического состава фазного напряжения на **1 секции РУ-10 кВ РП-19 при раздельной работе секций РУ-10 кВ ГПП-2** при работе ЭП клетей стана **на х.х.**, при исходных углах переключения силовых ключей AB (a, б) и измененных (в, г)

Рисунок 5.16 - Сравнительный анализ гармонического состава фазного напряжения на **1 секции РУ-10 кВ РП-19 при раздельной работе секций РУ-10 кВ ГПП-2** при работе ЭП клетей **под нагрузкой**, при исходных углах переключения силовых ключей АВ а, б) и измененных (в, г)

Рисунок 5.17 - Сравнительный анализ гармонического состава фазного напряжения на 2 секции РУ-10 кВ РП-19 при раздельной работе секций РУ-10 кВ ГПП-2 при работе ЭП клетей стана на х.х., при углах переключения силовых ключей АВ (а, б) и измененных (в, г)

Рисунок 5.18 - Сравнительный анализ гармонического состава фазного напряжения на 2 секции РУ-10 кВ РП-19 при раздельной работе секций РУ-10 кВ ГПП-2 при работе ЭП клетей под нагрузкой, при исходных углах переключения силовых ключей АВ (а, б) и измененных (в, г)

Рисунок 5.19 - Сравнительный анализ гармонического состава фазного напряжения на **1 и 2 секциях РУ-10 кВ ГПП-2 при совместной работе секций РУ-10 кВ ГПП-2** при работе ЭП клетей стана **на х.х.**, при исходных углах переключения силовых ключей АВ (а, б) и измененных (в, г)

Рисунок 5.20 - Сравнительный анализ гармонического состава фазного напряжения на **1 и 2 секциях РУ-10 кВ ГПП-2 при совместной работе секций РУ-10 кВ ГПП-2** при работе ЭП клетей стана **под нагрузкой**, при исходных углах переключения силовых ключей АВ (а, б) и измененных (в, г)

Рисунок 5.21 - Сравнительный анализ гармонического состава фазного напряжения на **1 секции РУ-10 кВ РП-19 при совместной работе секций РУ-10 кВ ГПП-2** при работе ЭП клетей стана **на х.х.**, при исходных углах переключения силовых ключей AB (a, б) и измененных (в, г)

Рисунок 5.22 - Сравнительный анализ гармонического состава фазного напряжения на **1 секции РУ-10 кВ РП-19 при совместной работе секций РУ-10 кВ ГПП-2** при работе ЭП клетей стана **под нагрузкой**, при исходных углах переключения силовых ключей АВ (а, б) и измененных (в, г)

Рисунок 5.23 - Сравнительный анализ гармонического состава фазного напряжения на **2 секции РУ-10 кВ РП-19 при совместной работе секций РУ-10 кВ ГПП-2** при работе ЭП клетей стана **на х.х.**, при исходных углах переключения силовых ключей AB (a, б) и измененных (в, г)

Рисунок 5.24 - Сравнительный анализ гармонического состава фазного напряжения на 2 секции РУ-10 кВ РП-19 при совместной работе секций РУ-10 кВ ГПП-2 при работе ЭП клетей стана под нагрузкой, при исходных углах переключения силовых ключей АВ (а, б) и измененных (в, г)

5.3. Анализ технического эффекта от применения новых параметров ШИМ ПЧ-АВ АСS6000

Технический эффект от внедрения нового метода определения оптимальных параметров ШИМ на действующем оборудовании главных электроприводов четырехклетьевого стана ЧерМК заключается в улучшении качества напряжения на секциях шин ГПП-2.

Для определения эффекта специалистами центральной электротехнической лаборатории ПАО «Северсталь» были проведены замеры гармонических составляющих напряжения, а также определены коэффициенты искажения синусоидальности кривой напряжения на ГПП-2 и РП-19 до и после внедрения новых таблиц углов переключения АВ. Соответствующий протокол представлен в приложении 5. Для удобства результаты замеров сведены в таблицы 5.4-5.6.

На секциях шин ГПП-2, являющихся общей точкой подключения электроприемников, зафиксировано значительное изменение K_U , составляющие 63,3-71,6 % в зависимости от режима работы стана. Также снизилось число гармоник напряжения превышающих установленный ГОСТ 32144-2013 предел.

По результатам диссертационной работы был составлен соответствующий акт внедрения, приложение 6. Изменения параметров ШИМ ПЧ-АВ электроприводов четырехклетьевого стана позволили безаварийно эксплуатировать чувствительные к качеству электроэнергии приемники, получающие питание от ГПП-2. Например после внедрения результатов диссертационной работы не было зафиксировано случаев отказа из-за качества напряжения такого оборудования, как устройства бесперебойного питания контроллеров АНГЦ и ФКУ среднего напряжения без токоограничивающих реакторов. Также данные изменения снизили потребление тока цеховым освещением, на основе газоразрядных ламп, на 50%.

Таблица 5.4 – Результаты сравнения измененных значений до и после внедрения измененных углов переключения ПЧ-АВ на ГПП-2 РУ-10кВ

Показатель:	Режим работы:	До внедрения	После внедрения	Относительное изменение:
	ПЧ-АВ под нагрузкой	13,98	3,97	-71.6 %

Наибольший коэффициент искажения синусоидальности кривой напряжения, %	ПЧ-АВ на холостом ходу	12,41	4,56	-63,3 %
Количество гармоник не	ПЧ-АВ под нагрузкой	14	9	-35,7 %
32144-2013, шт.	ПЧ-АВ на холостом ходу	12	7	-41,7 %

Таблица 5.5 – Результаты сравнения измененных значений до и после внедрения измененных углов переключения ПЧ-АВ на РП-19 РУ-10кВ секция №1 ячейка№4

Показатель:	Режим работы:	До внедрения	После внедрения	Относительное изменение:
Наибольший коэффициент	ПЧ-АВ под нагрузкой	12,99	5,93	-54,4 %
кривой напряжения, %	ПЧ-АВ на холостом ходу	12,20	6,27	-48,6 %
Количество гармоник не	ПЧ-АВ под нагрузкой	18	16	-11,1 %
32144-2013, шт.	ПЧ-АВ на холостом ходу	12	12	-

Таблица 5.6 – Результаты сравнения измененных значений до и после внедрения измененных углов переключения ПЧ-АВ на РП-19 РУ-10кВ секция №2 ячейка№7

Показатель:	Режим работы:	До	После	Относительное
	-	внедрения	внедрения	изменение:
Наибольший коэффициент	ПЧ-АВ под нагрузкой	13,65	5,35	-60,8 %
кривой напряжения, %	ПЧ-АВ на холостом ходу	2,04	5,46	+167,6 %
Количество гармоник не	ПЧ-АВ под нагрузкой	18	12	-33,3 %
2013, шт.	ПЧ-АВ на холостом ходу	7	10	+42,9 %

5.4. Выводы по главе 5

1. По разработанной методике адаптации к резонансным явлениям были определены новые параметры ШИМ активных выпрямителей клетей 1-4 и

моталки четырехклетьевого стана. Новые параметры ШИМ в виде углов переключения вентилей AB были опробованы на имитационной модели, где показали значительный эффект по снижению искажений напряжения на секциях ГПП-2 при различных режимах электроснабжения (19,7-82,3 %). Также, с помощью имитационного моделирования, был определен наиболее благоприятный режим электроснабжения ГПП-2, которым является совместная работа секций от одного понизительного трансформатора 110/10 кВ. В этом случае эффект от применения новых параметров ШИМ максимален и составляет 47,8-82,3 % в зависимости от режима работы стана.

2. Результаты исследования переданы специалистам ABB и были реализованы в виде программ для микроконтроллеров ШИМ AB клетей 1-4 и моталки четырехклетьевого стана. Также персоналу ГПП-2 были переданы рекомендации о предпочтительном режиме электроснабжения ГПП-2 от одного понизительного трансформатора 110/10 кВ. По результатам диссертационной работы был составлен соответствующий акт внедрения (приложение 6).

3. Проведены повторные исследования показателей качества напряжения на ГПП-2 и РП-19 после выполненных изменений. Исследования показали, что максимальный зарегистрированный коэффициент искажения синусоидальности кривой напряжения на секциях ГПП-2, являющимися общей точкой подключения электроприемников, снизился на 63,3-71,6 % и не превышает установленный ГОСТ 32144-2013 уровень в 5%. Также снизилось число гармоник, превышающий установленный ГОСТ предел. На секциях РП-19 существенный эффект, ожидаемо, не получен.

4. В результате выполненных изменений стала возможна параллельная работа ПЧ-АВ четырехклетьевого стана и чувствительных к качеству напряжения электроприемников, подключенных к ГПП-2, таких как: КТП, питающие группу источников бесперебойного питания систем автоматизации АНГЦ; фильтрокомпенсирующие устройства среднего напряжения без последовательно включенных токоограничивающих реакторов. Также, благодаря изменению

параметров ШИМ ПЧ-АВ стана, произошло снижение потребления тока КТП, осуществляющими питание освещения цехов газоразрядными лампами на 50%.

ЗАКЛЮЧЕНИЕ

136

1. Получены новые результаты экспериментальных исследований качества напряжения в системах электроснабжения с резонансными явлениями, в составе которых имеются электроприводы с ПЧ-АВ большой мощности, показывающие их влияние на искажение напряжения в точке общего подключения электроприемников при совпадении области резонанса в сети с областью высших гармоник, потребляемых ПЧ-АВ.

2. Разработана имитационная модель «Система внутризаводского электроснабжения – электроприводы прокатного стана с ПЧ-АВ», позволяющая исследовать влияние электроприводов с ПЧ-АВ на питающую сеть, при наличии в ней резонансных явлений. Модель позволяет задавать разные параметры алгоритмов ШИМ АВ и исследовать их влияние на качество напряжения при различных формах частотной характеристики питающей сети.

3. Предложен новый способ выявления резонансов в частотной характеристике питающей сети, основанный на тестовом воздействии ПЧ-АВ на питающую сеть. Применение данного способа дает возможность с достаточной точностью определять резонансные области в частотной характеристике питающей сети, что позволяет рассчитать оптимальную таблицу переключения вентилей АВ для уменьшения его влияния на качество питающего напряжения.

4. Разработана усовершенствованная методика определения оптимальных параметров алгоритма ШИМ АВ для адаптации к резонансным явлениям в питающей сети среднего напряжения 6-35 кВ. Главным критерием разработанной методики является минимизация высших гармоник тока АВ, попадающих на резонансную область в частотной характеристике питающей сети. Этим достигается улучшение гармонического состава напряжения на общих секциях главной понизительной подстанции предприятия, от которой получают питание различные группы электроприемников, в том числе, чувствительных к ухудшению качества электроэнергии.

5. Проведено исследование эффективности разработанной методики на действующем оборудовании стана холодной прокатки ППП ХП ЧерМК ПАО

«Северсталь». Применение новых таблиц переключения вентилей AB позволило улучшить гармонический состав напряжения на секциях ГПП и снизить среднее значение KU почти в 2 раза, а наибольшее значение зафиксированного KU в 2,7-3,5 раза, в зависимости от режима работы. Благодаря улучшению качества напряжения стало возможна параллельная работа прокатного стана и чувствительных электроприемников, получающих питание от одной секции шин.

СПИСОК ЛИТЕРАТУРЫ

1. Holtz, J. Megawatt GTO-inverter with three-level PWM control and regenerative snubber circuits / J. Holtz, S.F. Salama // in Proc. 19th Annual IEEE Power Electronics Specialists Conference, Apr. 1988. pp. 1263–1270.

2. ГОСТ 32144-2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. –М.: Стандартинформ, 2014. –19 с

3. Wu, B. High-power converters and AC drives / B. Wu, M. Narimani. – 2nd ed. New Jersey: Wiley-IEEE Press, 2017. – 480 p.

Карташев, И.И. Управление качеством электроэнергии / И.И.
 Карташев, В.Н. Тульский, Р.Г. Шамонов, Ю.В. Шаров, А.Ю. Воробьев – М.:
 Издательский дом МЭИ, 2006 – 320 с.

5. Radionova, L.V. Mathematical description of AFE rectifier closed loop system // B. L.V. Radionova, A.D. Chernyshev // Procedia Engineering. – 2015. – vol. 129. – pp. 16–21.

6. Маклаков, А.С. Алгоритм пространственно-векторной модуляции трехуровневого преобразователя / А.С. Маклаков, Е.А. Маклакова, Е.В. Антонова., М.А. Демов // Актуальные вопросы энергетики: материалы Всероссийской научной конференции студентов, магистрантов, аспирантов. – Омск, 2016. – С. 100-106.

7. Mohammed, S.A. A review of the state-of-the-art of power electronics for power system applications / S.A. Mohammed, Abdel-Moamen M. A, B. Hasanin // International Journal of Electronics and Communication Engineering – 2013. vol. 1, N_{2} 1. pp. 43–52

8. Azeddine, D. A space vector modulation based tree-level PWM Rectifier under Simple Sliding Mode Control Strategy / D. Azeddine, M. Senior // Energy and power Engineering, -2013. $-N_{2}5$. -pp. 28-35.

9. Holmes, D.G. Pulse width modulation for power converters: principles and practice / D.G. Holmes, T.A. Lipo. – 1st ed. New Jersey: Wiley-IEEE Press, 2003. – 744 p.

10. Maswood, I. Optimal PWM-SHE switching on NPC inverter: A winning match for high power conversion / I. Maswood, M.H. Rashid, L. Jian // Electric Power Systems Research –1998. – vol. 48, № 1. – pp. 19–24.

11. Farhan B. Space Vector Pulse Width Modulation Technique Based Design and Simulation of a Three-Phase Voltage Source Converter System / B. Farhan // World Academy of Science, Engineering and Technology. 2014. №9. P. 1304-1307.

12. Гасияров, В.Р. Моделирование трехуровневого преобразователя частоты с фиксированной нейтралью при алгоритме ШИМ с удалением выделенных гармоник / В.Р. Гасияров, А.А. Радионов, А.С. Маклаков // Электротехнические системы и комплексы. – 2017. №1 (34). – С.4-9.

13. Konstantinou, G. Bipolar switching waveform: Novel solution sets to the selective harmonic elimination problem / G. Konstantinou, V. G. Agelidis // in Proc. IEEE International Conference on Industrial Technology, Mar. 2010. pp. 696–701.

 Храмшин, Т.Р. Математическая модель активного выпрямителя в несимметричных режимах работы / Т.Р. Храмшин, Д.С, Крубцов, Г.П. Корнилов // Электротехника: сетевой электронный научный журнал. – 2014. – №2. С.3-9.

15. Islam, J. Opposition-based quantum bat algorithm to eliminate lower-order harmonics of multilevel inverters / J. Islam, S.T. Meraj, A. Masaoud, M.A. Mahmud, A. Nazir, M.A. Kabir, M.M. Hossain, F. Mumtaz // IEEE Access – 2021. – vol. 9. – pp. 103610–103626.

16. Черных, В.И. Моделирование электротехнических устройств в Matlab SimPowerSystem и Simulink: учеб. / В.И. Черных. – М.: ДМК Пресс, – 2007. – 288 с.

17. Dahidah, M.S.A. Hybrid genetic algorithm approach for selective harmonic control / M.S.A. Dahidah, V.G. Agelidis, M.V.C. Rao // Energy Conversion and Management – 2008. – vol. 49, N_{2} 2. – pp. 131–142.

Идельчик, В. И. Электрические системы и сети: учеб. для вузов / В. И.
 Идельчик. – Москва: Энергоатомиздат, 1989. – 592 с.

19. Li, L. Multilevel selective harmonic elimination PWM technique in seriesconnected voltage inverters / L. Li, D. Czarkowski, L. Yaguang, P. Pillay // IEEE Transactions on Industrial Applications – 2000. – vol. 36, № 1. – pp. 160–170. Боровиков, В. А. Электрические сети энергетических систем / А. В.
 Боровиков, В. К. Косарев, Г. А. Ходот. – Ленинград: Энергия, –977. – 392 с.

21. Zhang, F. Selective harmonic elimination PWM control scheme on a three phase four-leg voltage source inverter / F. Zhang, Y. Yan // IEEE Transactions on Power Electronics – 2009. – vol. 24, № 7. – pp. 1682–1689.

22. Михайлов, В.В. Надежность электроснабжения промышленных предприятий / В.В. Михайлов – М.: Энергоиздат, 1982 – 130 с.

23. Wang, Y. Selective harmonic elimination PWM technology applied in PMSMs / Y. Wang, X. Wen, F. Zhao, X. Guo // in Proc. IEEE Vehicle Power and Propulsion Conference, Oct. 2012. pp. 92–97.

24. Храмшин Т.Р., Крубцов Д.С., Корнилов Г.П. Математическая модель силовой схемы главных электроприводов прокатных станов // Электротехника: сетевой электронный научный журнал. - 2014. - Т. 1, № 1. - С. 3-7.

25. Пьей Пьо Тун. Совершенствование импульсных преобразователей в составе автономных систем электропитания электротехнических комплексов: дис. ...кан. техн. наук / Пьей Пьо Тун. – Санкт-Петербург, 2014. – 188 с.

26. Jing, T. Comparative Analysis of the SHEPWM and SHMPWM Techniques for the Three-Level NPC Inverter based on the THD of Voltage and Current / T. Jing, A.S. Maklakov, A.A. Radionov, T. A. Lisovskay // in Proc. Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice, Sept. 2020. pp. 113–118.

27. Николаев А.А., Храмшин Т.Р., Афанасьев М.Ю. Исследование резонансных явлений в распределительных электрических сетях среднего напряжения систем внутризаводского электроснабжения промышленных предприятий // Машиностроение: сетевой электронный научный журнал. - 2017. - Т. 5, № 4. - С. 51-62.

28. Portillo, R. Improved hybrid SHM-SHE modulation technique for four-leg three-level NPC inverters / R. Portillo, M. Sharifzadeh, H. Vahedi, L.G. Franquelo, K. Al-Haddad // in Proc. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Nov. 2015. pp. 005415–005420.

29. O'Brien K., Teichmann R., Bernet S. Active rectifier for medium voltage drive systems // Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE. - 2001. - C. 557-562.

30. Yamanaka, K., Yamada, K., Kumagae, A., Terada, T. Three-level neutral point clamping type inverter circuit. US Patent 06 226 192, May 2001.

31. Экспериментальные исследования электромагнитной совместимости современных электроприводов в системе электроснабжения промышленных предприятий / А.А. Николаев, Г.П. Корнилов, Т.Р. Храмшин и др. // Вестник МГТУ им. Г.И. Носова. - 2016. - Т. 14, № 4. - С. 96-103.

32. Blooming T.M., Carnovale D.J. Application of IEEE STD 519-1992 Harmonic Limits // Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference. - 2006. - C. 1-9.

33. Resonance mitigation and dynamical behavior of systems with harmonic filters for improving reliability in mining plants / J. Pontt, J. Rodriguez, S. Martin, et. al. // Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting. - 2006. - C. 1298-1302.

34. Храмшин Т.Р., Крубцов Д.С., Корнилов Г.П. Оценка методов широтноимпульсной модуляции напряжения активных выпрямителей прокатных станов // Машиностроение: сетевой электронный научный журнал. - 2013. - № 2. - С. 48-52.

35. Храмшин Т.Р., Храмшин Р.Р., Корнилов Г.П. Расчет электромагнитных процессов в трехфазном трехуровневом инверторе напряжения // Электротехнические системы и комплексы: межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2010. - Вып. 1. - С. 221.

36. Маклаков А.С. Анализ работы активного выпрямителя напряжения в режимах компенсации реактивной мощности // Машиностроение: сетевой электронный научный журнал. - 2013. - № 1. - С. 43-50.

37. Маклаков А.С. Имитационное моделирование главного электропривода прокатной клети толстолистового стана 5000 // Машиностроение: сетевой электронный научный журнал. - 2014. - № 3. - С. 16-25.

38. Маклаков А.С., Гасияров В.Р., Белый А.В. Энергосберегающий электропривод на базе двухзвенного преобразователя частоты с активным выпрямителем и автономным инвертором напряжения // Электротехника: сетевой электронный научный журнал. - 2014. - Т. 1, № 1. - С. 23-30.

Resonances in a High-Power Active-Front-End Rectifier System / J. Pontt, G.
 Alzamora, R. Huerta, N. Becker // IEEE Trans. Ind. Electron. - 2005. - P. 482-488.

40. Li, Y.D. A novel dc voltage detection technique in the CHB inverter-based STATCOM / Y.D. Li, B. Wu // IEEE Transactions on Power Delivery – 2008. vol. 23, № 3. pp. 1613–1619.

41. Jing, T., Maklakov, A., Radionov, A., Baskov, S., Kulmukhametova, A. Research on hybrid SHEPWM based on different switching patterns (2019) International Journal of Power Electronics and Drive Systems, 10 (4), pp. 1875-1884.

42. Moeini, A., Zhao, H., Wang, S. A Current-Reference-Based Selective Harmonic Current Mitigation PWM Technique to Improve the Performance of Cascaded H-Bridge Multilevel Active Rectifiers (2018) IEEE Transactions on Industrial Electronics, 65 (1), art. No. 7748491, pp. 727-737.

43. Брованов, С.В. Методика расчета энергетических показателей качества преобразования энергии в трехуровневом инверторе напряжения / С.В. Брованов // Научный вестник НГТУ. – 2009. – №3(36). – С. 131–142.

44. Turnbull, F.G. Selected harmonic reduction in static dc-ac inverters / F.G. Turnbull // IEEE Transactions on Communication and Electronics – 1964. – Vol. CE-83, № 73. – pp. 374–378.

45. Зиновьев, Г.С. Улучшение электромагнитной совместимости выпрямителей трехфазного тока и питающей сетью / Г.С. Зиновьев // Электрическое питание. – 2001. – С. 19–22.

46. Шрейнер, Р.Т. Электромагнитные процессы в схемах активных выпрямителей напряжения / Р.Т. Шрейнер, А.А. Ефимов, Г.С. Зиновьев // Электроприводы переменного тока: тр. междунар. 12 науч.-техн. конф., Екатеринбург: УГТУ-УПИ, 2001. – С. 49–51.

47. Agelidis, V.G. On applying a minimization technique to the harmonic elimination PWM control: The bipolar waveform / V.G. Agelidis, A. Balouktsis, I. Balouktsis // IEEE Transactions on Power Electronics – 2004. – vol. 2, № 2. – pp. 41–44

48. Agelidis, V.G. Multiple sets of solutions for harmonic elimination PWM bipolar waveforms: Analysis and experimental verification / V.G. Agelidis, A. Balouktsis, I. Balouktsis, C. Cossar // IEEE Transactions on Power Electronics – 2006. – vol. 21, No 2. – pp. 415–421.

49. Rodriguez, J. Multilevel converters: An enabling technology for high-power applications // J. Rodriguez, L.G. Franquelo, S. Kouro, J.I. Leon, R.C. Portillo, M.A.M. Prats, M. A. Perez // Proc. IEEE. – 2009. – vol. 97, № 11. – pp. 1786–1817.

50. Abu-Rub, H. Medium-voltage drives: Challenges and the existing technology
/ H. Abu-Rub, S. Bayhan, M. Malinowski, S. Moinoddin J. Guzinski // IEEE Power
Electronics Magazine. – 2016. – vol. 3, № 2. – pp. 29–41.

51. Jose, I.L. The essential role and the continuous evolution of modulation techniques for voltage-source inverters in the past, present, and future power electronics / J.I. Leon, S. Kouro, L.G. Franquelo, J. Rodriguez, B. Wu. // IEEE Transactions on Industrial Electronics. -2016. -vol. 63, No 5. -pp. 2688-2701.

52. Брованов, С.В. Многоуровневые полупроводниковые преобразователи частоты с емкостным делителем напряжения для автономных систем генерирования электрической энергии: дис. ... доктора техн. наук / С.В. Брованов. – Новосибирск, 2012. – 452 с.

53. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. Екатеринбург: УрО РАН, 2010. 654 с.

54. Исследование воздействия активных выпрямителей большой мощности на питающую сеть / Т.Р. Храмшин, Г.П. Корнилов, А.А. Николаев, Р.Р. Храмшин, Д.С. Крубцов // Вестник Ивановского государственного энергетического университета. 2013. №1. С. 80-83.

55. Nikolaev, A. A. Analysis of influence of frequency converters with active rectifiers on the power quality in internal power supply systems of industrial enterprises /

A. A. Nikolaev, I. G. Gilemov, A. S. Denisevich // Proceedings - 2018 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2018, Moscow, 15–18 мая 2018 года. – Moscow, 2018. – Р. 8728819. – DOI 10.1109/ICIEAM.2018.8728819

56. Aihsan, M.Z. Design and implementation of single-phase modified SHEPWM unipolar inverter / M.Z. Aihsan, R.B. Ali, J.H. Leong // in Proc. IEEE Conference on Energy Conversion, Oct. 2015. pp. 337–342.

57. Enjeti, P.N. Solving nonlinear equations of harmonic elimination PWM in power control / P.N. Enjeti, J.F. Lindsay // IEEE Electronics Letters – 1987. – vol. 23, № 12. – pp. 656–657.

58. Ahmad, S. A fast convergent homotopy perturbation method for solving selective harmonics elimination PWM problem in multilevel inverter / S. Ahmad, A. Iqbal, M. Ali, K. Rahman, A.S. Ahmed // IEEE Access – 2021. – vol. 9. – pp. 113040–113051.

59. Tolbert, L.M. Elimination of harmonics in a multilevel converter with nonequal DC sources / L.M. Tolbert, J.N. Chiasson, Z. Du, K.J. McKenzie // IEEE Transactions on Industrial Applications – 2005. – vol. 41, N_{2} 1. – pp. 75–82

60. Храмшин Т.Р., Крубцов Д.С., Корнилов Г.П. Оценка методов широтноимпульсной модуляции напряжения активных выпрямителей прокатных станов // Машиностроение: сетевой электронный научный журнал. 2013. №2. С. 48-52.

61. Chen, J.W. A novel design and implementation of programmed PWM to eliminated harmonics / J.W. Chen, T.J. Liang, S.H. Wang // in Proc. IEEE International Conference on Industrial Electronics, Control, Instrumentation, and Automation, Nov. 2005. pp. 1278–1283.

62. Chen, J.W. A novel algorithm in solving nonlinear equations for programmed PWM inverter to eliminate harmonics / J.W. Chen, T.J. Liang // in Proc. IECON 23rd International Conference on Industrial Electronics, Control, and Instrumentation, Nov. 1997. pp. 698–703.
63. Bowes, S.R. Simple microprocessor implementation of new regular-sampled harmonic elimination PWM techniques / S.R. Bowes, P.R. Clark // IEEE Transactions on Industrial Applications – 1992. – vol. 28, № 1. – pp. 89–95.

64. Bowes, S.R. Regular-sampled harmonic-elimination PWM control of inverter drives / S.R. Bowes, P.R. Clark // IEEE Transactions on Power Electronics – 2002. – vol. 10, № 5. – pp. 521–531.

65. Bowes, S.R. Single-phase three-level regular-sampled selective harmonic elimination PWM / S.R. Bowes, S. Grewal, D. Holliday // IEE Proceedings - Electric Power Applications – 2002. – vol. 148, № 2. – pp. 155–161.

66. Chiasson, J.N. A complete solution to the harmonic elimination problem / J.N. Chiasson, L.M. Tolbert, K.J. McKenzie, Z. Du // IEEE Transactions on Power Electronics – 2004. – vol. 19, № 2. – pp. 491–499.

67. Cetin, A. VSC-based D-STATCOM with selective harmonic elimination / A. Cetin, M. Ermi // IEEE Transactions on Industrial Applications – 2009. – vol. 45, № 3. – pp. 1000–1015.

68. Ran, L. Dynamic selective harmonic elimination of a three level inverter used for static VAr compensation / L. Ran, L. Holdsworth, G.A. Putrus // IET Proceedings
Generation Transmission and Distribution – 2002. – vol. 149, № 1. – pp. 83–89.

69. Zhou, H. Selective harmonic compensation (SHC) PWM for grid-interfacing high-power converters / H. Zhou, Y.W. Li, N.R. Zargari, Z. Cheng, R. Ni, Y. Zhang // IEEE Transactions on Power Electronics – 2014. – vol. 29, № 3. – pp. 1118–1127.

70. Zhao, Z. Hybrid selective harmonic PWM for common-mode voltage reduction in three-level neutralpoint-clamped inverter for variable speed induction motor / Z. Zhao, Y. Zhong, H. Gao, L. Yuan, T. Lu // IEEE Transactions on Power Electronics – 2012. – vol. 27, № 3. – pp. 1152–1158.

71. Narimani, M. Three-phase multimodule VSIs using SHE-PWM to reduce zerosequence circulating current / M. Narimani, G. Mochopoulos // IEEE Transactions on Industrial Electronics – 2014. – vol. 61, N_{2} 4. – pp. 1659–1668.

72. Wanmin, F. A generalized formulation of quarter-wave symmetry SHE-PWM problems for multilevel inverters / F. Wanmin, R. Xinbo, W. Bin // IEEE Transactions on Power Electronics – 2009. – vol. 24, № 7. – pp. 1758–1766.

73. Eryong, G. Selective harmonic elimination techniques for multilevel cascaded H-bridge inverters / G. Eryong, S. Pinggang, Y. Manyuan, W. Bin // in Proc. IEEE International Conference on Power Electronics and Drives Systems, Dec. 2005. pp. 1441–1446.

74. Du, Z. Active harmonic elimination for multilevel converters / Z. Du, L.M.
Tolbert, J.N. Chiasson // IEEE Transactions on Power Electronics – 2006. – vol. 21, №
2. – pp. 459–469.

75. Konstantinou, G. Selective harmonic elimination pulse-width modulation of modular multilevel converters / G. Konstantinou, M. Ciobotaru, V. Agelidis // IET Power Electronics – 2013. – vol. 6, N_{2} 1. – pp. 96–107.

76. Kouro, S. Predictive control based selective harmonic elimination with low switching frequency for multilevel converters / S. Kouro, B.L. Rocca, P. Cortes, S. Alepuz, W. Bin, J. Rodriguez // in Proc. IEEE Energy Conversion Congress and Exposition, Spet. 2009. pp. 3130–3136.

77. Aguilera, R.P. Selective Harmonic Elimination Model Predictive Control for Multilevel Power Converters / R.P. Aguilera, P. Acuña, P. Lezana, G. Konstantinou, B. Wu; S. Bernet; Va. G. Agelidis // IEEE Transactions on Power Electronics – 2017. – vol. 32, № 3. – pp. 2416–2426.

78. Watson, J. A complete harmonic elimination approach to DC link voltage balancing for a cascaded multilevel rectifier / J. Watson, P.W. Wheeler, J.C. Clare // IEEE Transactions on Industrial Electronics – 2007. – vol. 54, N_{2} 6. – pp. 2946–2953.

79. Guzman, J.I. Digital implementation of selective harmonic elimination techniques in modular current source rectifier / J.I. Guzman, P.E. Melin, J.R. Espinoza, L.A. Moran, C.R. Baier, J.A. Munoz, G.A. Guinez // IEEE Transactions on Industrial Informatics – 2013. – vol. 9, No 2. – pp. 1167–1177.

80. Ahmadi, D. Online selective harmonic compensation and power generation with distributed energy resources / D. Ahmadi, J. Wang // IEEE Transactions on Power Electronics – 2014. – vol. 29, N_{2} 7. – pp. 3738–3746.

81. Patil, S.D. Improved control strategy for harmonic mitigation in multilevel inverter / S.D. Patil, A. Kadu, P. Dhabe // in Proc. 5th International Conference on Intelligent Computing and Control Systems, May. 2021. pp. 727–732.

82. Pontt, J. Mitigation of non-eliminated harmonics of SHEPWM three-level multipulse three-phase active front end converter with low switching frequency for meeting standard IEEE519-92 / J. Pontt, J. Rodriguez, R. Huerta // IEEE Transactions on Power Electronics – 2004. – vol. 19, No 6. – pp. 1594–1599.

83. Marzoughi, I. An optimal selective harmonic mitigation for cascaded Hbridge converters / A. Marzoughi, H. Imaneini // in Proc. 11th International Conference on Environment and Electrical Engineering, May. 2012. pp. 752–757.

84. Cao, J. Research on a high power inverter with low frequency modulation index by selective harmonic mitigation technique / J. Cao, S. Xie, J. Xu // in Proc. 9th International Conference on Power Electronics and ECCE Asia, Jun. 2015. pp. 2409–2414.

85. Sharifzadeh, M. Selective harmonic mitigation based self-elimination of triplen harmonics for single-phase five-level inverters / M. Sharifzadeh, H. Vahedi, R. Portillo, L. G. Franquelo, K. Al-Haddad // IEEE Transactions on Power Electronics – 2019. – vol. 34, № 1. – pp. 86–96.

86. Campos-Gaona, D. Fast selective harmonic mitigation in multifunctional inverters using internal model controllers and synchronous reference frames / D. Campos-Gaona, R. Peña-Alzola, J. L. Monroy-Morales, M. Ordonez, O. Anaya-Lara, W. E. Leithead // IEEE Transactions on Industrial Electronics – 2017. – vol. 64, № 8. – pp. 6338–6349.

87. Zhou, K. Optimal selective harmonic control for power harmonics mitigation
/ K. Zhou, Y. Yang, F. Blaabjerg, D. Wang // IEEE Transactions on Industrial Electronics
- 2015. - vol. 62, № 2. - pp. 1220–1230.

88. Schettino, G. Innovative computational approach to harmonic mitigation for seven-level cascaded H-bridge inverters / G. Schettino, I. Colak, A.O. Di Tommaso, R. Miceli, F. Viola // in Proc. 15th International Conference on Ecological Vehicles and Renewable Energies, Sept. 2020. pp. 1–7.

89. Moeini, A. Selective harmonic mitigation-pulse-width modulation technique with variable DC-link voltages in single and three-phase cascaded H-bridge inverters / A. Moeini, H. Iman-Eini, M. Bakhshizadeh // IET Power Electronics – 2014. – vol. 7, № 4. – pp. 924–932.

90. Aggrawal, H. Model predictive control based selective harmonic mitigation technique for multilevel cascaded H-bridge converters / H. Aggrawal, J.I. Leon, L.G. Franquelo, S. Kouro, P. Garg, J. Rodriguez // in Proc. IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, Nov. 2011. pp. 4424–4432.

91. Steczek, M. Combination of SHE- and SHM-PWM techniques for VSI DC link current harmonics control in railway applications / M. Steczek, P. Chudzik, A. Szeląg // IEEE Transactions on Industrial Electronics – 2017. – vol. 64, № 10. – pp. 7666–7678.

92. Maklakov, A.S. Finding the best programmable PWM pattern for three-level active front-ends at 18-pulse connection / A.S. Maklakov, T. Jing, A.A. Radionov, V.R Gasiyarov, T.A. Lisovskay // Machines – 2021. – vol. 9, N_{2} 7. – 127.

93. Jing, T. Two selective harmonic control techniques applied in 10Kv grid with three-level NPC inverter / T. Jing, A.S. Maklakov, A.A. Radionov // in Proc. Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice, Oct. 2019. pp. 75–79.

94. Jing, T. Research on selective harmonic elimination technique based on particle swarm optimization / T. Jing, A.S. Maklakov, O.A. Gasiyarova // in Proc. IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, Jan. 2019. pp. 694–700.

95. Николаев, А. А. Повышение устойчивости работы преобразователей частоты с активными выпрямителями при коммутациях электрооборудования электросталеплавильного комплекса / А. А. Николаев, А. С. Денисевич, В. С.

Ивекеев // Вестник Ивановского государственного энергетического университета. – 2019. – № 5. – С. 48–58.

96. Николаев, А. А. Улучшение качества напряжения в электрических сетях с активными выпрямителями за счет выбора оптимальных таблиц углов переключения ШИМ / А. А. Николаев, И. Г. Гилемов // Электротехнические системы и комплексы. – 2019. – № 4(45). – С. 35–42.

97. Николаев, А. А. Анализ влияния различных алгоритмов ШИМ активных выпрямителей многоуровневых ПЧ на устойчивость работы при провалах напряжения / А. А. Николаев, И. Г. Гилемов, А. С. Денисевич // Электротехнические системы и комплексы. – 2018. – № 3(40). – С. 55–62.

98. Николаев, А. А. Разработка и исследование усовершенствованного алгоритма ШИМ активного выпрямителя с изменяемыми таблицами углов переключения / А. А. Николаев, И. Г. Гилемов // Вестник Ивановского государственного энергетического университета. – 2020. – № 6. – С. 48–56.

99. Абдулвелеев И.Р. Формирование шаблонов переключений трехуровневого инвертора с векторной широтно-импульсной модуляцией / И. Р. Абдулвелеев, Т. Р. Храмшин, Г. П. Корнилов [и др.] // Электротехнические системы и комплексы. – 2019. – № 1(42). – С. 45–52.

100. Абдулвелеев И.Р. Принципы построения векторной широтноимпульсной модуляции для трехуровневого инвертора / И. Р. Абдулвелеев, Т. Р. Храмшин, Г. П. Корнилов, Г. В. Никифоров // Электротехнические системы и комплексы. – 2016. – № 4(33). – С. 72–77.

101. Абдулвелеев, И. Р. Анализ способов модуляции напряжения активных выпрямителей на базе модульных многоуровневых конвертеров / И. Р. Абдулвелеев, Т. Р. Храмшин, Г. П. Корнилов // Вестник Южно-Уральского государственного университета. Серия: Энергетика. – 2015. – Т. 15. – № 3.–С.25–36.

102. Hoevenaars, A. Active Harmonic Mitigation: What the Manufacturers Don't Tell You / A. Hoevenaars, M. Farbis, M. McGraw // IEEE Industry Applications Magazine – 2020. – vol. 26, № 5. – pp. 41–51.

103. Wu, X. A hybrid PWM strategy for three-level inverter with unbalanced DC links / X. Wu, G. Tan, G. Yao, C. Sun, G. Liu // IEEE Journal of Emerging and Selected Topics in Power Electronics – 2018. – vol. 6, N_{2} 1. – pp. 1–15.

104. Hashir, S. A novel hybrid PWM method for DC-link voltage balancing in a three level neutral point clamped inverter / S. Hashir, J. Francis, R. Sreepriya // in Proc. International Conference on Power, Signals, Control and Computation, Jan.2018.pp.1–6.

105. Jiang, W. Hybrid PWM strategy of SVPWM and VSVPWM for NPC three level voltage-source inverter / W. Jiang, S. Du, L. Chang, Y. Zhang, Q. Zhao // IEEE Transactions on Power Electronics – 2010. – vol. 25, $N_{\rm P}$ 10. – pp. 2607–2619.

106. Lisovskay, T.A. Linearization small deviation model of active front end rectifier / T.A. Lisovskay, A.S. Maklakov, R.A. Lisovsky, T. Jing // in Proc. Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice, Sept. 2020. pp. 133–136.

107. Цзин Тао. Алгоритм смены шаблонов углов переключений ключей трёхуровневого преобразователя при широтно-импульсной модуляции с удалением выделенных гармоник / Цзин Тао, А. А. Радионов, А. С. Маклаков // Вестник Южно-Уральского государственного университета. Серия: Энергетика. – 2020. – Т. 20. – № 2. – С. 99–109.

108. Николаев, А.А. Разработка усовершенствованного алгоритма ШИМ активного выпрямителя с адаптацией к резонансным явлениям во внутризаводской сети / А.А Николаев, **М.В. Буланов**, А.М. Афанасьев, Д.А. Денисевич // Вестник Ивановского государственного энергетического университета. – 2018. – №6. – С. 47-56.

109. Николаев, А.А. Разработка адаптивного алгоритма ШИМ активного выпрямителя и способа диагностики резонансных явлений во внутризаводских сетях / А.А Николаев, **М.В. Буланов**, К.А. Шахбиева // Вестник Ивановского государственного энергетического университета. – 2020. – №4. – С. 44-54.

110. Nikolaev, A. A. Ways to ensure electromagnetic compatibility of powerful frequency converters in internal power supply systems of industrial enterprises in the presence of resonance phenomena / A. A. Nikolaev, **M. V. Bulanov**, L. I. Antropova //

2019 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2019, Sochi, 25–29 марта 2019 года. – Sochi, 2019. – Р. 8742938. – DOI 10.1109/ICIEAM.2019.8742938.

111. Nikolaev, A. A. New Method of Industrial Power Supply Systems' Resonances Diagnosis by Using Test Influences of Frequency Converters with Active Rectifier / A. A. Nikolaev, **M. V. Bulanov**, K. A. Shakhbieva // Proceedings 2019 IEEE Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI), Magnitogorsk, 04–05 октября 2019 года. – Magnitogorsk: IEEE, 2019. – P. 3-7. – DOI 10.1109/PEAMI.2019.8915416.

112. Nikolaev, A. A. Development of improved PWM algorithm of active rectifier with function of resonant phenomena adaptation in electrical networks of medium voltage / A. A. Nikolaev, **M. V. Bulanov**, K. A. Shakhbieva // Proceedings - 2020 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2020, Sochi, 18–22 мая 2020 года. – Sochi: Institute of Electrical and Electronics Engineers Inc., 2020. – P. 9112051. – DOI 10.1109/ICIEAM48468.2020.9112051.

113. Nikolaev, A. A. Quality Improvement of Electric Power in the Intra-factory Electric Networks through the Use of PWM Algorithm Selective Harmonic Mitigation / A. A. Nikolaev, **M. V. Bulanov**, K. A. Shakhbieva // Proceedings - 2020 Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research and Practice, PEAMI 2020, Magnitogorsk, 25–26 сентября 2020 года. – Magnitogorsk, 2020. – P. 26-31. – DOI 10.1109/PEAMI49900.2020.9234357.

114. Providing Electromagnetic Compatibility of High-Power Frequency Converters with Active Rectifiers at Internal Power Supply System of Cherepovets Steel Mill / A. A. Nikolaev, I. G. Gilemov, **M. V. Bulanov**, V. I. Kosmatov // 2021 18th International Scientific Technical Conference Alternating Current Electric Drives, ACED 2021 - Proceedings : 18, Ekaterinburg, 24–27 мая 2021 года. – Ekaterinburg, 2021. – P. 9462264. – DOI 10.1109/ACED50605.2021.9462264.

115. Свидетельство о государственной регистрации программы для ЭВМ № 2022612773. Программа для определения углов коммутации активного

выпрямителя методом подавления выделенных гармоник напряжения / А.А. Николаев, **М.В. Буланов**, И.Г. Гилемов; № 2022611608; заявл. 10.02.2022; опубл. 28.02.2022. 2 кб.

116. Свидетельство о государственной регистрации программы для ЭВМ № 2022613834. Программа для расчета показателей качества напряжения в системах электроснабжения электротехнических комплексов на базе мощных электроприводов с активными выпрямителями / А.А. Николаев, **М.В. Буланов**, И.Г. Гилемов; № 2022611678; заявл. 10.02.2022; опубл. 15.03.2022. 1690 кб.

117. Николаев, А.А. Разработка научно обоснованных технических решений по обеспечению электромагнитной совместимости мощных промышленных электроприводов с питающей сетью / А.А. Николаев, **М.В.** Буланов, И.Г. Гилемов, М.Ю. Афанасьев, К.А. Шахбиева, В.А. Лаптова – Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова, – 2021. – 301 с.

Табли	цa	П.1.1	-	Параметры	главных	электроприводов	четырехклетьевого
стана ППП	ХΠ	ЧерМ	К	ПАО «Север	рсталь»		

			Параметры ПЧ-АВ							
Наименован ие электроприв ода	Тип ПЧ-АВ	Мощнос ть СД Р _{д.ном} , МВт	Схема питания	Mощность AB, ток AB $S_{AB.HOM}$, MBA / $U_{AB.HOM}$, B / $I_{AB.HOM}$, A	Мощность АИН S _{АИН.НОМ} , MBA / U _{АИН.НОМ} , B / I _{АИН.НОМ} , A	Алгоритм ШИМ АВ				
ЭП клети №1	ABB ACS6113-A06- 2s7-1V2-C39- W3a	12,0	6-пульсная от двухобмот. тр-ра	14,0 MBA; 3160 B; 1×2190 A	14,0 MBA; 3160 B; 2×1280 A	SHE/SHMPWM 3 переключ . за 1/4 периода				
ЭП клети №2	ABB ACS6207-A12- 2s7-1V2-C39- W3	12,0	12-пульсная от трех- обмот. тр-ра	14,0 MBA; 3160 B; 2×959,1 A	14,0 MBA; 3150 B; 2×933,1 A	SHE/SHMPWM 7 переключ . за 1/4 периода				
ЭП клети №3	ABB ACS6207-A12- 2s7-1V2-C39- W3	12,0	12-пульсная от трех- обмот. тр-ра	14,0 MBA; 3160 B; 2×959,1 A	14,0 MBA; 3150 B; 2×933,1 A	SHE/SHMPWM 7 переключ. за 1/4 периода				
ЭП клети №4	ABB ACS6207-A12- 2s7-1V2-C39- W3	12,0	12-пульсная от трех- обмот. тр-ра	14,0 MBA; 3160 B; 2×959,1 A	14,0 MBA; 3150 B; 2×933,1 A	SHE/SHMPWM 7 переключ. за 1/4 периода				
ЭП нат. моталки	ABB ACS6107-A06- 1s7-1V1-C25- W2	4,8	б-пульсная от двухобмот. тр-ра	7,0 MBA; 3160 B; 1×834 A	7,0 MBA; 3050 B; 1×779 A	SHE/SHMPWM 9 переключ. за 1/4 периода				

Таблица П.1.2 - Параметры питающих трансформаторов ПЧ-АВ ACS6000 главных электроприводов четырехклетьевого стана ППП ХП ЧерМК ПАО «Северсталь»

Наименование электропривода	Схема и гр. соединен ия	Мощность тр-ра S _{НОМ} , кВА	Напряжение U _{1Л.НОМ} , В; ток I _{1Л.НОМ} , А	Напряжение U _{2Л.НОМ} , В; ток I _{2Л.НОМ} , А	Напряжен ие КЗ U _{K3} ,%	Перегруз. способность, λ, о.е.
ЭП клети №1	Y/Y-0	12000	10000 кВ; 692,8 А	3165 B; 2189 A	20,20	Не указано
ЭП клети №2	$\Delta/Y11/\Delta0$	12000	10000 кВ; 638,0 А	3157/3153 B 1097/1099 A	12,69	1,2
ЭП клети №3	$\Delta/Y11/\Delta0$	12000	10000 кВ; 638,0 А	3157/3153 B 1097/1099 A	12,69	1,2
ЭП клети №4	$\Delta/Y11/\Delta0$	12000	10000 кВ; 638,0 А	3157/3153 B 1097/1099 A	12,69	1,2
ЭП нат. моталки	Үн/Үн-0	4804	10000 кВ; 277,4 А	3169 B; 875,2 A	12,97	1,45

Таблица П.2.1 - Технические данные сетевых трансформаторов 1Т и 2Т 110/10 кВ ГПП-2

Наименование параметра	Значение параметра
1. Тип трансформатора	ТДН-63000/110-У1
2. Номинальная мощность S _{HOM} , кВА	63000
3. Номинальное первичное напряжение $U_{1Л.HOM}$, кВ	115 (133,4-96,6)
4. Номинальный первичный ток $I_{1 m HOM}$, А	316,3 (272,6-334,1)
5. Номинальное вторичное напряжение $U_{2Л.HOM}$, кВ	10,5
6. Номинальный вторичный ток I _{2ном} , А	3464,1
7. Схема и группа соединения обмоток	Υн/Δ-11
8. Количество ступеней РПН	19
9. Напряжение КЗ для 1, 10, 19 ступеней РПН U _K , %	10,83; 10,1; 9,97
10. Потери КЗ для 1, 10, 19 ступеней РПН $\Delta P_{ m K3}$, кВт	210,65; 212,32; 234,44
11. Ток холостого хода <i>I</i> _{XX} ,%	0,069
12. Потери холостого хода $\Delta P_{\rm XX}$, кВт	29,37

Таблица П.2.2 - Параметры токоограничивающих реакторов, используемых

на ГПП-2

Номер	Номер	Тип	Технические данные реакторов							
секции	фидера	реактора	$U_{\rm Л.HOM},$	I _{HOM} ,	$\Delta P_{\Phi A3}$,	Хфаз,	$L_{\Phi A3}$,	$R_{\Phi A3}$,		
1 1111-2	11111-2		кВ	A	кВт	Ом	мГн	Ом		
	1	РТСТ-10-2000-0,35 УЗ	10,0	2000	13,2	0,35	1,114	0,003		
	3	РБА 10-1500-8	10,0	1500	10,4	0,31	0,98	0,005		
	5	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
	6A	РБА 10-1500-8	10,0	1500	10,4	0,31	0,98	0,005		
Секция 2	7	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
	8	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
	9	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
	10	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
	11	РБА 10-600-3	10,0	600	4,2	0,29	0,919	0,012		
	15	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
	16	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
	17	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
	18	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
Communa 1	20	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
Секция і	21	РТСТ-10-2000-0,35 УЗ	10,0	2000	13,2	0,35	1,114	0,003		
	23	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
	25	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
	26	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		
	27	РБА 10-1000-6	10,0	1000	6,9	0,34	1,103	0,006		

приложение 3

Таблица	а П.3.1 - Параметры ка	бельных линий,	отходящих о	т РУ-10 кВ	ΓΠΠ-
2 до цеховых	распределительных по,	дстанций			

<u>2 до ц</u>	CAODD12	х распредели		юдета	щии						
Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	$C_{ m yд},$ мк Φ /км	$C_{\Sigma},$ мк Φ
		РП-92 РУ 10кВ (последов.	ЦААШВу- 10	3x185	3	400	154 5	0,211	0,262	0,32	0,384
	11111-2	включение КЛ с разными марками)	ААШВ-10	3x185	3	200	15А,Б	0,211	0,262	0,32	0,192
	ГПП-2	КТП 1 РТП-54а Тр-тор №2 1000 кВА	ААШВу-10	3x95	1	910	16A	0,411	0,294	0,23	0,2093
	ГПП-2	РТП-54а Тр-тор №1 6300 кВА	ААШВу-10	3x150	2	840	16Б	0,265	0,27	0,29	0,4872
		РП-220 РУ 10кВ	AAIIIBy-10	3x185	4	400		0,211	0,262	0,32	0,512
	ГПП-2	(последов. включение КЛ с разными марками)	ЦААШВу- 10	3x185	4	740	17	0,211	0,262	0,32	0,9472
1	ГПП-2	РП-155 РУ 10кВ	АПвВнг(В)- LS	3x240	2	700	18А,Б	0,161	0,254	0,429	0,6006
	ГПП-2	Тр-тор № 1 630кВА	ЦААШнг- 10	3x95	1	155	20A	0,411	0,294	0,23	0,03565
	ГПП 2	РП-19 РУ 10кВ (параллельное	ЦААШВу- 10	3x240	6	220	21	0,161	0,254	0,36	0,4752
	11111-2	включение КЛ с разными марками)	ПвВнг(А)- LS	3x150/25	1	370	21	0,159	0,27	0,357	0,13209
	ГПП-2	ПС-13 РУ 10кВ	ЦААШВу- 10	3x185	6	200	23	0,211	0,262	0,32	0,384
	ГПП-2	РП-103 РУ 10кВ	ЦААШВу- 10	3x185	3	600	25A	0,211	0,262	0,32	0,576
	ГПП-2	ПС-56 РУ 10кВ	ЦААШВу- 10	3x120	2	600	25Б	0,325	0,282	0,27	0,324
			AAIIIBy-10	3x120	2	850		0,325	0,282	0,27	0,459
	ГПП-2	ПС-33 РУ 10кВ	AAIIIBy-10	3x185	2	800	26Б	0,211	0,262	0,32	0,512
	ГПП-2	РП-101 РУ 10кВ	AAIIIB-10	3x185	4	640	27A	0,211	0,262	0,32	0,8192
	гпп 2	РП-19 РУ 10кВ (парал. включение	ЦААШВу- 10	3x240	6	230	1	0,161	0,254	0,36	0,4968
	11111-2	КЛ с разными марками)	ПвВнг(А)- LS	3x150/25	1	370	1	0,159	0,27	0,357	0,13209
	ГПП-2	ПС-13 РУ 10кВ	ЦААШВу- 10	3x185	6	300	3	0,211	0,262	0,32	0,576
	ГПП-2	КТП 2 РТП-54а Тр-тор №1 1000 кВА	ААШВу-10	3x95	1	820	5A	0,411	0,294	0,23	0,1886
2	ГПП-2	РТП-54а Тр-тор №3 6300 кВА	ААШВу-10	3x150	2	810	5Б	0,265	0,27	0,29	0,4698
2	ГПП-2	РП-91 РУ 10кВ	ЦААШВу- 10	3x185	4	1980	6A	0,211	0,262	0,32	2,5344
	ГПП-2	Перемычка с ГПП- 7Б	ЦААШВу- 10	3x185	3		6Б	0,211	0,262	0,32	
		РП-92 РУ 10кВ (последов.	ЦААШВу- 10	3x185	3	400	7 A F	0,211	0,262	0,32	0,384
	1111-2	включКЛ с разными марками)	AAIIIB-10	3x185	3	200	/A,D	0,211	0,262	0,32	0,192
	ГПП-2	РП-214 РУ 10кВ	ЦААШВ-10	3x185	2	900	9	0,211	0,262	0,32	0,576
	ГПП-2	РП-155 РУ 10кВ	АПвВнг(В)- LS	3x240	2	700	10А,Б	0,161	0,254	0,429	0,6006
	ГПП-2	Тр-тор №2 320 кВА	AAIIIB-10	3x70	1	90	11A	0,568	0,312	0,22	0,0198

Таблица П.3.2 - Параметры кабельных линий 10 кВ, отходящих от ПС-13 до

КТП и высоковольтных электроприемников

Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	С _{уд} , мкФ/км	<i>С</i> _Σ , мкФ
	РУ-10 кВ, яч.3	КТП-ВШМ Тр-тор №1 1000 кВА	ААШв	3x95	1	85	3	0,411	0,294	0,23	0,01955
	РУ-10 кВ, яч.7	КЛП 8 Тр-тор №1 1000 кВА	ААШв	3x185	1	130	7	0,211	0,262	0,32	0,0416
	РУ-10 кВ, яч.17	РП-13"Т" РУ 10кВ яч.4	ЦААШв	3x120	1	140	17	0,325	0,282	0,27	0,0378
	РУ-10 кВ, яч.21	Ввод №1 на РП- 13"Д" РУ 10кВ яч.9	ААШв	3x185	2	124	21	0,211	0,262	0,32	0,07936
1	РУ-10 кВ, яч.27	РП-13"Б" РУ 10кВ яч. 8	ААШв	3x185	3	138	27	0,211	0,262	0,32	0,13248
1	РУ-10 кВ, яч.31	КТП 13 "И" Тр-тор 1000 кВА	ЦААШнг	3x120	1	381	31	0,325	0,282	0,27	0,10287
	РУ-10 кВ, яч.33	Ввод №3 РП- 13"А" РУ 10кВ яч.26	ААШв	3x185	3	393	33	0,211	0,262	0,32	0,37728
	РУ-10 кВ, яч.37	ТСЗП-1 Тр-тор 800 кВА	ААШв-10	3x95	1	100	37	0,411	0,294	0,23	0,023
	РУ-10 кВ, яч.41	КТП 6 Тр-тор №1 2500 кВА	ЦААШнг	3x120	1	140	41	0,325	0,282	0,27	0,0378
	РУ-10 кВ, яч.43	КТП 7 Тр-тор №1 1600 кВА	ЦААШнг	3x120	1	143	43	0,325	0,282	0,27	0,03861
	РУ-10 кВ, яч.4	Ввод №2 на РП- 13"Д" РУ 10кВ яч.17	ААШв	3x185	2	130	4	0,211	0,262	0,32	0,0832
	РУ-10 кВ, яч.6	КТП-ВШМ Тр-тор №2 1000кВА	ЦААШнг	3x95	1	73	6	0,411	0,294	0,23	0,01679
	РУ-10 кВ, яч.20	ТП 13 "К" Тр-тор 1000 кВА	ЦААШв	3x120	1	371	20	0,325	0,282	0,27	0,10017
	РУ-10 кВ, яч.22	РП-13"Б" РУ 10 кВ яч.18	ААШв	3x185	3	149	22	0,211	0,262	0,32	0,14304
	РУ-10 кВ, яч.26	Перемычка на РП- 230 РУ 10кВ яч.17	ЦААШв	3x185	1	620	26	0,211	0,262	0,32	0,1984
2	РУ-10 кВ, яч.32	Ввод №2 РП- 13"А" РУ 10кВ яч.18	ААШв	3x185	3	371	32	0,211	0,262	0,32	0,35616
2	РУ-10 кВ, яч.36	КТП 9 Тр-тор 1000 кВА	АСБГ	3x70	1	40	36	0,568	0,312	0,22	0,0088
	РУ-10 кВ, яч.38	ТСЗП-2 Тр-тор 800 кВА	ААШв-10	3x95	1	100	38	0,411	0,294	0,23	0,023
	РУ-10 кВ, яч.40	КТП 6 Тр-тор №2 2500 кВА	ЦААШнг	3x120	1	123	40	0,325	0,282	0,27	0,03321
	РУ-10 кВ, яч.42	КТП 7 Тр-тор №2 1600 кВА	ЦААШнг	3x120	1	98	42	0,325	0,282	0,27	0,02646
	РУ-10 кВ, яч.44	Тр-тор привода разматывателя 1600кВА	ЦААШнг	3x120	1	100	44	0,325	0,282	0,27	0,027
	РУ-10 кВ, яч.46	КТП 8 Тр-тор №2 1000 кВА	ЦААШнг	3x95	1	130	46	0,411	0,294	0,23	0,0299

Таблица П.3.3 - Параметры кабельных линий 10 кВ, отходящих от РП-19 до КТП и высоковольтных электроприемников

Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	$C_{ m yd}$, мк Φ /км	C_{Σ} , мк Φ
1	РУ-10 кВ, яч.1	Клеть №1 Тр-тор №1 10/3кВ 12000кВА	ПвВнг(А)- LS-10	3(1x400/35)	1	35	1	0,063	0,275	0,531	0,018585
	РУ-10 кВ, яч.3	Клеть №3 Тр-тор №3 10/3кВ 12000кВА	ПвВнг(А)- LS-10	3(1x400/35)	1	47	3	0,063	0,275	0,531	0,024957
2	РУ-10 кВ, яч.8	Клеть №2 Тр-тор №2 10/3кВ 12000кВА	ПвВнг(А)- LS-10	3(1x400/35)	1	50	8	0,063	0,275	0,531	0,02655
	РУ-10 кВ, яч.10	Клеть №4 Тр-тор №4 10/3кВ 12000кВА	ПвВнг(А)- LS-10	3(1x400/35)	1	63	10	0,063	0,275	0,531	0,033453
	РУ-10 кВ, яч.11	Натяжная моталка Тр-тор №5 10/3кВ 4800кВА	ПвВнг(А)- LS-10	3(1x150/35)	1	70	11	0,159	0,275	0,531	0,03717

Таблица П.3.4 - Параметры кабельных линий 10 кВ, отходящих от ПС-33 до КТП и высоковольтных электроприемников

Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	С _{уд} , мкФ/км	C_{Σ} , мк Φ
	РУ-10 кВ, яч.3	Тр-тор №1 630кВА 10/0,4кВ	ЦААШв	3x120	3	20	3	0,325	0,282	0,27	0,0162
1	РУ-10 кВ, яч.4	КУПП ЭД 5-7 ввод№1	ЦААШв	3x95	3	120	4	0,411	0,294	0,23	0,0828
1	РУ-10 кВ, яч.5	Тр-тор №1 1800кВА 10/3кВ	АСБГ	3x150	3	34	5	0,265	0,27	0,29	0,02958
	РУ-10 кВ, яч.6	Тр-тор №2 1800кВА 10/3кВ	АСБГ	3x150	1	38	6	0,265	0,27	0,29	0,01102
	РУ-10 кВ, яч.14	Тр-тор №3 1800кВА 10/3кВ	АСБГ	3x150	1	53	14	0,265	0,27	0,29	0,01537
2	РУ-10 кВ, яч.18	Тр-тор №2 630кВА 10/0,4кВ	ЦААШв	3x120	1	35	18	0,325	0,282	0,27	0,00945
	РУ-10 кВ, яч.19	Реактор СТМ-3500 №6	ЦААШв	3x185	1	180	19	0,211	0,262	0,32	0,0576
2	РУ-10 кВ, яч.24	Перемычка на РП 33 РУ-10кВ яч.26	ЦААШв	3x240	1	53	24	0,161	0,254	0,36	0,01908
3	РУ-10 кВ, яч.25	Трансформатор №4 1800кВА 10/3кВ	ЦААШв	3x120	1	58	25	0,325	0,282	0,27	0,01566
	РУ-10 кВ, яч.30	КУПП ЭД 5-7 ввод№2	ЦААШв	3x95	3	105	30	0,411	0,294	0,23	0,07245
4 J	РУ-10 кВ, яч.33	СТД-3200 №7	ЦААШв	3x95	3	210	33	0,411	0,294	0,23	0,1449

Таблица П.3.5 - Параметры кабельных линий 10 кВ, отходящих от РП-92 до

КТП и высоковольтных электроприемников

	1	r	1				1	1	1		
Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	$C_{ m yd},$ мк Φ /км	C_{Σ} , мк Φ
	РУ-10 кВ. яч.2	92 КТП-4 Тр-тор №1 1600кВА	АПвВнг(А)- LS	3x120	1	196	2	0,325	0,282	0,323	0,063308
	РУ-10	92КТП-1 Тр-тор №1 2500кВА	АПвВнг(А)-	3x185	1	39	3	0,211	0,262	0,387	0,015093
	PY-10	92 KTII-2 Tp-top	АПвВнг(А)-	3x185	1	17	4	0,211	0,262	0,387	0,006579
	PY-10	92КТП-3 Тр-тор	АПвВнг(А)-	3x185	1	189	5	0,211	0,262	0,387	0,073143
	кв, яч.5 РУ-10	<u>№1</u> 2500кВА ЗТПА Тр-тор №1	AAIIIB	3x95	1	105	6	0.411	0 294	0.23	0.02415
1	кВ, яч.6 РУ-10	1600кВА 1-ТП Тр-тор	ЦААШнг	3x95	1	872	7	0,111	0.294	0.23	0.20056
1	кВ, яч.7 РУ-10	630кВА 1ТПВ Тр-тор №1	AAIIIB	205	1	44	, 0	0,411	0,294	0,23	0,20050
	кВ, яч.8	1600kBA		3893	1	44	0	0,411	0,294	0,23	0,01012
	РУ-10 кВ, яч.9	1 ППА 1р-тор №1 10/0,4 кВ 1600кВА	AlibBhr(A)- LS	3x120	1	94	9	0,325	0,282	0,323	0,030362
	РУ-10 кВ, яч10	2ТПА Тр-тор №1 1600кВА	АПвВнг(A)- LS	3x120	1	108	10	0,325	0,282	0,323	0,034884
	РУ-10 кВ, яч.11	4ТП Тр-тор №1 1000кВА	ЦААШнг	3x95	1	123	11	0,411	0,294	0,23	0,02829
	РУ-10 кВ, яч.19	4ТП Тр-тор №2 1000кВА	ЦААШнг	3x95	1	119	19	0,411	0,294	0,23	0,02737
	РУ-10 кВ, яч.20	1ТПА Тр-тор №2 1600кВА	ААШв	3x95	1	85	20	0,411	0,294	0,23	0,01955
	РУ-10 кВ, яч.21	2 ТПА Тр-тор №2 1600кВА	ААШв	3x95	1	98	21	0,411	0,294	0,23	0,02254
	РУ-10 кВ, яч.22	3-ТПА Тр-тор №2 1600кВА	ААШв	3x95	1	109	22	0,411	0,294	0,23	0,02507
	РУ-10 кВ, яч.23	2-ТП Тр-тор 630кВА	ААШв	3x95	1	923	23	0,411	0,294	0,23	0,21229
	РУ-10	Тр-тор сварочной	ЦААШв	3x95	1	168	24	0,411	0,294	0,23	0,03864
2	кв, яч.24	машины 200кВА.	ААШв	3x70	1	168	24	0,568	0,312	0,22	0,03696
2	РУ-10 кВ, яч.25	92КТП-1 Тр-тор №2 2500кВА	АПвВнг(А)- LS-10	3x185	1	21	25	0,211	0,262	0,387	0,008127
	РУ-10 кВ, яч.26	92КТП-2 Тр-тор №2 1600кВА	АПвВнг(А)- LS-10	3x120	1	47	26	0,325	0,282	0,323	0,015181
	РУ-10 кВ, яч.27	92КТП-3 Тр-тор №2 2500кВА	АПвВнг(А)- LS-10	3x185	1	215	27	0,211	0,262	0,387	0,083205
	РУ-10 кВ, яч.28	92КТП-4 Тр-тор №2 1600кВА	АПвВнг(А)- LS	3x120	1	227	28	0,325	0,282	0,323	0,073321
	РУ-10 кВ, яч.19	4ТП Тр-тор №2 1000кВА	ЦААШнг	3x95	1	119	19	0,411	0,294	0,23	0,02737
	РУ-10 кВ, яч.29	РП 92 РУ-10кВ яч.31	АПвВнг(А)- LS-10	3x240	2	27	29	0,161	0,254	0,429	0,023166
	РУ-10 кВ, яч.34	1ТПВ Трансформатор №2 1600кВА	АПвВнг(А)- LS-10	3x120	1	74	34	0,325	0,282	0,323	0,023902
3	РУ-10 кВ, яч.35	106 КТП-3 Тр-тор №2 1600кВА	АПвВнг	3x120	1	551	35	0,325	0,282	0,323	0,177973
	РУ-10 кВ, яч.36	Перемычка на РП- 106 РУ-10кВ яч.17	АПвВнг(А)- LS	3x120	1	483	36	0,325	0,282	0,323	0,156009

Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	С _{уд} , мкФ/км	C_{Σ} , мк Φ
	РУ-10 кВ, яч.1	ТП-1 Тр-тор 1600кВА	АПвВнг-LS	3x95	1	242	1	0,411	0,294	0,294	0,071148
	РУ-10 кВ, яч.2	ТП 2 Тр-тор №1 1600кВА	АПвВнг-LS	3x95	1	239	2	0,411	0,294	0,294	0,070266
	РУ-10 кВ, яч.3	КТП 155 – ТП 3 Тр-тор №1 10/0,4 кВ 1600 кВА	АПвВнг (А)-LS	3x95/25	1	64	3	0,411	0,294	0,294	0,018816
1	РУ-10 кВ, яч.4	КТП155-ТП4 Тр-тор №1 10/0,4 кВ 1600 кВА	АПвВнг (A)-LS	3x95/25	1	91	4	0,411	0,294	0,294	0,026754
	РУ-10 кВ, яч.5	ТП-5 Тр-тор №1 2500кВА	АПвВнг-LS	3x95	1	319	5	0,411	0,294	0,294	0,093786
	РУ-10 кВ, яч.6	Конденсаторная установка №1 2250кВар	АПвВнг-LS	3x95	1	17	6	0,411	0,294	0,294	0,004998
	РУ-10 кВ, яч.10	РП 155 РУ-10кВ яч.26	АПвВнг-LS	3x95	2	22	10	0,411	0,294	0,294	0,012936
	РУ-10 кВ, яч.16	ТП-2 Тр-тор №2 1000кВА	АПвВнг (A)-LS	3x95/25	1	280	16	0,411	0,294	0,294	0,08232
	РУ-10 кВ, яч.17	ТП 3 Тр-тор №2 1600кВА	АПвВнг-LS	3x95	1	129	17	0,411	0,294	0,294	0,037926
2	РУ-10 кВ, яч.18	ТП-6 Тр-тор №1 2500кВА	АПвВнг-LS	3x95	1	338	18	0,411	0,294	0,294	0,099372
	РУ-10 кВ, яч.19	Конденсаторная установка №2 2250кВАр	ЦААШв	3x95	1	19	19	0,411	0,294	0,23	0,00437
3	РУ-10 кВ, яч.27	ТП-4 Тр-тор №2 2500 кВА	АПвВнг-LS	3x95	1	140	27	0,411	0,294	0,294	0,04116
5	РУ-10 кВ, яч.28	ТП-6 Тр-тор №2 2500кВА	АПвВнг-LS	3x95	1	362	28	0,411	0,294	0,294	0,106428

Таблица П.3.6 - Параметры кабельных линий 10 кВ, отходящих от РП-155 до КТП и высоковольтных электроприемников

Таблица ПЗ.7 -Параметры кабельных линий 10 кВ, отходящих от ПС-56 до

КТП и высоковольтных электроприемников

Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	$C_{ m УД},$ мк Φ /км	C_{Σ} , мк Φ
	РУ-10 кВ, яч.1	Агрегат №12	АПаАнг(А)- LS-10	3x120	1	27	1	0,325	0,282	0,323	0,008721
	РУ-10 кВ, яч.3	Агрегат №14	АПаАнг(А)- LS-10	3x120	1	38	3	0,325	0,282	0,323	0,012274
	РУ-10 кВ, яч.5	Тр-тор №25 1000кВА	АСБГ	3x95	1	203	5	0,411	0,294	0,23	0,04669
1	РУ-10 кВ, яч.9	Тр-тор №3 10/0,4кВ 1000 кВА	АПвВнг(А)- LS	3x120/35	1	42	9	0,325	0,282	0,323	0,013566
	РУ-10 кВ, яч.11	Тр-тор №2 1250кВА	ЦААШв	3x95	1	42	11	0,411	0,294	0,23	0,00966
	РУ-10 кВ, яч.15	Тр-тор №5 10/0,4кВ 1000кВА	ААШв	3x95	1	30	15	0,411	0,294	0,23	0,0069
	РУ-10 кВ, яч.2	Агрегат №13 630кВт	АПвВнг (А)	3x120	1	34	2	0,325	0,282	0,323	0,010982
	РУ-10 кВ, яч.4	Тр-тор №6 1000кВА	ЦААШв	3x95	1	27	4	0,411	0,294	0,23	0,00621
	РУ-10 кВ, яч.8	Тр-тор №4 10/0,4кВ 1250 кВА	AAIIIb	3x95	1	47	8	0,411	0,294	0,23	0,01081
2	РУ-10 кВ, яч.10	Тр-тор №1 1000кВА	ААШв	3x95	1	38	10	0,411	0,294	0,23	0,00874
	РУ-10 кВ, яч.12	Тр-тор агрегата №28 10/6кВ 1000кВА	ААШв	3x95	1	228	12	0,411	0,294	0,23	0,05244
	РУ-10 кВ, яч.14	Тр-тор 10/6кВ 1000кВА агрегата №27	ААШв	3x70	1	192	14	0,568	0,312	0,22	0,04224

Таблица П.3.8 - Параметры кабельных линий 6 кВ, отходящих от ПС-54А до

КТП и высоковольтных электроприемников

Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	С _{уд} , мкФ/км	C_{Σ} , мк Φ
	РУ-10 кВ, яч.1"А"	Тр-тор №1 10/6кВ 6300кВА	ААШв	3x150	2	42	1"A"	0,265	0,27	0,29	0,02436
	РУ-10 кВ, яч.2"А"	Тр-тор №2 10/6кВ 6300кВА	AAIIIb	3x150	2	56	2"A"	0,265	0,27	0,29	0,03248
	РУ-10 кВ, яч.3"А"	Тр-тор №3 10/6кВ 6300кВА	ААШв	3x150	2	126	3"A"	0,265	0,27	0,29	0,07308
	РУ-10 кВ, яч.4"А"	Тр-тор №4 6300кВА	AAIIIb	3x150	2	199	4"A"	0,265	0,27	0,29	0,11542
	РУ-6 кВ, яч.2	Эл.двигатель агрегата №37 400кВт	ААШв	3x70	1	51	2	0,568	0,312	0,22	0,01122
	РУ-6 кВ, яч.5	Двигатель №29 400кВт	ААШв	3x95	1	26	5	0,411	0,294	0,23	0,00598
	РУ-6 кВ, яч.7	Эл.двигатель агрегата №17 200кВт	ААШв	3x50	1	69	7	0,822	0,331	0,21	0,01449
1	РУ-6 кВ, яч.12	Эл.двигатель агрегата №9 250кВт	AAIIIb	3x95	1	100	12	0,411	0,294	0,23	0,023
	РУ-6 кВ, яч.13	Эл.двигатель агрегата №36 630кВт	ААШв	3x95	1	80	13	0,411	0,294	0,23	0,0184
	РУ-6 кВ, яч.15	Эл.двигатель агрегата №16 630кВт	AAIIIb	3x95	1	81	15	0,411	0,294	0,23	0,01863
	РУ-6 кВ, яч.18	Эл.двигатель агрегата №22 200кВт	AAIIIb	3x50	1	66	18	0,822	0,331	0,21	0,01386
	РУ-6 кВ, яч.20	Агрегат №32 400кВт	AAIIIb	3x70	1	58	20	0,568	0,312	0,22	0,01276
	РУ-6 кВ, яч.21	Эл.двигатель агрегата №40 400кВт	ААШв	3x70	1	37	21	0,568	0,312	0,22	0,00814
2	РУ-6 кВ, яч.22	Эл.двигатель агрегата №18 315кВт	ААШв	3x50	1	79	22	0,822	0,331	0,21	0,01659
	РУ-6 кВ, яч.23	Эл.двигатель агрегата №11 200кВт	ААШв	3x50	1	114	23	0,822	0,331	0,21	0,02394
	РУ-6 кВ, яч.26	Эл.двигатель агрегата №35 630кВт	ААШв	3x95	1	71	26	0,411	0,294	0,23	0,01633
	РУ-6 кВ, яч.28	Эл.двигатель агрегата №5 400кВт	ААШв	3x50	1	102	28	0,822	0,331	0,21	0,02142
	РУ-6 кВ, яч.32	Эл.двигатель агрегата №21 200кВт	ААШв	3x50	1	74	32	0,822	0,331	0,21	0,01554
	РУ-6 кВ, яч.34	Эл.двигатель агрегата №3 250кВт	ААШв	3x50	1	99	34	0,822	0,331	0,21	0,02079
3	РУ-6 кВ, яч.38	Эл.двигатель агрегата №31 400кВт	ААШв	3x70	1	58	38	0,568	0,312	0,22	0,01276
	РУ-6 кВ, яч.39	Эл.двигатель агрегата №14 630кВт	ААШв	3x95	1	109	39	0,411	0,294	0,23	0,02507
	РУ-6 кВ, яч.44	Эл.двигатель агрегата №39 400кВт	ААШв	3x70	1	31	44	0,568	0,312	0,22	0,00682
	РУ-6 кВ, яч.47	Эл.двигатель агрегата №6 315кВт	ААШв	3x95	1	105	47	0,411	0,294	0,23	0,02415
	РУ-6 кВ, яч.50	Арегат №13, 630кВт	ААШв	3x95	1	105	50	0,411	0,294	0,23	0,02415
4	РУ-6 кВ, яч.51	Эл.двигатель агрегата №2 250кВт	ААШв	3x35	1	84	51	0,89	0,302	0,20	0,0168
4	РУ-6 кВ, яч.52	Эл.двигатель агрегата №38 400кВт	ААШв	3x70	1	33	52	0,568	0,312	0,22	0,00726
	РУ-6 кВ, яч.54	Эл.двигатель агрегата №28 400кВт	ААШв	3x70	1	39	54	0,568	0,312	0,22	0,00858
	РУ-6 кВ, яч.55	Эл.двигатель агрегата №20 200кВт	ААШв	3x50	1	75	55	0,822	0,331	0,21	0,01575
	РУ-6 кВ, яч.62	Эл.двигатель агрегата №4 500кВт	ААШв	3x50	1	84	62	0,822	0,331	0,21	0,01764
	РУ-6 кВ, яч.64	Эл.двигатель агрегата №10 200кВт	ААШв	3x35	1	111	64	0,89	0,302	0,20	0,0222
5	РУ-6 кВ, яч.65	Эл.двигатель агрегата №33 630кВт	ААШв	3x95	1	60	65	0,411	0,294	0,23	0,0138
5	РУ-6 кВ, яч.66	Двигатель №41 400кВт	ААШв	3x70	1	36	66	0,568	0,312	0,22	0,00792
	РУ-6 кВ, яч.67	Эл.двигатель агрегата №30 400кВт	ААШв	3x70	1	34	67	0,568	0,312	0,22	0,00748
	РУ-6 кВ, яч.68	Эл.двигатель агрегата №19 200кВт	ААШв	3x50	1	64	68	0,822	0,331	0,21	0,01344

Таблица ПЗ.9 - Параметры кабельных линий 10 кВ, отходящих от РП-91 до

ΚI	П	И	высок	оволь	тных	элект	рог	іриє	емнико	В
----	---	---	-------	-------	------	-------	-----	------	--------	---

Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	С _{уд} , мкФ/км	C_{Σ} , мк Φ
	РУ-10 кВ, яч.3	4КТП-3 Тр-тор 1250кВА	ЦААШв	3x95	1	89	3	0,411	0,294	0,23	0,02047
	РУ-10 кВ, яч.4	1-КТП-2 Тр-тор №1 1000кВА	ЦААШв	3x95	1	160	4	0,411	0,294	0,23	0,0368
	РУ-10 кВ, яч.5	2КТП-3 Тр-тор №1 1000кВА	ЦААШв	3x95	1	40	5	0,411	0,294	0,23	0,0092
1	РУ-10 кВ, яч.6	3-КТП-2 Тр-тор №1 1000кВА	ЦААШв	3x95	1	251	6	0,411	0,294	0,23	0,05773
1	РУ-10 кВ, яч.8	4КТП-2 Тр-тор №1 2000кВА	ЦААШв	3x95	1	74	8	0,411	0,294	0,23	0,01702
	РУ-10 кВ, яч.9	4-КТП-1 Тр-тор №1 1600кВА	ЦААШв	3x95	1	88	9	0,411	0,294	0,23	0,02024
	РУ-10 кВ, яч.10	2КТП-2 Тр-тор №1 2000кВА	ЦААШв	3x95	1	34	10	0,411	0,294	0,23	0,00782
	РУ-10 кВ, яч.11	1-КТП-1 Тр-тор 2000кВА	ЦААШв	3x95	1	150	11	0,411	0,294	0,23	0,0345
	РУ-10 кВ, яч.18	Т индуктотерма	ЦААШв	3x120	1	37	18	0,325	0,282	0,27	0,00999
	РУ-10 кВ, яч.19	3КТП-1 Тр-тор 1250 кВА	ЦААШв	3x95	1	243	19	0,411	0,294	0,23	0,05589
2	РУ-10 кВ, яч.20	4КТП-2 Тр-тор №2 2000кВА	ЦААШв	3x95	1	76	20	0,411	0,294	0,23	0,01748
2	РУ-10 кВ, яч.21	4КТП-1 Тр-тор №2 1600кВА	ЦААШв	3x95	1	74	21	0,411	0,294	0,23	0,01702
	РУ-10 кВ, яч.22	2КТП-2 Тр-тор №2 2000 кВА	ЦААШв	3x95	1	31	22	0,411	0,294	0,23	0,00713
	РУ-10 кВ, яч.23	2КТП-1 Тр-тор №1 2000кВА	ЦААШв	3x95	1	51	23	0,411	0,294	0,23	0,01173
	РУ-10 кВ, яч.29	5КТП-1 Тр-тор №2 1250кВА	ЦААШв	3x95	1	411	29	0,411	0,294	0,23	0,09453
2	РУ-10 кВ, яч.30	3-КТП-2 Тр-тор №2 1000кВА	ЦААШв	3x95	1	228	30	0,411	0,294	0,23	0,05244
5	РУ-10 кВ, яч.31	2КТП-3 Тр-тор №2 1000кВА	ЦААШв	3x95	1	38	31	0,411	0,294	0,23	0,00874
	РУ-10 кВ, яч.32	1КТП-2 Тр-тор №2 1000кВА	ЦААШв	3x95	1	183	32	0,411	0,294	0,23	0,04209

Таблица П.3.10 - Параметры кабельных линий 10 кВ, отходящих от РП-101

Секция	Tpacca	Трасса (конец)	Марка	Сечение	Кол-	Длина,	Филер	R_0 ,	L_0 ,	Суд,	<i>С</i> ₅ . мкФ
	(начало) DV 10	TT 101 "A" Tr N-2	ВЛ/КЛ	ВЛ/КЛ	BO	М		Ом/км	мГн/км	мкФ/км	с <u>,</u> ,
	РУ-10 кВ, яч.2	111 101 "А" 1р-р №2 1000кВА	ЦААШв	3x95	1	231	2	0,411	0,294	0,23	0,05313
	РУ-10 кВ, яч.3	КТП-6 Трансформатор №1 1000кВА	ААШв	3x95	1	101	3	0,411	0,294	0,23	0,02323
	РУ-10 кВ, яч.4	КТП-5 Тр-тор №1 1000кВА	ААШв	3x95	1	94	4	0,411	0,294	0,23	0,02162
1	РУ-10 кВ, яч.7	КТП-4 Тр-тор №1 10/0,4кВ 1000кВА	AAIIIb	3x95	1	37	7	0,411	0,294	0,23	0,00851
	РУ-10 кВ, яч.8	КТП-2 Тр-тор №1 1000кВА	AAIIIb	3x95	1	24	8	0,411	0,294	0,23	0,00552
	РУ-10 кВ, яч.9	КТП-1 Тр-тор №1 10/0,4 кВ 1000 кВА	AAIIIb	3x95	1	18	9	0,411	0,294	0,23	0,00414
	РУ-10 кВ, яч.10	РП 101 РУ-10кВ яч.25	ААШв	3x185	3	23	10	0,211	0,262	0,32	0,02208
	РУ-10 кВ, яч.14	КТП-6 Тр-тор №2 1000кВА	ААШв	3x95	1	110	14	0,411	0,294	0,23	0,0253
	РУ-10 кВ, яч.15	КТП-4 Тр-тор №2 1000кВА	ААШв	3x95	1	30	15	0,411	0,294	0,23	0,0069
	РУ-10 кВ, яч.16	КТП-3 Тр-тор №1 1000кВА	ААШв	3x95	1	25	16	0,411	0,294	0,23	0,00575
2	РУ-10 кВ, яч.17	КТП-1 Тр-тор №2 1000кВА	ААШв	3x95	1	24	17	0,411	0,294	0,23	0,00552
	РУ-10 кВ, яч.20	КТП-101"В" Тр-тор №1 1600кВА	ЦААШнг	3x95	1	376	20	0,411	0,294	0,23	0,08648
	РУ-10 кВ, яч.21	КТП 101"Б" Тр-р №1 10/0,4 кВ 1600 кВА	ЦААШв	3x95	1	466	21	0,411	0,294	0,23	0,10718
	РУ-10 кВ, яч.27	КТП-101"В" Тр-тор №2 1600кВА	ЦААШнг	3x95	1	381	27	0,411	0,294	0,23	0,08763
	РУ-10 кВ, яч.28	ТП 101 "Б" Тр-р №2 1600кВА	ЦААШв	3x95	1	441	28	0,411	0,294	0,23	0,10143
3	РУ-10 кВ, яч.29	КТП-5 Тр-тор №2 1000кВА	ААШв	3x95	1	113	29	0,411	0,294	0,23	0,02599
	РУ-10 кВ, яч.32	КТП-3 Тр-тор №2 1000кВА	ААШв	3x95	1	24	32	0,411	0,294	0,23	0,00552
	РУ-10 кВ, яч.33	КТП 2 Тр-тор №2 1000кВА	ААШв	3x95	1	31	33	0,411	0,294	0,23	0,00713

до КТП и высоковольтных электроприемников

Таблица П.3.11 - Параметры кабельных линий 10 кВ, отходящих от РП-103

до КТП и высоковольтных электроприемников

Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	С _{УД} , мкФ/км	C_{Σ} , мк Φ
	РУ-10 кВ, яч.3	Шкаф ШОПНД №1, двиг. 1600 кВт	ААШв	3x120	1	75	3	0,325	0,282	0,27	0,02025
1	РУ-10 кВ, яч.5	Шкаф ШОПНД №3, двиг. 1600 кВт	ААШв	3x120	1	85	5	0,325	0,282	0,27	0,02295
1	РУ-10 кВ, яч.7	Тр-тор №1 630кВА 10/0,4кВ	ААШв	3x120	1	45	7	0,325	0,282	0,27	0,01215
	РУ-10 кВ, яч.19	КТП-53 ввод 1 2500 кВа(СПП)	ЦААШв	3x120	1	144	19	0,325	0,282	0,27	0,03888
	РУ-10 кВ, яч.4	Шкаф ШОПНД №2, двиг. 1600 кВт	ЦААШнг	3x120	1	80	4	0,325	0,282	0,27	0,0216
2	РУ-10 кВ, яч.6	Шкаф ШОПНД №4, двиг. 1120 кВт	ЦААШв	3x120	1	85	6	0,325	0,282	0,27	0,02295
2	РУ-10 кВ, яч.8	Тр-тор №2 630кВА 10/0,4кВ	ААШв	3x120	1	60	8	0,325	0,282	0,27	0,0162
	РУ-10 кВ, яч.20	КТП-53 Ввод 2 Тр- р №2 2500 кВА	ААШв	3x120	1	143	20	0,325	0,282	0,27	0,03861

Таблица П.3.12 - Параметры кабельных линий 10 кВ, отходящих от РП-214

до КТП и высоковольтных электроприемников

Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	С _{УД} , мкФ/км	C_{Σ} , мк Φ
	РУ-10 кВ, яч.1	ТП 11 "Л" Тр-тор 1600кВА	ААШв	3x95	1	621	1	0,411	0,294	0,23	0,14283
	РУ-10 кВ, яч.5	ТП 214 "А" Тр-р №1 10/0,4 кВ 1600 кВА	ААШв	3x120	1	23	5	0,325	0,282	0,27	0,00621
	РУ-10 кВ, яч.7	Эл.двигатель вентилятора М-450 500кВт	АПвБВнг (A)-LS-10	3x95/25	1	150	7	0,411	0,294	0,294	0,0441
	РУ-10 кВ, яч.9	Эл.двигатель вентилятора М-451 500кВт	АПвБВнг (А)-LS-10	3x95/25	1	150	9	0,411	0,294	0,294	0,0441
	РУ-10 кВ, яч.11	Резерв	ААШв	3x95	1	206	11	0,411	0,294	0,23	0,04738
1	РУ-10 кВ, яч.17	Тр-р привода №430 AV-1 400кВА	АПвБВнг (А)-LS-10	3x95/25	1	215	17	0,411	0,294	0,294	0,06321
	РУ-10 кВ, яч.19	Тр-р 362кВА Привод №2168 AV- 1	АПвБВнг (А)-LS-10	3x95/25	1	211	19	0,411	0,294	0,294	0,062034
	РУ-10 кВ, яч.21	Привод №2164 AV- 1 Тр-р 400кВА	АПвБВнг (A)-LS-10	3x95/25	1	200	21	0,411	0,294	0,294	0,0588
	РУ-10 кВ, яч.23	Толкатель 2160 AV- 1 Тр-р 400кВА	АПвБВнг (A)-LS-10	3x95/25	1	200	23	0,411	0,294	0,294	0,0588
	РУ-10 кВ, яч.29	КТП 11 "А" Тр-р №1 1600 кВА	АПвБВнг (A)-LS-10	3x95/25	1	190	29	0,411	0,294	0,294	0,05586
	РУ-10 кВ, яч.31	Привод №2156 AV- 2 Тр-р 362 кВА	АПвБВнг (А)-LS-10	3x95/25	1	265	31	0,411	0,294	0,294	0,07791
	РУ-10 кВ, яч.2	ТП 11"М" Тр-тор 1600кВА	ААШв	3x120	1	742	2	0,325	0,282	0,27	0,20034
	РУ-10 кВ, яч.4	Привод №2156 AV- 1 тр-р 362 кВА	АПвБВнг (А)-LS-10	3x95/25	1	260	4	0,411	0,294	0,294	0,07644
	РУ-10 кВ, яч.6	КТП 214 "А" Тр-р №2 1600кВа	ААШв	3x185	1	30	6	0,211	0,262	0,32	0,0096
	РУ-10 кВ, яч.10	Эл.двигатель привода №452 500кВт	АПвБВнг (А)-LS-	3x95/25	1	127	10	0,411	0,294	0,294	0,037338
	РУ-10 кВ, яч.12	Привод №430 AV-2 Тр-р 360кВА	ААШв	3x120	1	225	12	0,325	0,282	0,27	0,06075
2	РУ-10 кВ, яч.14	ТП 11"И" Тр-тор 1000кВА	АПвБВнг (A)-LS-10	3x95/25	1	511	14	0,411	0,294	0,294	0,150234
	РУ-10 кВ, яч.16	Привод №2160 AV- 2	АПвБВнг (A)-LS-10	3x95/25	1	205	16	0,411	0,294	0,294	0,06027
	РУ-10 кВ, яч.18	Эл.двигатель вентилятора печей 500кВт	АПвБВнг (А)-LS-10	3x95/25	1	160	18	0,411	0,294	0,294	0,04704
	РУ-10 кВ, яч.26	КТП 11"А" Тр-р №2 1600кВА	АПвБВнг (А)-LS-10	3x95/25	1	200	26	0,411	0,294	0,294	0,0588
	РУ-10 кВ, яч.28	Привод №2164 AV- 2 тр-р 400 кВА	АПвБВнг (A)-LS-10	3x95/25	1	215	28	0,411	0,294	0,294	0,06321

Таблица П.3.13 - Параметры кабельных линий 10 кВ, отходящих от РП-220

до КТП и высоковольтных электроприемников

Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	С _{уд} , мкФ/км	C_{Σ} , мкФ
	PY-10 rB gu 13	КТУ 201 Тр-тор 400кВА	AAIIIB	3x95	1	622	13	0,411	0,294	0,23	0,14306
	PY-10	KTY 225	ЦААШв	3x95	1	622	14	0,411	0,294	0,23	0,14306
	PV-10	7 КТУ-212 ПУ-3 тр-	ЦААШв	3x95	1	396	15	0,411	0,294	0,23	0,09108
	РУ-10	розоква Перемычка на РП	AAIIIB	3x185	4	32	16	0.211	0.262	0.32	0.04096
	кВ, яч.16 РУ-10	ССМ Тр-тор	IIAAIIIb	3x95	1	261	19	0.411	0.294	0.23	0.06003
	кВ, яч.19 РУ-10	2700кВА КТП 220"А" Тр-р	AAIIIB	3x95	1	110	2.0	0.411	0.294	0.23	0.0253
	кВ, яч.20 РУ-10	№1 1000кВА КТП-2ТП Тр-р №1	AAIIIR	3x95	1	50	22	0.411	0.294	0.23	0.0115
	кВ, яч.22 РУ-10	<u>1000кВА</u> КТУ-146	ЦААШв	3x95	2	461	22	0,411	0.294	0.23	0.21206
	кВ, яч.23 РУ-10	Тр-тор 1600кВА ТП 220 "Ж" Тр-р		3x05	1	401	23	0,411	0.294	0.23	0.00708
	кВ, яч.24 РУ-10	№1 1600кВА КТУ-129	цаашь	3,353	1	420	24	0,411	0,294	0,23	0,09798
	кВ, яч.25 РУ-10	Тр-тор 1600кВА КТУ-25 Тр-тор №1	ААШв	3x95	1	416	25	0,411	0,294	0,23	0,09568
	кВ, яч.26	1000кВА	ААШв	3x95	1	119	26	0,411	0,294	0,23	0,02737
	РУ-10 кВ, яч.27	Тр-тор 160кВА	ЦААШВ ААШв	3x95	2	411	27	0,411	0,294	0,23	0,18906
	РУ-10 кВ, яч.28	КТП-13 Тр-тор 1000кВА	AAIIIb	3x95	1	241	28	0,411	0,294	0,23	0,05543
	РУ-10 кВ, яч.30	КТУ-95 Тр-тор 1000кВА	ЦААШв	3x95	1	396	30	0,411	0,294	0,23	0,09108
	РУ-10 кВ яч 31	КТУ 118 Тр-тор 630 кВА	ЦААШв	3x95	1	431	31	0,411	0,294	0,23	0,09913
1	PY-10 rP gu 22	KTY-77	AAIIIb	3x95	1	122	32	0,411	0,294	0,23	0,02806
	РУ-10	КТУ-90	ЦААШв	3x95	2	406	33	0,411	0,294	0,23	0,18676
	кВ, яч.33 РУ-10	Тр-тор 630кВА КТУ-66	AAIIIB AAIIIB	3x95	1	140	34	0.411	0.294	0.23	0.0322
	кВ, яч.34 РУ-10	Тр-тор 630кВА КТП 220"В"	AAIIID	2x05	1	120	25	0.411	0.204	0.23	0,0322
	кВ, яч.35 РУ-10	Тр-тор 630кВА Тр-тор 1Т1 СИФУ	ААШВ	3, 3, 3, 3	1	150	35	0,411	0,294	0,23	0,0299
	кВ, яч.36 РУ-10	160кВА КТП-33 . Тр-тор №1	ААШв	3x95	1	123	36	0,411	0,294	0,23	0,02829
	кВ, яч.39	1600кВА	AAIIIb	3x95	1	271	39	0,411	0,294	0,23	0,06233
	РУ-10 кВ, яч.40	IIIBB 13	AAIIIb	3x120	1	261	40	0,325	0,282	0,27	0,07047
	РУ-10 кВ, яч.42	КПП 220 "Б" Тр-р №1 1000кВА	ЦААШв ААШв	3x95	2	431	42	0,411	0,294	0,23	0,19826
	РУ-10 кВ, яч.43	КТУ-69 Тр-тор 630кВА	ААШв	3x95	1	132	43	0,411	0,294	0,23	0,03036
	РУ-10 кВ. яч.44	КТУ-60 Тр-тор 630 кВА	AAIIIb	3x95	1	119	44	0,411	0,294	0,23	0,02737
	РУ-10 кВ ян 45	KTV-80 Tn Top 1000rBA	AAIIIb	3x95	1	93	45	0,411	0,294	0,23	0,02139
	РУ-10	КТУ-114	ЦААШв	3x95	2	439	46	0.411	0.294	0.23	0.20194
	кВ, яч.46 ру 10	Тр-тор 630кВА Петлевое	ААШв					*,***	-,	-,	
	кВ, яч.47	устройство №1 Тр-р 1000кВА	AAIIIb	3x95	1	104	47	0,411	0,294	0,23	0,02392
	РУ-10 кР ст. 48	KTY-13	ААШв	3x95	1	105	48	0,411	0,294	0,23	0,02415
	РУ-10	230 КТП-1 Тр-р №1	IIAAIIIhr	3x95	1	78	52	0.411	0.294	0.23	0.01794
	кВ, яч.52 РУ-10	1600кВА КТП 220 "Б" Тр-р	A A IU 5	2::05	1	416	52	0.411	0.204	0.22	0.00569
	кВ, яч.53 РУ-10	№2 1000кВА 2TП Тр-тор №2	ААШВ	3,73		410		0,411	0,294	0,23	0,09308
	кВ, яч.55	1000кВА КТН 220"У/" Те е	ААШв	3x95	1	50	55	0,411	0,294	0,23	0,0115
2	кВ, яч.59	№2 1600кBA	ЦААШв	3x95	1	416	59	0,411	0,294	0,23	0,09568
	РУ-10 кВ, яч.60	СИФУ 1Т7 Тр-тор 160кВА	AAIIIB	3x95	1	118	60	0,411	0,294	0,23	0,02714
	РУ-10 кВ. яч.62	КТП-4 Тр-тор №1	ЦААШнг	3x95	1	632	62	0,411	0,294	0,23	0,14536
	РУ-10 кВ яч 73	Перемычка на РП 220 РУ-10кВ от 135	AAIIIb	3x185	4	36	73	0,211	0,262	0,32	0,04608

Продолжение таблицы П.3.13

Секция	Трасса (начало)	Трасса (конец)	Марка ВЛ/КЛ	Сечение ВЛ/КЛ	Кол- во	Длина, м	Фидер	<i>R</i> ₀ , Ом/км	<i>L</i> ₀ , мГн/км	$C_{yд},$ мк Φ /км	$C_{\Sigma},$ мкФ
	РУ-10 кВ, яч 83	КТП-33 Тр-тор №2 1600кВА	ААШв	3x95	1	268	83	0,411	0,294	0,23	0,06164
	РУ-10 кВ, яч.84	220 КТП-А тр-р №2 1000кВА	AAIIIb	3x95	1	104	84	0,411	0,294	0,23	0,02392
2	РУ-10 кВ, яч.86	КТП 220 "Г" Тр-тор 630кВА	AAIIIb	3x95	1	416	86	0,411	0,294	0,23	0,09568
	РУ-10 кВ, яч.88	КТП-3 Тр-тор №2 1600кВА	AAIIIb	3x95	1	612	88	0,411	0,294	0,23	0,14076
	РУ-10 кВ, яч.121	230 КТП-1 Тр-р №2 1600кВА	ЦААШнг	3x95	1	105	121	0,411	0,294	0,23	0,02415
	РУ-10 кВ, яч.123	КТП-3 Тр-тор №1 1600кВА	АСБГ ААШв	3x95	2	622	123	0,411	0,294	0,23	0,28612
	РУ-10 кВ, яч.124	КТУ-58 Тр-тор 400кВА	ЦААШв	3x95	1	612	124	0,411	0,294	0,23	0,14076
	РУ-10 кВ, яч.125	КТУ 50 Тянущие ролики	ЦААШв	3x95	1	602	125	0,411	0,294	0,23	0,13846
	РУ-10 кВ, яч.129	КТУ-311 Тр-тор 630кВА	ААШв ЦААШв	3x95	2	622	129	0,411	0,294	0,23	0,28612
3	РУ-10 кВ, яч.130	КТУ-312 Тр-тор 1000кВА	AAIIIB	3x95	1	632	130	0,411	0,294	0,23	0,14536
	РУ-10 кВ, яч.131	Тр-тор СИФУ 160кВА	ААШв ААБлГУ	3x95	2	632	131	0,411	0,294	0,23	0,29072
	РУ-10 кВ, яч.132	КТП-4 Тр-тор №2	ААШв ЦААШнг ААБлГУ	3x95	3	640	132	0,411	0,294	0,23	0,4416
	РУ-10 кВ, яч.133	КТУ-324 Тр-тор 1600кВА	ЦААШв	3x95	1	622	133	0,411	0,294	0,23	0,14306
	РУ-10 кВ, яч.134	КТП-5 Тр-тор 2500кВА	ЦААШнг-10	3x185	4	280	134	0,211	0,262	0,32	0,3584
	КТУ-114 Тр-р 630кВА	КТУ-115 Тр-тор 630кВА	ААШв	3x95	1	23	-	0,411	0,294	0,23	0,00529
	КТУ-90 Тр-р 630кВА	КТУ-91 Тр-тор 630кВА	ААШв	3x95	1	18	-	0,411	0,294	0,23	0,00414
	КТУ-201 Тр-р 400кВА	КТУ-203 Тр-тор 400кВА	ААШв	3x95	1	11	-	0,411	0,294	0,23	0,00253
	КПУ-5 Тр-р №10 400кВА	КПУ-1 Тр-тор №9 400кВА	ААШв	3x95	1	31	-	0,411	0,294	0,23	0,00713
	КПУ-7 Тр-тор №11	КПУ-5 Тр-тор №10 400кВА	ААШв	3x95	1	21	-	0,411	0,294	0,23	0,00483
и	КПУ-9 Тр-р №11 400кВА	КПУ-7 Тр-тор 400кВА	ААШв	3x120	1	19	-	0,325	0,282	0,27	0,00513
ремычк	КТУ-66 Тр-р 630кВА	КТУ-67 Тр-тор 630кВА	ААШв	3x95	1	14	-	0,411	0,294	0,23	0,00322
Ш	КТУ-69 Тр-р 630кВА	КТУ-70 Тр-тор 630кВА	ААШв	3x95	1	18	-	0,411	0,294	0,23	0,00414
	КТУ-80 Тр-р 1000кВА	КТУ-81 Тр-тор 1000кВА	ААШв	3x95	1	13	-	0,411	0,294	0,23	0,00299
	КПУ-13	КПУ-9 Тр-тор 400кВА	ААШв	3x120	1	18	-	0,325	0,282	0,27	0,00486
	КТУ-227 тр-р 400 кВА	КТУ-225 Тр-тор 400 кВА	ЦААШв	3x95	1	11	-	0,411	0,294	0,23	0,00253
	КТУ-60 Тр-р 630кВА	КТУ-61 Тр-тор 630кВА	ААШв	3x95	1	16	-	0,411	0,294	0,23	0,00368
	КТУ-77 Тр-р 1600кВА	КТУ-78 Тр-тор 1600кВА	ААШв	3x95	1	18	-	0,411	0,294	0,23	0,00414

Таблица П.4.1 - Суммарные емкости кабельных линий по фидерам секций РУ-10 кВ (первый вариант схемы электроснабжения – раздельная работа секций №1 и №2 РУ-10 кВ ГПП-2)

Секция	Номер	$T_{nacca}(x_{OUAU})$	Can	wФ
ГПП	ячейки	Грасса (конец)	C_{Σ} , r	мкФ
	15А,Б	РП-92 РУ 10кВ	1,062489	
	16A	КТП 1 РТП-54а Тр-р №2 1000 кВА	0,2093	
	16Б	РТП-54а Тр-р №1 6300 кВА	0,60328	
	17	РП-220 РУ 10кВ	3,71395	
	18А,Б	РП-155 РУ 10кВ	0,824588	
1	20A	Тр-р № 1 630кВА	0,03565	11,63
	21	РП-19 РУ 10кВ	0,704463	
	23	ПС-13 РУ 10кВ	1,43013	
	25A	РП-103 РУ 10кВ	0,67023	
	25Б	ПС-56 РУ 10кВ	0,891793	
	26Б	РП-33 РУ 10кВ	0,52145	
	27A	РП-101 РУ 10кВ	0,95743	
	1	РП-19 РУ 10кВ	0,672432	
	3	ПС-13 РУ 10кВ	1,42855	
	5A	КТП 2 РТП-54а Тр-р №1 1000 кВА	0,1886	
	5Б	РТП-54а Тр-р №3 6300 кВА	0,59879	
2	6A	РП-91 РУ 10кВ	2,82466	10.08
	7А,Б	РП-92 РУ 10кВ	1,138254	10,00
	9	РП-214 РУ 10кВ	1,237234	
	10А,Б	РП-155 РУ 10кВ	0,886368	
	11A	Тр-р №2 320 кВА	0,0198	
	11Б	РП-101 РУ 10кВ	1,05633	
	11B	ТСН-2 630 кВА	0,03105	

Таблица П.4.2 - Суммарные емкости кабельных линий по фидерам секций РУ-10 кВ (второй вариант схемы электроснабжения – параллельная работа секций №1 и №2 РУ-10 кВ ГПП-2)

Секция	Номер	Трасса (конец)	(~∽ мкФ	
ГПП	ячейки	i paeca (koneu)		2, MK P	
	15А,Б	РП-92 РУ 10кВ	1,062489		
	164	КТП 1 РТП-54а	0 2003		
	10A	Тр-р №2 1000 кВА	0,2095		
	165	РТП-54а	0 60328		
	10D	Тр-р №1 6300 кВА	0,00328		
	17	РП-220 РУ 10кВ	3,71395		
1	18А,Б	РП-155 РУ 10кВ	0,824588	11 62	
1	20A	Тр-р № 1 630кВА	0,03565	11,05	
	21	РП-19 РУ 10кВ	0,704463		
	23	ПС-13 РУ 10кВ	1,43013		
	25A	РП-103 РУ 10кВ	0,67023		
	25Б	ПС-56 РУ 10кВ	0,891793		
	26Б	РП-33 РУ 10кВ	0,52145		
	27A	РП-101 РУ 10кВ	0,95743		21,71
	1	РП-19 РУ 10кВ	0,672432		
	3	ПС-13 РУ 10кВ	1,42855		
	5 ۸	КТП 2 РТП-54а	0.1006		
	JA	Тр-р №1 1000 кВА	0,1000		
	55	РТП-54а	0.50870		
	50	Тр-р №3 6300 кВА	0,39879		
2	6A	РП-91 РУ 10кВ	2,82466	10,08	
	7А,Б	РП-92 РУ 10кВ	1,138254		
	9	РП-214 РУ 10кВ	1,237234		
	10А,Б	РП-155 РУ 10кВ	0,886368		
	11A	Тр-р №2 320 кВА	0,0198		
	11Б	РП-101 РУ 10кВ	1,05633		
	11B	ТСН-2 630 кВА	0,03105		

ПАО «Северсталь» Центр « Промсервис»	Заказчик:	стр. 1 из ПАО «Северсталь» ЦЭС
Электроремонтное производство. Центральная электротехническая лаборатория	Объекты:	ГПП-2 , РП-19 РУ-10кВ
"видетельство о регистрации № 33-09/ЭЛ-21 от 30.03.2021. "видетельство СРО НП «ОССП» о допуске к видам работ. © 0994.04-2010-3528000597-С-003 от 19.03.2015г.		

ПРОТОКОЛ № 206/29

Сравнительный анализ замеров гармонических составляющих напряжения за 2020 и 2021 года.

Данные по замерам сведены в таблицы 1-3.

Таблица 1 – Результаты сравнения измененных значений за 2020 и 2021 годы по ГПП-2 РУ-10кВ

Показатель качества электроэнергии:	Режим работы:	2020год	2021год	Изменение:.
Наибольший коэффициент искажения	Работа стана	13.98	3.97	↓в 3.5раза
синусоидальности кривой напряжения, %	Остановка стана	12.41	4.56	↓в 2.7раза
Количество гармоник не соответствующих	Работа стана	14	9	↓в 1.5 раза
ГОСТ, штук	Остановка стана	12	7	↓в 1.7раза

Таблица 2 – Результаты сравнения измененных	значений за 2020 и 2021 и	годы по РП-19	РУ-10кВ сек	ция №1 ячейка№4
Показатель качества электроэнергии:	Режим работы:	2020год	2021год	Изменение:
Наибольший коэффициент искажения	Работа стана	12.99	5.93	↓в 2.2 раза
синусоидальности кривой напряжения, %	Остановка стана	12.20	6.27	↓в 1.9 раза
Количество гармоник не соответствующих	Работа стана	18	16	↓в 1.1раза
ГОСТ, штук	Остановка стана	12	12	‡ без изменений

Таблица 3 – Результаты сравнения измененных	значений за 2020 и 2021 и	годы по РП-19	РУ-10кВ сек	ция №2 ячейка.М
Показатель качества электроэнергии:	Режим работы:	2020год	2021год	Изменение:
Наибольший коэффициент искажения	Работа стана	13.65	5.35	↓в 2.6 раза
синусоидальности кривой напряжения, %	Остановка стана	2.04	5.46	†в 2.7 paзa
Количество гармоник не соответствующих	Работа стана	18	12	B 1.5 paga

Остановка стана

Примечание: Замеры на ГПП-2 РУ-10кВ 1секция в 2020году не производились.

Заключение:

ГОСТ, штук

03 августа <u>2021г.</u> № г. Череповец

В результате анализа зафиксированная разница в значениях суммарного коэффициента гармонических составляющих междуфазных напряжений составила более 2-х раз в сторону уменьшения показателя.

Менеджер по ЭСИ

Специалист I кат.

Подпись

В.В.Ильичев Фамилия и инициалы

↑ в 1.4 раза

К.В.Соколов

10

7

168

результатов научно-исследовательской опытно-конструкторской работы «Исследование электрической сети 10 кВ внутризаводского электроснабжения ЧерМК ПАО «Северсталь». Разработка мероприятий, направленных на обеспечение электромагнитной совместимости преобразователей частоты электроприводов четырехклетьевого стана с питающей сетью 10 кВ ГПП-2 ПАО «Северсталь» (Договор №9000112665 от 19.10.2020 г. (тема 2020-45))

Работа проводится в рамках раздела VI «Энергоэффективность, энергосбережение, ядерная энергетика, пункта 4 «Технологии создания энергосберегающих систем транспортировки, распределения и использования энергии», подпункта 8 «Разработка систем рационального использования энергоресурсов и комплексного использования вторичных энергоресурсов» «Перечня научных исследований и опытно-конструкторских разработок, расходы налогоплательщика на которые в соответствии с п. 7 ст. 262 ч.2 НК РФ включаются в состав прочих расходов в размере фактических затрат с коэффициентом 1,5», утвержденного Постановлением Правительства РФ от 24.12.2008 №988 (в редакции Постановления Правительства РФ от 6 февраля 2012 г. №96)

Краткое описание выполненной работы

1. В результате проведенной НИОКР были определены причины ухудшения качества напряжения в распределительной сети 10 кВ района ГПП-2 ЧерМК ПАО «Северсталь», приводящие к нарушению режимов работы чувствительных электроприемников, получающих питание от цеховых РП и других подстанций, имеющих связь с секциями РУ-10 кВ ГПП-2. Основными причинами являются: 1) наличие сложных резонансных явлений в распределительной сети 10 кВ района ГПП-2, обусловленных взаимным влиянием индуктивностей сетевых трансформаторов 110/10 кВ, индуктивностей токоограничивающих реакторов в ячейках РУ-10 кВ ГПП-2, а также емкостей протяженных кабельных линий 10 кВ; 2) неоптимальные настройки ШИМ активных выпрямителей ПЧ АСЅб000 главных электроприводов четырехклетьевого стана ППП ХП, при которых в потребляемых токах ПЧ-АВ содержатся значимые гармонические составляющие, совпадающие с областью основного резонанса частотной характеристики сети 10 кВ в точке общего подключения электроприемников.

2. На основании комплексной математической модели сети 10 кВ района ГПП-2 и главных электроприводов четырехклетьевого стана были разработаны

и исследованы различные способы улучшения гармонического состава напряжения на секциях РУ-10 кВ ГПП-2 и РП-19. Из всех рассмотренных технических мероприятий были определены три способа, обеспечивающие наилучший технический эффект по улучшению качества напряжения: 1) организация «чистой» и «грязной» секций в РУ-10 кВ ГПП-2 с переключением всех главных ЭП прокатного стана на «грязную» секцию; 2) установка в РУ-10 кВ РП-155 или в РУ-10 кВ ГПП-2 специализированного УКРМ для коррекции частотной характеристики сети 10 кВ; 3) изменение параметров ШИМ активных выпрямителей ПЧ АСЅ6000 с целью исключения гармонических составляющих тока, имеющих одинаковую частоту с резонансными областями частотной характеристики сети 10 кВ. Также предложено дополнительное мероприятие по отключению токоограничивающих реакторов в яч. 1 и 21 РУ-10 кВ ГПП-2 для улучшения качества напряжения на секциях РУ-10 кВ РП-19 с целью снижения негативного влияния высших гармоник на работу электрооборудования электроприводов прокатного стана.

3. Выполнено обоснование наиболее приемлемых способов улучшения качества напряжения сети 10 кВ с учетом возможности реализации в условиях действующего производства. Наиболее приоритетным вариантом, не требующим дополнительных капитальных затрат, является коррекция алгоритмов ШИМ активных выпрямителей ПЧ ACS6000. По авторским методикам руководителя и исполнителей НИОКР (Николаев А.А., Буланов М.В., Гилемов И.Г., Афанасьев М.Ю.) были рассчитаны таблицы углов переключения силовых ключей активных выпрямителей ПЧ с учётом исключения гармоник тока, попадающих в резонансные области частотной характеристики сети. Результаты исследований по расчету скорректированных параметров ШИМ АВ, выполненные в рамках данной НИОКР, были переданы специалистам ООО «АББ», которые внесли соответствующие изменения в настройки действующего оборудования ПЧ ACS6000.

Технический эффект от внедрения результатов НИОКР

Согласно протоколу сравнительного анализа замеров гармонических составляющих напряжения за 2020 и 2021 года №205/29 от 20 июля 2021 года после внесения изменений специалистами АВВ в настройки действующего оборудования ПЧ АСS6000. По сравнению с 2020 годом было зафиксировано существенное снижение значения суммарного коэффициента гармонических составляющих междуфазных напряжений K_U на секциях ГГП-2 и РП-19. При работе ГПП-2 от одного понизительного трансформатора 110/10 кВ снижение максимального зарегистрированного K_U составило на секциях ГПП-2 РУ-10 кВ – в 3,5 раза↓ (с 13,98% до 3,97%), РП-19 РУ-10 кВ секция №1 – в 2,2 раза↓ (с 12,99% до 5,93%), РП-19 РУ-10 кВ секция №2 – в 2,6 раза↓ (с 13,65% до 5,35%). Число гармоник, не соответствующих ГОСТ 32141-2013, на секциях ГПП-2 уменьшилось с 12 до 7.

Даты фактического внедрения результатов НИОКР: 15.03.2021 г.

Срок полезного использования: 5 лет.

Научный руководитель НИОКР:

Заведующий кафедрой автоматизированного электропривода и мехатроники ФГБОУ ВО «МГТУ им. Г.И. Носова», канд. техн. наук, доцент

А.А. Николаев /

Согласовано:

Главный Электрик ХП

/ Э.В. Белов /

/ А.Ю. Шахов /

Менеджер по электрическому хозяйству